Как найти линейное увеличение изображения

Определение

Формула тонкой линзы — формула, связывающая три величины: расстояние от предмета до линзы, расстояние от изображения до линзы и фокусное расстояние линзы.

Условные обозначения:

  • расстояние от предмета до линзы — d (м);
  • расстояние от изображения до линзы— f (м);
  • фокусное расстояние линзы — F (м).

Вывод формулы

Обратимся к рисунку, который мы использовали для объяснения правила построения изображений в собирающих линзах:

Видно, что треугольники АОВ и А1В1О подобные (по двум углам). Следовательно:

BOOB1=ABA1B1

По двум углам также являются подобными треугольники COF и FA1B1. Отсюда делаем вывод, что:

COA1B1=OFFB1

Линия предмета образует с частью главной оптической оси, перпендикуляром, проведенным из верхней точки к линзе, и частью самой линзы прямоугольник. Следовательно, его противоположные стороны равны:

AB=CO

Следовательно:

ABA1B1=COA1B1

Отсюда следует, что:

BOOB1=OFFB1

BO является расстоянием от предмета до линзы. Обозначим его за d. OB1 является расстоянием от линзы до изображения. Обозначим его за f. OF является фокусным расстоянием линзы. Обозначим его за F. FB1 является разностью расстояния от линзы до изображения и фокусного расстояния линзы. Поэтому это выражение мы можем записать так:

df=FfF

Избавимся от знаменателей и получим:

fdFd=fF

Или можно записать так:

fF+Fd=fd

Теперь все члены равенства поделим на произведение Ffd. В результате вычислений получим формулу тонкой линзы:

Формула тонкой линзы

1d+1f=1F

Поскольку величиной, равной обратной фокусному расстоянию, является оптическая сила, формулу тонкой линзы можно записать следующим образом:

1d+1f=D

Величины d, ƒ и F могут быть как положительными, так и отрицательными. Отметим (без доказательства), что при применении формулы тонкой линзы знаки нужно ставить перед членами уравнения согласно следующим правилам.

Правила расстановки знаков перед членами уравнения в формуле линзы

  • Если линза собирающая, то ее фокус действительный, и перед членом 1F ставят знак «плюс» (1F).
  • Если линза рассеивающая, то ее фокус мнимый, и перед членом 1F ставят знак «минус» (1F).
  • Если изображение действительное, то перед величиной 1d ставят знак «плюс» (1d).
  • Если изображение мнимое, то перед величиной 1d ставят знак «минус» (1d).
  • Величина 1f всегда имеет знак «плюс», поскольку расстояние от предмета до линзы всегда положительное.

Иногда случается, что перед величинами F, f и d знаки неизвестны. Тогда при вычислениях перед ними ставят знаки «плюс». Но если в результате вычислений фокусного расстояния или расстояния от линзы до изображения либо до источника получается отрицательная величина, то это означает, что фокус, изображение или источник мнимые.

Пример №1. Фокусное расстояние линзы равно 10 см. Найти расстояние от предмета до линзы, если расстояние от нее до изображения составляет 15 см.

Переводить в СИ единицы измерения не будем, поскольку они однородны. Так как все величины выражены в см, то и ответ будет выражен в см.

Применим формулу тонкой линзы:

1d+1f=1F

1d+115=110

Умножим выражение на 150d:

150+10d=15d

5d=150

d=30 (см)

Увеличение линзы

Раньше мы уже упоминали, что изображение, полученное в линзе, может быть увеличенным или уменьшенным. Различие размеров предмета и изображения характеризуется увеличением.

Определение

Линейное увеличение — отношение линейного размера изображения к линейному размеру предмета. Линейное увеличение обозначают буквой Γ.

Чтобы найти линейное увеличение изображения предмета в линзе, снова обратимся к первому рисунку этого параграфа. Если высота предмета АВ равна h, а высота изображения А1В1 равна Н, то:

Γ=Hh

Мы уже выяснили, что треугольники АОВ и ОА1В1 подобны. Поэтому:

Hh=|f||d|

Где H — высота изображения предмета, h — высота самого предмета.

Отсюда вытекает, что увеличение линзы равно:

Γ=|f||d|

Пример №2. Предмет имеет высоту h = 2 см. Какое фокусное расстояние F должна иметь линза, расположенная от экрана на расстоянии f = 4 м, чтобы изображение указанного предмета имело высоту H = 1 м?

