Как найти линзу на получение

Линза воспоминаний. Где найти и как получить

Подписывайтесь, если вы настоящий ценитель!

линза воспоминаний genshin impact
Тип предмета: Инструмент
Категория в инвентаре: Инструменты
Редкость: ⭐⭐⭐⭐
Как получить: Задание мира “Очищение Священной сакуры”
Дата релиза: 21 июля 2021, вместе с обновлением 2.0

Линза воспоминаний – таинственная линза в Genshin Impact.

Если посмотреть через неё на статуи лис, вы увидите то, чего раньше не было.
Говорят, давным-давно легендарная кицунэ Сайгу передала тогдашнему главе клана Хийраги, Хироси, катализатор в качестве инструмента для изгнания злых духов.
Клан Хийраги, перед тем как преподнести его в знак дружбы Великому храму Наруками, использовал его в качестве линзы для заказанной у заморского мастера особенной фотокамеры.

Описание

Таинственная линза воспоминаний… Уникальный инструмент, известный как Линза воспоминаний, с помощью которой можно наблюдать за окружающим миром.
Посмотрите через неё на статую Кицунэ и, возможно, произойдёт что-то удивительное.

таинственная линза воспоминаний genshin impact

Примечание: Вы также можете использовать её как бинокль, так есть возможность увеличивать и уменьшать масштаб.

Где найти и как получить Линзу воспоминаний

Вы хотите знать, где находится Линза воспоминаний в Genshin Impact? Эта цепочка квестов, кажется, сбивает с толку многих игроков, так как не очень понятно, где найти линзу в Инадзуме. Genshin Impact 2.0 – это, безусловно, самое большое обновление игры, в котором представлен совершенно новый регион и новые персонажи, такие как Аяка, Ёимия и Саю. Также есть новые боссы, с которыми нужно сражаться, такие как Баал и Бесконечный механический масси.

Разблокировка Линзы воспоминаний может сбивать с толку, поэтому мы указали каждый шаг, чтобы вы не заблудились на протяжении долгой миссии. Строго говоря, линзу вы получите в квесте “Жертвоприношение“, но чтобы его получить, необходимо сделать вот что…

Странный случай в деревне Конда

Когда вы попадёте в Инадзуму и получите разрешение для путешествий по островам, то обязательно столкнётесь с загадочной девушкой в лисьей или кошачьей маске, её зовут Кадзари. Она даст вам первый квест в цепочке, который называется “Странный случай в деревне Конда”, подробный гайд по квесту здесь.

Кратко

Взаимодействуйте со статуей на окраине деревни Конда, расположенной на острове Наруками. Добравшись до деревни, начните расспрашивать местных жителей чтобы получить информацию. После того, как вы побеседуете с несколькими жителями, квест попросит вас обыскать местность в поисках трёх улик.

Первая улика – кошелёк возле высохшего колодца, вторая улика – рядом со сломанной тележкой, а третья – прямо под красным тотемом испытания рядом с деревянными досками и веревкой. Отнесите все эти улики старосте деревни – убедитесь, что вы представили предметы в том порядке, в котором вы их нашли, иначе староста может проигнорировать вас.

Поговорив со старостой, отправляйтесь на крышу его дома и возьмите дневник. Найдите область, подробно описанную в записной книжке, в этой области много врагов, которые что-то ищут. Победите их и исследуйте местность, чтобы найти Старый Ключ. Бегите обратно к высохшему колодцу и используйте ключ, чтобы открыть его. Прыгайте в колодец и разбейте камни, излучающие таинственное пурпурное сияние.

Деревня Конда на карте

Спуститесь глубже в пещеру, пока не найдете святыню, которую нужно очистить. Используйте Оберег, чтобы начать процесс очищения. Это активирует простую головоломку с лучами света, которая требует, чтобы вы включили каждую святыню в правильном порядке. После того, как вы правильно выбрали порядок активации, молитесь святыне, чтобы разрушить барьер, после этого появится мини-босс. Победите этого врага и поговорите с Кадзари. Тут же будет активирован нужный нам квест “Жертвоприношение”.

Жертвоприношение

Подробный гайд по этому квесту здесь.

Кратко

Вернитесь в заброшенный храм к северо-востоку от деревни Конда и поговорите с загадочными тенями. После разговора тени отправляются к ближайшим статуям. Если у вас возникли проблемы с поиском последней загадочной тени, обязательно проверьте крыши. Загадочные тени дадут несколько сундуков с сокровищами, в том числе один, содержащий оберег для очищения священной сакуры. Последний шаг – отправляйтесь в Великий Храм Наруками и поговорите с Инаги Хотоми, чтобы получить Линзу воспоминаний. Как только вы разблокируете этот квестовый предмет, вы сможете посмотреть на все маленькие статуи лисы, чтобы завершить оставшуюся часть квеста.

И это все, что вам нужно, чтобы найти линзу воспоминаний в Genshin Impact.