2 см = 0,02 м

Сначала применим формулы тонкой линзы:

1d+1f=1F

Она необходима, чтобы выразить фокусное расстояние линзы:

F=dfd+f

Расстояние от предмета до линзы неизвестно. Но его можно выразить из формулы увеличения линзы:

Γ=fd=Hh

Отсюда это расстояние равно:

d=fhH

Подставим полученное выражение в формулу фокусного расстояния линзы:

F=fhHffhH+f=f2hH·
Hfh+fH=fhH+h

F=fhH+h=4·0,021+0,020,08 (м)=8 (см)

Задание EF17760

Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Сделать рисунок — построить изображение в линзе.

3.Записать формулу для нахождения площади полученной фигуры.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Оптическая сила линзы: D = 2,5 дптр.

 Сторона треугольника AC = 4 см.

4 см = 0,04 м

Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.

Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.

Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:

1d+1f=1F

Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:

12F+1f=1F

1f=1F12F=212F=12F

f=2F

Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:

S=AC·BC2

Из формулы оптической силы линзы найдем фокусное расстояние:

F=1D=12,5=0,4 (м)

Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:

dC=2FAC=2·0,40,04=0,76 (м)

Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:

10,76+1f=1F

1fC=1F10,76=0,76F0,76F=0,760,40,76·0,4

fC=0,76·0,40,760,4=0,844 (м)

Тогда длина катета A´ C´ будет равна:

AC=fCfA=fC2F=0,8440,4·2=0,044 (м)

Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей). Следовательно BC относится к B´ C´ так же, как OC относится к C´O:

BCBC=ACAC

Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:

ACBC=ACAC

Следовательно:

BC=AC

Отсюда площадь треугольника равна:

S=AC·AC2=(0,044)22=0,000968 (м2)=9,68 (см2)

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17685

Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Ответ:

а) 0,50 м

б) 0,75 м

в) 1,25 м

г) 1,50 м


Линза с фокусным расстоянием F=1м даёт на экране изображение предмета, увеличенное в 4 раза. Каково расстояние от предмета до линзы?

Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы и формулу тонкой линзы.

3.Выразить из обеих формул расстояние от линзы до изображения предмета.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Фокусное расстояние линзы: F = 1 м.

 Увеличение линзы: Γ = 4.

Запишем формулу увеличения линзы и выразим из нее расстояние от линзы до изображения предмета:

Γ=fd

f=Γd

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Γd=dFdF

Поделим на d и выразим расстояние от предмета до линзы:

Γ=FdF

d=FΓ+F=14+1=1,25 (м)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18124

Предмет высотой 6 см расположен на горизонтальной главной оптической оси тонкой собирающей линзы на расстоянии 30 см от её оптического центра. Высота  изображения предмета 12 см. Найдите фокусное расстояние линзы.

Ответ:

а) 5 см

б) 10 см

в) 20 см

г) 36 см


Алгоритм решения

1.Записать известные данные.

2.Записать формулу увеличения линзы в двух вариантах и выразить из нее расстояние от изображения до линзы.

3.Записать формулу тонкой линзы и тоже выразить из нее расстояние от изображения до линзы.

4.Приравнять правые части выражений.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем известные данные:

 Расстояние от оптического центра линзы до предмета: d = 30 cм.

 Высота предмета: h = 6 см.

 Высота изображения: H = 12 см.

Так как все данные измеряются в сантиметрах, переводить единицы измерения величин в СИ нет необходимости. Просто ответ будет получен тоже в сантиметрах.

Запишем формулу увеличения линзы:

Γ=Hh=fd

Отсюда расстояние от изображения до линзы равно:

f=Hdh

Запишем формулу тонкой линзы и выразим из нее расстояние от линзы до изображения предмета:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Приравняем правые части последних выражений:

Hdh=dFdF

Поделим на d, у множим на h(d –F) и выразим фокусное расстояние:

Hh=FdF

H(dF)=hF

HdHF=hF

hF+HF=Hd

F(h+H)=Hd

F=Hdh+H=12·3012+6=20 (см)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF19112

В плоскости, параллельной плоскости тонкой собирающей линзы, по окружности со скоростью v = 5 м/с движется точечный источник света. Расстояние между плоскостями d = 15 см. Центр окружности находится на главной оптической оси линзы. Фокусное расстояние линзы F = 10 см. Найдите скорость движения изображения точечного источника света. Сделайте пояснительный чертёж, указав ход лучей в линзе. Ответ запишите в м/с.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

3.Записать формулу тонкой линзы и определить из нее расстояние от изображения до линзы.