Содержание:

  1. Линзы и получение изображений с помощью линз
  2. Собирающие и рассеивающие линзы. Оптические оси. Оптический центр линзы
  3. Главные фокусы и фокальные плоскости линзы
  4. Оптическая сила линзы
  5. Построение изображения светящейся точки, расположенной на главной оптической оси линзы
  6. Вывод формулы для сопряженных точек тонкой линзы
  7. Построение изображения светящейся точки, расположенной на побочной оптической оси линзы
  8. Построение изображений предмета, создаваемых линзой
  9. Линейное увеличение, полученное с помощью линзы
  10. Недостатки линз

Линза – это прозрачное тело, имеющая. 2. сферические поверхности. Она, является тонкой, если ее толщина меньше радиусов кривизны сферических поверхностей. Линза — это составляющая часть почти каждого оптического прибора.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Линзы и получение изображений с помощью линз

При помощи рассеивающей линзы невозможно получить действительное изображениеИзображение, даваемое рассеивающей линзой, является мнимым, прямым и уменьшенным, и не зависит от взаиморасположения линзы и предмета. При всех построениях лучей, проходящих через тонкую линзу, нужно лишь знать расположение оптического центра и главных фокусов.

Собирающие и рассеивающие линзы. Оптические оси. Оптический центр линзы

Для получения изображений различного вида в оптических приборах очень часто используют линзы.

Линза представляет собой прозрачное тело, ограниченное двумя гладкими выпуклыми или вогнутыми поверхностями (одна из них может быть плоской). Чаще всего поверхности линзы делают сферическими, а саму линзу изготовляют из специальных сортов стекла, например флинтгласа, или других веществ с подходящим показателем преломления. Линзы подразделяются на выпуклые (рис. 30.1, а —в), которые толще к середине, и вогнутые (рис. 30.1, г—в), которые к середине тоньше.

Линзы и получение изображений с помощью линз

Рис. 30.1.

Прямую, которая проходит через сферические центры кривизны поверхностей линзы С1 и С2 или через сферический центр С перпендикулярно к плоской поверхности линзы, называют главной оптической осью линзы. Световой луч, направленный вдоль оптической оси, проходит линзу не преломляясь. (Почему?)

Изменения в ходе лучей, создаваемые линзой, легко выяснить на модели из призм (рис. 30.2). Призмы можно подобрать так, что параллельные лучи, пройдя их, соберутся почти все в одной точке Ф (рис. 30.2, а). Если эти призмы сложить вплотную, то они образуют тело, по форме близкое к выпуклой линзе. Оказывается, выпуклая линза обладает свойством собирать параллельные лучи в одной точке. Поэтому выпуклые линзы называют собирающими.

Линзы и получение изображений с помощью линз

Рис. 30.2.

Модель действия вогнутой линзы изображена на рис. 30.2, б. (Объясните, почему вогнутые линзы называют рассеивающими.)

Внутри каждой линзы на главной оптической оси имеется точка О (рис. 30.3), которая замечательна тем, что проходящий через нее луч идет после выхода из линзы в том же направлении, что и до линзы. Точку О называют оптическим центром линзы.

Линзы и получение изображений с помощью линз

Рис. 30.3.

Плоскости, проведенные через точки А и В, параллельны. Следовательно, луч, проходящий через точку О, идет в линзе так же, как и в плоскопараллельной пластинке, т. е. смещается параллельно самому себе, не изменяя своего направления. Поскольку это смещение луча тем меньше, чем тоньше пластинка, то в достаточно тонких линзах этим смещением луча можно пренебречь, особенно если луч составляет малый угол в главной оптической осью линзы. В дальнейшем будем! рассматривать только тонкие линзы небольших размеров, в которые попадают лишь лучи, составляющие маленький угол с главной оптической осью линзы. Условные изображения тонких линз показаны на рис. 30.4 (а — собирающая, б — рассеивающая линза). Можно считать, что в тонких линзах луч, который проходит через оптический центр линзы, не преломляется. Всякую прямую, которая проходит через оптический центр линзы О (кроме главной оптической оси), называют побочной оптической осью (КМ, К’М’ на рис. 30.5).

Линзы и получение изображений с помощью линз

Рис. 30.4.

Линзы и получение изображений с помощью линз

Рис. 30.5.

Главные фокусы и фокальные плоскости линзы

Если на собирающую линзу направить пучок лучей, параллельных ее главной оптической оси, то они соберутся в точке Ф с другой стороны линзы (рис. 30.6, а). У рассеивающей линзы такие лучи после линзы идут расходящимся пучком (рис. 30.6, б), но таким образом, что их продолжения сходятся в одной точке Ф.

Линзы и получение изображений с помощью линз

Рис. 30.6.

Точку Ф на главной оптической оси линзы, в которой сходятся лучи, идущие до преломления в линзе параллельно ее главной оптической оси, называют главным фокусом линзы. Из сказанного выше следует, что у собирающих линз главный фокус действительный, а у рассеивающих — мнимый. У каждой линзы имеется два главных фокуса, расположенных симметрично относительно ее оптического центра О. Расстояние F между главным фокусом линзы и ее оптическим центром называют главным фокусным расстоянием. Если главный фокус действительный, то F считают положительным, а если мнимый — отрицательным.