4.Записать формулу линейного увеличения линзы двумя способами для вычисления радиусов окружностей, по которым движутся точка и ее изображение.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Фокусное расстояние линзы: F = 10 см.

 Расстояние от линзы до плоскости, в которой вращается точка: d = 15 см.

 Скорость вращения точки: v = 5 м/с.

10 см = 0,1 м

15 см = 0,15 м

Выполним рисунок. Для его построения достаточно найти изображение точки А. Затем в противоположную сторону отложим перпендикуляр и на таком же расстоянии от главной оптической оси будет находиться изображение точки B.

Глядя со стороны, мы будем видеть вместо окружности, которую описывает точка, линию AB. Она равн диаметру окружности, по которой движется точка. Обозначим ее радиус OA за r. Изображением окружности будет окружность. Вместо нее мы со стороны также увидим отрезок — A´B´. Обозначим радиус O´A´ за R.

Запишем формулу тонкой линзы и выразим из нее расстояние от изображения до линзы:

1d+1f=1F

1f=1F1d=dFFd

f=dFdF

Формулу линейного увеличения линзы можно определить как отношение радиуса окружности, по которой движется точка-изображение, к радиусу окружности, по которой движется сама точка:

Γ=Rr

Линейное увеличение также определяется формулой:

Γ=fd

Следовательно:

Rr=fd

Подставим сюда выражение, найденное для расстояния от изображения до линзы из формулы тонкой линзы:

Rr=dFd(dF)=FdF

Так как изображение будет двигаться вслед за точкой, то угловые скорости этой точки и изображения будут равны. Поэтому:

ω=vr=VR

Отсюда линейная скорость движения изображения равна:

V=Rvr=FvdF=0,1·50,150,1=10 (мс)

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 15k

Ещё одним параметром, характеризующий систему из линз и сферических зеркал, является линейное увеличение.

Линейным увеличением называется отношение высоты получившегося изображения к высоте предмета:

Гdisplaystyle =frac{{{h}_{iz}}}{{{h}_{pr}}} (1)

  • где

Вопрос о поиске данного параметра может возникнуть и в задачах на построение, и в задачах на формулы тонкой линзы и сферического зеркала.

Пусть даны предмет, линза и изображение предмета в линзе (рис. 1).

Линейное увеличение

Рис. 1. Линейное увеличение

При построении мы использовали луч от предмета (displaystyle S), который проходит через главный оптический центр линзы (при этом не преломляясь). При этом у нас получились два подобных треугольника (подобие по трём углам). Тогда, используя подобие, можем записать:

Гdisplaystyle =frac{{{h}_{iz}}}{{{h}_{pr}}}=frac{f}{d} (2)

  • где

Вывод: вопросы, связанные с линейным увеличением, решаются или через логику построения в системах (рис.1), или через соотношение (2) при наличии численных значений параметров линз.

Magnification is the process of appearing to enlarge an object for purposes of visual inspection and analysis. Microscopes, binoculars and telescopes all magnify things using the special tricks embedded in the nature of light-transducing lenses in a variety of shapes.

Linear magnification refers to one of the properties of convex lenses, or those that show an outward curvature, like a sphere that has been severely flattened. Their counterparts in the optical world are concave lenses, or those that are curved inward and bend light rays differently than convex lenses.

Principles of Image Magnification

When light rays traveling in parallel are bent as they pass through a convex lens, they are bent toward, and thus become focused on, a common point on the opposite side of the lens. This point, F, is called the focal point, and the distance to F from the center of the lens, denoted f, is called the focal length.

The power of a magnifying lens is just the inverse of its focal length: P = 1 / f. This means that lenses that have short focal lengths have strong magnification capabilities, whereas a higher value of f implies lower magnifying power.

Linear Magnification Defined

Linear magnification, also called lateral magnification or transverse magnification, is just the ratio of size of the image of an object created by a lens to the object’s true size. If the image and the object are both in the same physical medium (e.g., water, air or outer space), then the lateral magnification formula is the size of the image divided by the size of the object:

M = frac{-i}{o}

Here M is the magnification, i is the image height and o is the object height. The minus sign (sometimes omitted) is a reminder that images of objects formed by convex mirrors appear inverted, or upside-down.