Когда лучи падают на линзу параллельно ее побочной оси, например АО (рис. 30.7), то после преломления в линзе они собираются на этой же оси в одной точке В, которую называют фокусом линзы. Очевидно, различных фокусов у линзы имеется множество, но, как показывает опыт, все они расположены в фокальной плоскости КМ. Фокальной называют плоскость, которая перпендикулярна главной оптической оси линзы и проходит через ее главный фокус. Каждая линза имеет две фокальные плоскости.
Итак, лучи, которые параллельны любой оптической оси линзы, собираются после преломления в точке пересечения этой оси с фокальной плоскостью линзы (рис. 30.7, а). У собирающей линзы фокальные плоскости действительные, а у рассеивающей — мнимые (рис. 30.7, б).

Линзы и получение изображений с помощью линз

Рис. 30.7.

Оптическая сила линзы

Положение главного фокуса оказывает существенное влияние на размеры и вид изображений, полученных с помощью линзы.

Величину D, которая характеризует оптические свойства линзы, определяемые положением ее главного фокуса на оптической оси, называют оптической силой линзы. Оптическая сила линзы измеряется числом, обратным главному фокусному расстоянию этой линзы F:

Линзы и получение изображений с помощью линз   (30.1)

Единица оптической силы из (30.1):

Линзы и получение изображений с помощью линз

В СИ за единицу оптической силы принимается диоптрия (дптр) — оптическая сила такой линзы, главное фокусное расстояние которой равно одному метру. Оптическую силу собирающих линз (как и фокусное расстояние F) условились считать положительной, а рассеивающих — отрицательной.

Оптическая сила линзы определяется кривизной ее поверхностей, а также показателем преломления ее вещества относительно окружающей среды и может быть вычислена по формуле

Линзы и получение изображений с помощью линз   (30.2)

где R1 и R2 — радиусы сферических поверхностей линзы, a n — показатель преломления вещества линзы относительно среды, в которой находится эта линза. При вычислениях числовое значение R для выпуклой поверхности линзы следует считать положительным, а для вогнутой — отрицательным. Заметим, что при n<1, т. е. когда вещество линзы является средой оптически менее плотной, чем окружающая ее среда, выпуклые линзы будут рассеивающими, а вогнутые — собирающими.

Построение изображения светящейся точки, расположенной на главной оптической оси линзы

С помощью линзы можно собрать в одну точку не только параллельные лучи. Опыт показывает, что лучи, попадающие на собирающую линзу из одной точки S, после линзы снова собираются в одной точке S1 (рис. 30.8, а), т. е. линза создает действительное изображение светящейся точки S в точке S1. Это изображение может быть и мнимым. На рис. 30.8, б показан ход лучей, падающих из точки S на рассеивающую линзу. После линзы они идут расходящимся пучком, но так, что их продолжения в обратную сторону сходятся в S1. Выясним, как строится создаваемое линзой изображение светящейся точки, расположенной на главной оптической оси линзы, в трех случаях.

Линзы и получение изображений с помощью линз

Рис. 30.8.

1. Точка S находится за главным фокусом линзы Ф (рис. 30.9). Так как в точке S, сходятся все лучи после преломления в линзе, то для определения положения точки S, достаточно установить, где пересекутся два таких луча.

Линзы и получение изображений с помощью линз

Рис. 30.9.

Пусть прямая ФО является главной оптической осью собирающей линзы, а КМ — фокальная плоскость этой линзы. Луч, идущий из точки S вдоль главной оптической оси, проходит линзу не преломляясь, поэтому изображение точки S будет находиться на главной оптической оси ФО. Чтобы узнать, где именно будет изображение точки S, найдем ход произвольного луча SA после линзы. Для этого из точки О проведем побочную оптическую ось, параллельную лучу SA. Она пересечет фокальную плоскость КМ в некоторой точке A1. Прямая, проведенная через точки А и A1 устанавливает ход луча SA после преломления в линзе. Продолжив прямую AA1 до пересечения с главной оптической осью, получим точку S1, которая и определяет положение изображения точки S, создаваемого линзой. Ясно, что любой другой луч SB после преломления в линзе тоже пройдет через точку S1 (рис. 30.9); побочная оптическая ось OB1 параллельна лучу SB.

2. Точка S находится между главным фокусом и оптическим центром линзы (рис. 30.10). Как и в первом случае, изображение точки S будет находиться где-то на главной оптической оси. Чтобы установить, где именно, выделим произвольный луч SA, попадающий на линзу. Проведем побочную оптическую ось OA1, параллельную SA, и затем — прямую AA1 до пересечения с главной оптической осью в точке S1. Последняя и определяет положение мнимого изображения точки S для рассматриваемого случая.

Линзы и получение изображений с помощью линз

Рис. 30.10.