The Lens Formula

The lens formula in physics relates the focal length of an image formed by a thin lens, the distance of the image from the center of the lens, and the distance of the object from the center of the lens. The equation is

frac{1}{d_o}+frac{1}{d_i}=frac{1}{f}

Say you position a tube of lipstick 10 cm from a convex lens with a focal length of 6 cm. How far away will the image appear on the other side of the lens?

For do= 10 and f = 4, you have:

begin{aligned} &frac{1}{10}+frac{1}{d_i}=frac{1}{4} \ &frac{1}{d_i}=0.15 \ &d_i=6.7 end{aligned}

You can experiment with different numbers here to gain a sense of how altering the physical set-up affects the optical results in this type of problem.

Note that this is another way to express the concept of linear magnification. The ratio di to do is the same as the ratio of i to o. That is, the ratio of the height of the object to the height of its image is the same as the ratio of the length of the object to the length of its image.

Magnification Tidbits

The negative sign as applied to an image that appears on the opposite side of the lens from the object indicates that the image is «real,» i.e., that it can be projected onto a screen or some other medium. A virtual image, on the other hand, appears on the same side of the lens as the object and is not associated with a negative sign in pertinent equations.

Although such topics lie beyond the scope of the present discussion, a variety of lens equations pertaining to a host of real-life situations, many of them involving changes in media (e.g., from air to water), can be uncovered with ease on the internet.

Линейное увеличение в линзах

Ещё одним параметром, характеризующий систему из линз и сферических зеркал, является линейное увеличение.

Линейным увеличением называется отношение высоты получившегося изображения к высоте предмета:

  • где
    • Г — линейное увеличение,
    • — высота получившегося изображения,
    • — высота исходного предмета.

Вопрос о поиске данного параметра может возникнуть и в задачах на построение , и в задачах на формулы тонкой линзы и сферического зеркала.

Пусть даны предмет, линза и изображение предмета в линзе (рис. 1).

Рис. 1. Линейное увеличение

При построении мы использовали луч от предмета ( ), который проходит через главный оптический центр линзы (при этом не преломляясь). При этом у нас получились два подобных треугольника (подобие по трём углам). Тогда, используя подобие, можем записать:

  • где
    • — расстояние от предмета до линзы,
    • — расстояние от изображения до линзы.

Вывод: вопросы, связанные с линейным увеличением, решаются или через логику построения в системах (рис.1), или через соотношение (2) при наличии численных значений параметров линз.

Источник

Как найти линейное увеличение линзы формула

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны и сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку , которая расположена при пересечении побочной оси с фокальной плоскостью , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы и главным фокусом называется фокусным расстоянием. Оно обозначаетcя той же буквой .

Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через , а расстояние от линзы до изображения через , то формулу тонкой линзы можно записать в виде:

Величину , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием :

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы , для рассеивающей .

Величины и также подчиняются определенному правилу знаков:
и – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
и – для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: (линза собирающая), (действительный предмет).

По формуле тонкой линзы получим: следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, (линза рассеивающая), (действительный предмет), то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета . Величине , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина всегда считается положительной. Поэтому для прямых изображений , для перевернутых . Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): , следовательно, – изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): , ; следовательно, – изображение прямое и уменьшенное в 3 раза.

Оптическая сила линзы зависит как от радиусов кривизны и ее сферических поверхностей, так и от показателя преломления материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние от первого изображения до второй линзы следует положить равным величине , где – расстояние между линзами. Рассчитанная по формуле линзы величина определяет положение второго изображения и его характер ( – действительное изображение, – мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея (см. § 3.5).

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив проектора фокусирует изображение плоского предмета (диапозитив ) на удаленном экране (рис. 3.3.6). Система линз , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника на диапозитиве. На экране создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран с одновременным изменением расстояния между диапозитивом и объективом .

Источник

Тонкие линзы. Построение изображений.

  • Собирающая линза: действительное изображение точки.

  • Собирающая линза: действительное изображение предмета.

  • Собирающая линза: мнимое изображение точки.

  • Собирающая линза: мнимое изображение предмета.

  • Собирающая линза: предмет в фокальной плоскости.

  • Рассеивающая линза: мнимое изображение точки.