3. Светящаяся точка находится на главной оптической оси рассеивающей линзы (рис. 30.11). При построении изображения в этом случае фокальную плоскость надо брать с той же стороны линзы, с которой находится точка S. Изображение светящейся точки S и в этом случае должно быть на главной оптической оси линзы. Выделим произвольный луч SA и проведем параллельную ему побочную ось OA1. Точка пересечения прямой AA1 с главной оптической осью и определит положение мнимого изображения S1. Заметим, что изображение действительного точечного источника света в рассеивающей линзе всегда получается мнимое.

Линзы и получение изображений с помощью линз

Рис. 30.11.

Вывод формулы для сопряженных точек тонкой линзы

В предыдущем параграфе было показано, что положение изображения S1 однозначно определяется положением самой светящейся точки S относительно линзы. Поэтому точки S и Sназывают сопряженными точками линзы. Выведем формулу сопряженных точек линзы, позволяющую находить положение изображения S1 с помощью вычислений.

Пусть на главной оптической оси собирающей линзы с оптическим центром О и фокусами Ф1 и Ф2 находится светящаяся точка S (рис. 30.12), изображение которой получилось в точке S1. Напомним, что КМ — фокальная плоскость линзы, a Линзы и получение изображений с помощью линз Обозначим расстояние от светящейся точки S до оптического центра О через Линзы и получение изображений с помощью линз расстояние от изображения S1 до оптического центра О — через Линзы и получение изображений с помощью линз и главное фокусное расстояние — через Линзы и получение изображений с помощью линз Из подобия треугольников Линзы и получение изображений с помощью линз и Линзы и получение изображений с помощью линз Линзы и получение изображений с помощью линз имеем

Линзы и получение изображений с помощью линз или Линзы и получение изображений с помощью линз

Линзы и получение изображений с помощью линз

Рис. 30.12.

Из подобия треугольников Линзы и получение изображений с помощью линз и Линзы и получение изображений с помощью линз  можно написать

Линзы и получение изображений с помощью линз или Линзы и получение изображений с помощью линз

Поскольку правые части найденных пропорций равны, получаем

Линзы и получение изображений с помощью линз откуда Линзы и получение изображений с помощью линз

После деления обеих частей этого равенства на Линзы и получение изображений с помощью линз получим формулу cопряженных точек линзы:

Линзы и получение изображений с помощью линз   (30.3)

Так как справа стоит оптическая сила линзы, имеем

Линзы и получение изображений с помощью линз   (30.4)

Из (30.3) видно, что от перемены местами значений d и f формула не изменяется. Это означает, что светящаяся точка и ее изображение в линзе переместимы, т. е. если светящуюся точку поместить туда, где было ее изображение, то изображение получится там, где была светящаяся точка. Именно поэтому точки S и S1 называют сопряженными.

Следует запомнить, что соотношения (30.3) и (30.4) применимы как к собирающим, так и к рассеивающим линзам. При расчетах числовые значения действительных величин всегда представляются со знаком плюс, а мнимых — со знаком минус. Например, для рассеивающей линзы на место F или D ставится число со знаком минус. Отрицательный ответ, полученный в результате вычислений, показывает, что соответствующая ему величина мнимая.

Напомним, что светящаяся точка S тоже может быть мнимой. На рис. 30.13, а показаны мнимый источник света S и его действительное изображение в собирающей линзе S1, а на рис. 30.13, б— мнимый источник света S и его действительное изображение в рассеивающей линзе.

Линзы и получение изображений с помощью линз

Рис. 30.13.

Построение изображения светящейся точки, расположенной на побочной оптической оси линзы

Когда светящаяся точка S находится на побочной оптической оси линзы, то линза создает ее изображение на той же оси. Выясним, как строится это изображение.

1. Точка S находится за фокальной плоскостью собирающей линзы (рис. 30.14). Для определения положения изображения S1 можно воспользоваться любыми двумя из трех лучей, показанных на рис. 30.14. Луч 1 из точки S проводится параллельно главной оптической оси. После преломления в линзе он идет через главный фокус. Луч 2 проводится вдоль побочной оси, т. е. через оптический центр линзы. Этот луч проходит линзу, не преломляясь. Луч 3 проводится через главный фокус Ф. После преломления в линзе он идет параллельно главной оптической оси. Точка пересечения этих лучей после преломления в линзе S1 и определяет положение действительного изображения точки S для этого случая.

Линзы и получение изображений с помощью линз

Рис. 30.14.

2. Точка S расположена между фокальной плоскостью собирающей линзы и самой линзой (рис. 30.15). В этом случае из точки S можно провести три таких же луча, как и в первом случае. Точка пересечения двух любых из них Sопределяет положение мнимого изображения точки S.

Линзы и получение изображений с помощью линз

Рис. 30.15.

3. Точка S находится на побочной оси рассеивающей линзы (рис. 30.16). И в этом случае можно провести из точки S три таких же луча (как и в первом случае), но нужно помнить, что после преломления в линзе продолжение луча 1 должно проходить через фокус, который находится с той стороны линзы, где точка S. Луч 3 нужно проводить так, чтобы его продолжение проходило через фокус с другой стороны линзы, тогда после преломления в линзе луч пойдет параллельно главной оптической оси. Заметим, что изображение действительной светящейся точки S, создаваемое рассеивающей линзой, всегда мнимое.

Линзы и получение изображений с помощью линз

Рис. 30.16.

Построение изображений предмета, создаваемых линзой

Пусть перед линзой расположен предмет, который мы в дальнейшем будем условно изображать стрелкой, перпендикулярной главной оптической оси линзы. Изображение этого предмета, создаваемое линзой, является совокупностью изображений отдельных его точек, поэтому для построения изображения предмета достаточно найти, где будут находиться изображения его крайних точек.

Различные типичные случаи построения изображений предмета АВ, создаваемых собирающей линзой, показаны на рис. 30.17. Само построение выполняют следующим образом. Сначала строят изображение точки А, затем — точки В. Полученные таким способом точки A1 и B1 соединяют прямой А1В1 которая и является изображением предмета АВ. Рассмотрим эти случаи.

Линзы и получение изображений с помощью линз

Рис. 30.17.

1. Расстояние от предмета до линзы d больше 2F (рис. 30.17, а). В этом случае предмет и его изображение находятся по разные стороны линзы, а расстояние от линзы до изображения f оказывается больше F, но меньше 2F. Само изображение получается действительным, перевернутым и уменьшенным. В частности, когда светящийся предмет находится на бесконечно большом расстоянии от линзы Линзы и получение изображений с помощью линз его изображение получается в виде светящейся точки в главном фокусе линзы (рис. 30.17, б).

2. Расстояние от предмета до линзы d равно 2F (рис. 30.17, б). В этом случае предмет и его изображение находятся по разные стороны линзы, а расстояние от линзы до изображения F=d=2f. Само изображение получается действительным, перевернутым и в натуральную величину.

3. Расстояние от предмета до линзы d больше F, но меньше 2F (рис. 30.17, г). В этом случае предмет и его изображение находятся по разные стороны линзы, а расстояние от линзы до изображения f больше 2F. Само изображение получается действительным, перевернутым и увеличенным.

4. Предмет находится в главном фокусе линзы, т. е. расстояние от предмета до линзы d=F (рис. 30.17, д). В этом случае лучи от каждой точки предмета после преломления в линзе идут параллельным пучком. Это означает, что изображение должно получиться бесконечно большим и на бесконечно большом расстоянии от линзы, что практически равносильно отсутствию изображения.

5. Расстояние от предмета до линзы d меньше главного фокусного расстояния F (рис. 30.17, e). В этом случае предмет и его изображение находятся по одну сторону линзы, а расстояние от линзы до изображения больше d. Само изображение получается мнимым, прямым и увеличенным.

Проследим, как изменяется изображение предмета и его расположение при перемещении предмета из бесконечности к линзе.

При перемещении предмета из бесконечности до расстояния 2F от линзы его перевернутое и действительное изображение, двигаясь от линзы, проходит расстояние от F до 2F и постепенно увеличивается, оставаясь меньше самого предмета. Когда предмет оказывается на расстоянии 2F от линзы, его перевернутое изображение в натуральную величину тоже оказывается на расстоянии 2F от линзы. При дальнейшем перемещении предмета к линзе до расстояния F от нее изображение предмета, которое уже больше самого предмета, постепенно возрастая, уходит в бесконечность.

Наконец, когда предмет движется от главного фокуса до линзы, его мнимое увеличенное изображение, которое находится сзади предмета, постепенно уменьшается и движется к линзе. Когда предмет приходит в соприкосновение с линзой, его мнимое изображение имеет натуральную величину и совпадает с предметом. Заметим, что переход изображения с одной стороны линзы на другую происходит в момент перемещения предмета через фокальную плоскость линзы. Таким образом, предмет и его изображение всегда движутся в одном направлении.

Построение изображения предмета, создаваемого рассеивающей линзой, показано на рис. 30.18. Рассеивающая линза всегда дает мнимое, уменьшенное и прямое изображение предмета, которое находится между главным фокусом и линзой. Расстояние от этого изображения до линзы всегда меньше расстояния от предмета до линзы d. В этом случае предмет и его изображение тоже всегда движутся в одном направлении, а когда предмет соприкасается с линзой, его изображение совпадает с ними и имеет натуральную величину.

Линзы и получение изображений с помощью линз

Рис. 30.18.

Линейное увеличение, полученное с помощью линзы

В предыдущем параграфе было установлено, что с помощью линзы можно получать увеличенные изображения предметов. На практике линзы часто используют для получения именно таких изображений.