  • Рассеивающая линза: мнимое изображение предмета.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка S, то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке S{}.

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка S{} называется изображением точки S.

Если в точке S{} пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке S{} концентрируется энергия световых лучей.

Если же в точке S{} пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке S{} не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

к оглавлению ▴

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть a — расстояние от точки S до линзы, f — фокусное расстояние линзы. Имеются два принципиально разных случая: a>f и a<f (а также промежуточный случай a=f). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: a>f. Точечный источник света S расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).

Рис. 1. Случай a>f: действительное изображение точки S

Луч SO, идущий через оптический центр, не преломляется. Мы возьмём произвольный луч SX, построим точку S{}, в которой преломлённый луч пересекается с лучом SO, а затем покажем, что положение точки S{} не зависит от выбора луча SX (иными словами, точка S{} является одной и той же для всевозможных лучей SX ). Тем самым окажется, что все лучи, исходящие из точки S, после преломления в линзе пересекаются в точке S{} и теорема об изображении будет доказана для рассматриваемого случая a>f.

Точку S{} мы найдём, построив дальнейший ход луча SX. Делать это мы умеем: параллельно лучу SX проводим побочную оптическую ось OP до пересечения с фокальной плоскостью в побочном фокусе P, после чего проводим преломлённый луч XP до пересечения с лучом SO в точке S{}.

Теперь будем искать расстояние b от точки S{} до линзы. Мы покажем, что это расстояние выражается только через a и f, т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча SX.

Опустим перпендикуляры SA и S{} на главную оптическую ось. Проведём также SK параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

triangle SAO sim triangle S{}, (1)
triangle SXS{}, (2)
triangle SXK sim triangle OPF. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

frac{displaystyle AO}{displaystyle OA{} (4)

Но AO=SK=a, OA{}, так что соотношение (4) переписывается в виде:

frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}-1. (5)

Отсюда находим искомое расстояние от точки S{} до линзы:

b=frac{displaystyle af}{displaystyle a-displaystyle f}. (6)

Как видим, оно и в самом деле не зависит от выбора луча SX. Следовательно, любой луч SX после преломления в линзе пройдёт через построенную нами точку S{}, и эта точка будет действительным изображением источника S

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника S пересекаются после линзы в одной точке — его изображении S{} — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник S не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2.

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

1+frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}.

Теперь разделим обе части этого равенства на a:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для a>f. В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что b не зависит от расстояния SA (рис. 1, 2) между источником S и главной оптической осью!

Это означает, что какую бы точку M отрезка SA мы ни взяли, её изображение будет находиться на одном и том же расстоянии b от линзы. Оно будет лежать на отрезке S{} — а именно, на пересечении отрезка S{} с лучом MO, который пойдёт сквозь линзу без преломления. В частности, изображением точки A будет точка A{}.

Тем самым мы установили важный факт: изображением отрезка SA лужит отрезок S{}. Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

к оглавлению ▴

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая a>f. Здесь можно выделить три характерных ситуации.

1. f<a<2f. Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен 2F). Из формулы линзы следует, что в этом случае будет b>2f (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Gamma =frac{displaystyle A{}.

Из подобия треугольников triangle ABO и triangle A{} получим:

Gamma =frac{displaystyle A{}. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. a=2f. В этом случае из формулы (6) находим, что и b=2f. Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. a>2f. В этом случае из формулы линзы следует, что b<2f (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая a>2f нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

к оглавлению ▴

Собирающая линза: мнимое изображение точки.

Второй случай: a<f. Точечный источник света S расположен между линзой и фокальной плоскостью (рис. 7).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом SO, идущим без преломления, мы снова рассматриваем произвольный луч SX. Однако теперь на выходе из линзы получаются два расходящихся луча OE и XP. Наш глаз продолжит эти лучи до пересечения в точке S{}.