Линейным увеличением Линзы и получение изображений с помощью линз называют отношение высоты (ширины) изображения предмета к истинной высоте (ширине) самого предмета. Если высоту предмета обозначить через h, а высоту изображения через H, то 

Линзы и получение изображений с помощью линз    (30.5)

Выясним, как связано увеличение Линзы и получение изображений с помощью линз с расстояниями от линзы до предмета d и до его изображения f. На рис. 30.19 показаны положения предмета и его изображения A1B1 относительно линзы. Из подобия Линзы и получение изображений с помощью линз и Линзы и получение изображений с помощью линз следует, что Линзы и получение изображений с помощью линз Поскольку Линзы и получение изображений с помощью линз получаем формулу для вычисления линейного увеличения, создаваемого линзой:

Линзы и получение изображений с помощью линз или Линзы и получение изображений с помощью линз    (30.6)

Линзы и получение изображений с помощью линз

Рис. 30.19.

Из этих соотношений видно, что собирающая линза дает увеличение только в тех случаях, когда изображение оказывается дальше от линзы, чем предмет. (Подумайте, может ли рассеивающая линза дать увеличение, большее единицы).

Недостатки линз

Выясним, какие существенные недостатки встречаются у линз.

Первый недостаток заключается в том, что лучи, выходящие из одной точки S1, которая лежит на главной оптической оси, сходятся не в одной, а в различных точках (рис. 30.20). Чем дальше от оптического центра О лучи из точки S1 попадают на линзу, тем ближе к линзе находится их точка пересечения S2. Такое явление называют сферической аберрацией (от латинского «аберрацио» — отклонение). Этот недостаток частично можно исправить с помощью диафрагмы, которая ограничивает пучок лучей, попадающих на линзу. Диафрагма устраивается таким образам, что она может изменять входное отверстие, через которое свет попадает на линзу. Сферическую аберрацию часто также устраняют с помощью соединения двух специально подобранных линз, сложенных вплотную. Сложную линзу или систему, у которой устранена сферическая аберрация, называют апланатом.

Линзы и получение изображений с помощью линз

Рис. 30.20.

Второй недостаток относится к изображению светящейся точки S1, расположенной на побочной оптической оси (рис. 30.21). Оказывается, что в этом случае возникают два изображения в виде отрезков прямых линий, расположенных перпендикулярно друг к другу в плоскостях I и II. Изображение точки S1 можно получить лишь в виде расплывчатого светлого кружка S2 между плоскостями I и II. Это явление называют астигматизмом. Линзу или систему линз, в которой устранен этот недостаток, называют анастигматом.

Линзы и получение изображений с помощью линз

Рис. 30.21.

В § 29.7 говорилось, что показатель преломления зависит от частоты колебаний, т. е. от цвета лучей. Из-за этого фокус Фф для фиолетовых лучей находится ближе к линзе, чем фокус Фк для красных лучей (рис. 30.22). Поэтому изображение точечного источника белого света получается расплывчатым и окрашенным по краям. Это явление называют хроматической аберрацией. Линзы и оптические системы, у которых этот недостаток устранен для двух цветов, называют ахроматическими, а в случае совпадения изображений, для трех цветов систему называют апохроматом.

Линзы и получение изображений с помощью линз

Рис. 30.22.

Услуги по физике:

  1. Заказать физику
  2. Заказать контрольную работу по физике
  3. Помощь по физике

Лекции по физике:

  1. Физические величины и их измерение
  2. Основные законы механики
  3. Прямолинейное равномерное движение
  4. Прямолинейное равнопеременное движение
  5. Сила
  6. Масса
  7. Взаимодействия тел
  8. Механическая энергия
  9. Импульс
  10. Вращение твердого тела
  11. Криволинейное движение тел
  12. Колебания
  13. Колебания и волны
  14. Механические колебания и волны
  15. Бегущая волна
  16. Стоячие волны
  17. Акустика
  18. Звук
  19. Звук и ультразвук
  20. Движение жидкости и газа
  21. Молекулярно-кинетическая теория
  22. Молекулярно-кинетическая теория строения вещества
  23. Молекулярно — кинетическая теория газообразного состояния вещества
  24. Теплота и работа
  25. Температура и теплота
  26. Термодинамические процессы
  27. Идеальный газ
  28. Уравнение состояния идеального газа
  29. Изменение внутренней энергии
  30. Переход вещества из жидкого состояния в газообразное и обратно
  31. Кипение, свойства паров, критическое состояние вещества
  32. Водяной пар в атмосфере
  33. Плавление и кристаллизация
  34. Тепловое расширение тел
  35. Энтропия
  36. Процессы перехода из одного агрегатного состояния в другое
  37. Тепловое расширение твердых и жидких тел
  38. Свойства газов
  39. Свойства жидкостей
  40. Свойства твёрдых тел
  41. Изменение агрегатного состояния вещества
  42. Тепловые двигатели
  43. Электрическое поле
  44. Постоянный ток
  45. Переменный ток
  46. Магнитное поле
  47. Электромагнитное поле
  48. Электромагнитное излучение
  49. Электрический заряд (Закон Кулона)
  50. Электрический ток в металлах
  51. Электрический ток в электролитах
  52. Электрический ток в газах и в вакууме
  53. Электрический ток в полупроводниках
  54. Электромагнитная индукция
  55. Работа, мощность и тепловое действие электрического тока
  56. Термоэлектрические явления
  57. Распространение электромагнитных волн
  58. Интерференционные явления
  59. Рассеяние
  60. Дифракция рентгеновских лучей на кристалле
  61. Двойное лучепреломление
  62. Магнитное поле и электромагнитная индукция
  63. Электромагнитные колебания и волны
  64. Природа света
  65. Распространение света
  66. Отражение и преломление света
  67. Оптические приборы и зрение
  68. Волновые свойства света
  69. Действия света
  70. Оптические приборы и глаз
  71. Фотометрия
  72. Излучение и спектры
  73. Квантовые свойства излучения
  74. Специальная теория относительности в физике
  75. Теория относительности
  76. Квантовая теория и природа поля
  77. Строение и свойства вещества
  78. Физика атомного ядра
  79. Строение атома

После завершения квеста Странный случай в деревне Конда, вы сразу же получите новое глобальное задание Жертвоприношение. В нем вы должны найти и исследовать святилище, и снять еще один барьер.

Идите в заброшенное святилище

Первая сложность — найти заброшенный храм, чтобы начать квест. Вы не увидите пункт назначения на карте, а только получите намек на то, что он находится на северо-востоке деревни Конда. Это означает святилище на горе Его. Если вы посмотрите на карту, вы увидите коричневое здание в серой области — это и есть храм.

Genshin Impact - прохождение квеста Жертвоприношение

Исследуйте заброшенный храм

Взаимодействуйте со статуей лисы и поговорите с ней. Затем вы должны взаимодействовать с тремя загадочными тенями. Если вы поговорите с тенью, она изменит свое положение. Если вы снова найдете тень и взаимодействуете с ней, она переместится к тому месту, где по кругу стоят три статуи кицунэ. Чтобы выполнить задание, вы должны отправить в это место все три тени. Обратите внимание, что вам не следует разговаривать с тенями, которые уже находятся в круге статуи.

1. Первая тень расположена над маленьким алтарем, слева по пути к заброшенному храму. После беседы тень переместится еще на несколько метров. Следуйте по тропинке и поговорите с тенью справа от статуи.

2. Вторая тень находится прямо напротив заброшенного святилища, где также находится электрокул. После разговора тень появится перед большой статуей лисы к юго-востоку от святилища.

3. Третья тень находится на крыше заброшенного святилища. Затем тень спрячется за деревом к югу от святыни.

Genshin Impact - прохождение квеста Жертвоприношение

Genshin Impact - прохождение квеста Жертвоприношение

Получите линзу воспоминаний

После того, как все тени переместятся в круг статуй лисы, в качестве награды появятся три сундука с сокровищами. Затем вам нужно изучить светящееся пятно посередине, чтобы получить книгу с дополнительной информацией. Теперь телепортируйтесь в Храм Наруками и поговорите с Инаги Хотоми. В конце разговора вы получите линзу воспоминаний, которую сможете надеть в инвентаре в разделе «Инструменты».

Genshin Impact - прохождение квеста Жертвоприношение

Genshin Impact - прохождение квеста Жертвоприношение

Осмотрите святыню с помощью сувенирной линзы

С помощью линзы вам предстоит внимательно рассмотреть маленькие статуэтки лисиц, которые стоят возле заброшенной святыни. Точное расположение указано всех 8 статуй указано на скриншотах ниже.

Произнесите священные слова перед статуей Небесной кицунэ

Подойдите к главной статуе Небесной кицунэ и поговорите с ней. Во время диалога вы должны выбрать три нужных варианта. Правильный порядок под скриншотом:

Genshin Impact - прохождение квеста Жертвоприношение

  • Именем посланника Наруками.
  • И рода Хакусинов.
  • Принесите жареный тофу!

Найдите барьер

Ударьте статую лисы электрическим током и нажмите «Очистить». Затем вам нужно найти барьер, но он не отмечен на карте. Вам нужно будет найти вход в пещеру к юго-западу от статуи на нижнем уровне.

Правильный порядок ниже:

Разрушьте барьер

Войдите в пещеру и нажмите «Очистить» на маленьком фонаре. Вам нужно воссоздать показанный узор линий с фонарями. Как только вы поймете, что вы можете использовать одни и те же символы несколько раз, головоломка оказывается очень простой. Фонарь посередине — 2, а остальные — 3.

Правильный порядок ниже:

Теперь идите к первому фонарю и помолитесь перед ним. Появится босс Таинственный самурай, которого вам предстоит убить. Затем появится Кадзари, с которым вам нужно поговорить, чтобы завершить квест.

Тонкие линзы. Построение изображений.

  • Собирающая линза: действительное изображение точки.

  • Собирающая линза: действительное изображение предмета.

  • Собирающая линза: мнимое изображение точки.

  • Собирающая линза: мнимое изображение предмета.

  • Собирающая линза: предмет в фокальной плоскости.

  • Рассеивающая линза: мнимое изображение точки.

  • Рассеивающая линза: мнимое изображение предмета.

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: построение изображений в линзах, формула тонкой линзы.