Теорема об изображении утверждает, что точка S{} будет одной и той же для всех лучей SX, исходящих из точки S. Мы опять докажем это с помощью трёх пар подобных треугольников:

triangle SAOsim triangle S{}

Снова обозначая через b расстояние от S{} до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

frac{displaystyle a}{displaystyle b}=frac{displaystyle AO}{displaystyle A{}. (9)

Отсюда

b=frac{displaystyle fa}{displaystyle f-displaystyle a}. (10)

Величина b не зависит от луча SX, что и доказывает теорему об изображении для нашего случая a<f. Итак, S{} — мнимое изображение источника S. Если точка S не лежит на главной оптической оси, то для построения изображения S{} удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка S лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая a<f. Сначала переписываем это соотношение в виде:

1-frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f},

а затем делим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (11)

Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым 1/b стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина b, вычисляемая по формуле (10), не зависит также от расстояния SA между точкой S и главной оптической осью. Как и выше (вспомните рассуждение с точкой M), это означает, что изображением отрезка SA на рис. 9 будет отрезок S{}.

к оглавлению ▴

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай a<f полностью разобран. Как видите, он качественно отличается от нашего первого случая a>f. Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай a=f.

к оглавлению ▴

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:a=f. Источник света S расположен в фокальной плоскости линзы (рис. 11).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника S, расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки S? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение S{} находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

к оглавлению ▴

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч SO и произвольный луч SX (рис. 12). На выходе из линзы имеем два расходящихся луча OE и XY, которые наш глаз достраивает до пересечения в точке S{}.

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка S{} будет одной и той же для всех лучей SX. Действуем с помощью всё тех же трёх пар подобных треугольников:

triangle SAOsim triangle S{}.

Имеем:

frac{displaystyle a}{displaystyle b}= frac{displaystyle AO}{displaystyle A{} (12)

Отсюда

b=frac{displaystyle af}{displaystyle a+displaystyle f}. (13)

Величина b не зависит от луча span
SX, поэтому продолжения всех преломлённых лучей span
XY пересекутся в точке S{} — мнимом изображении точки S. Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае a=f их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации a>f и a<f.

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка S не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

1-frac{displaystyle a}{displaystyle b}=-frac{displaystyle a}{displaystyle f},

а потом разделим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=-frac{displaystyle 1}{displaystyle f}. (14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7), (11) и (14) можно записать единообразно:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f},

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина b считается отрицательной;
— для рассеивающей линзы величина f считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

к оглавлению ▴

Величина b , вычисляемая по формуле (13), опять-таки не зависит от расстояния SA между точкой S и главной оптической осью. Это снова даёт нам возможность построить изображение предмета AB, которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.

1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
d_1 = 15 см = 0,15 м
L = 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?

Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.

На рис. 1 представлено получение изображения для точечного источника света S_1, находящегося на расстоянии больше фокусного, S_1 — изображение точечного источника света S_1.

На рис. 2 представлено получение изображения для точечного источника света S_2, находящегося на расстоянии меньше фокусного, S_2— изображение точечного источника света S_2.
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков f_1>0,f_2<0, так как изображение в первом случае действительное, во втором – мнимое.

frac{1}{d_1}+frac{1}{f_1}=frac{1}{F} (1)

frac{1}{d_2}-frac{1}{f_2}=frac{1}{F} (2)

Сложим эти два уравнения и учтем, что frac{1}{f_1}+left(-frac{1}{f_2}right)=0. Так как изображения в двух случаях получались в одной точке, то f_1=f_2.

frac{1}{d_1}+frac{1}{d_2}=frac{2}{F}

frac{d_1+d_2}{d_1cdot d_2}=frac{2}{F}

F=frac{2d_1cdot d_2}{d_1+d_2}

Определим, что d_2=L-d_1; d_2=0,225-0,15=0,075 (м).

F=frac{2cdot 0,15cdot 0,075}{0,15+0,075}=0,1 (м) =10 (см).

Ответ: 10

2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?

Решение:

Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:

  1. необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
  2. провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
  3. продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).

Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2

3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем F < a < 2F, где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Виды линз Свойства изображения
А) линза рассеивающая 1) мнимое, прямое, уменьшенное
Б) линза собирающая 2) мнимое, перевёрнутое, увеличенное
3) действительное, перевёрнутое, увеличенное
4) действительное, прямое, увеличенное

Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.

Рис.1

На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).

Рис.2

На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:

4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)

Решение:

На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.

Так как оптическая сила линзы D=frac{1}{F}=frac{1}{0,08}=12,5 (дптр).

Ответ: 12,5

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
 

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти молекулярную массу вещества so2
  • Серго как ты меня нашла
  • Как найти относительную инструментальную погрешность
  • Мужчина моей мечты как его найти
  • Как найти средний интервал поставок