Правила хода лучей в тонких линзах, сформулированные в предыдущей теме, приводят нас к важнейшему утверждению.

Теорема об изображении. Если перед линзой находится светящаяся точка S, то после преломления в линзе все лучи (или их продолжения) пересекаются в одной точке S{}.

Напомним ещё раз, что это касается не вообще всех лучей, а только параксиальных, то есть образующих малые углы с главной оптической осью. В предыдущей теме мы договорились, что рассматриваем только параксиальные лучи. Лишь для них работают наши правила хода лучей сквозь тонкие линзы.

Точка S{} называется изображением точки S.

Если в точке S{} пересекаются сами преломлённые лучи, то изображение называется действительным. Оно может быть получено на экране, так как в точке S{} концентрируется энергия световых лучей.

Если же в точке S{} пересекаются не сами преломлённые лучи, а их продолжения (так бывает, когда преломлённые лучи расходятся после линзы), то изображение называется мнимым. Его нельзя получить на экране, поскольку в точке S{} не сосредоточено никакой энергии. Мнимое изображение, напомним, возникает благодаря особенности нашего мозга — достраивать расходящиеся лучи до их мнимого пересечения и видеть в этом пересечении светящуюся точку.Мнимое изображение существует лишь в нашем сознании.

Теорема об изображении служит основой построения изображений в тонких линзах. Мы докажем эту теорему как для собирающей, так и для рассеивающей линзы.

к оглавлению ▴

Собирающая линза: действительное изображение точки.

Сперва рассмотрим собирающую линзу. Пусть a — расстояние от точки S до линзы, f — фокусное расстояние линзы. Имеются два принципиально разных случая: a>f и a<f (а также промежуточный случай a=f). Мы разберём эти случаи поочерёдно; в каждом из них мы
обсудим свойства изображений точечного источника и протяжённого объекта.

Первый случай: a>f. Точечный источник света S расположен дальше от линзы, чем левая фокальная плоскость (рис. 1).

Рис. 1. Случай a>f: действительное изображение точки S

Луч SO, идущий через оптический центр, не преломляется. Мы возьмём произвольный луч SX, построим точку S{}, в которой преломлённый луч пересекается с лучом SO, а затем покажем, что положение точки S{} не зависит от выбора луча SX (иными словами, точка S{} является одной и той же для всевозможных лучей SX ). Тем самым окажется, что все лучи, исходящие из точки S, после преломления в линзе пересекаются в точке S{} и теорема об изображении будет доказана для рассматриваемого случая a>f.

Точку S{} мы найдём, построив дальнейший ход луча SX. Делать это мы умеем: параллельно лучу SX проводим побочную оптическую ось OP до пересечения с фокальной плоскостью в побочном фокусе P, после чего проводим преломлённый луч XP до пересечения с лучом SO в точке S{}.

Теперь будем искать расстояние b от точки S{} до линзы. Мы покажем, что это расстояние выражается только через a и f, т. е. определяется лишь положением источника и свойствами линзы, и не зависит тем самым от конкретного луча SX.

Опустим перпендикуляры SA и S{} на главную оптическую ось. Проведём также SK параллельно главной оптической оси, т. е. перпендикулярно линзе. Получим три пары подобных треугольников:

triangle SAO sim triangle S{}, (1)
triangle SXS{}, (2)
triangle SXK sim triangle OPF. (3)

В результате имеем следующую цепочку равенств (номер формулы над знаком равенства указывает, из какой пары подобных треугольников данное равенство получено).

frac{displaystyle AO}{displaystyle OA{} (4)

Но AO=SK=a, OA{}, так что соотношение (4) переписывается в виде:

frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}-1. (5)

Отсюда находим искомое расстояние от точки S{} до линзы:

b=frac{displaystyle af}{displaystyle a-displaystyle f}. (6)

Как видим, оно и в самом деле не зависит от выбора луча SX. Следовательно, любой луч SX после преломления в линзе пройдёт через построенную нами точку S{}, и эта точка будет действительным изображением источника S

Теорема об изображении в данном случае доказана.

Практическая важность теоремы об изображении состоит вот в чём. Коль скоро все лучи источника S пересекаются после линзы в одной точке — его изображении S{} — то для построения изображения достаточно взять два наиболее удобных луча. Какие именно?

Если источник S не лежит на главной оптической оси, то в качестве удобных лучей годятся следующие:

— луч, идущий через оптический центр линзы — он не преломляется;
— луч, параллельный главной оптической оси — после преломления он идёт через фокус.

Построение изображения с помощью этих лучей показано на рис. 2.

Рис. 2. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то удобный луч остаётся лишь один — идущий вдоль главной оптической оси. В качестве второго луча приходится брать «неудобный» (рис. 3).

Рис. 3. Построение изображения точки S, лежащей на главной оптической оси

Посмотрим ещё раз на выражение ( 5). Его можно записать в несколько ином виде, более симпатичном и запоминающемся. Перенесём сначала единицу влево:

1+frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f}.

Теперь разделим обе части этого равенства на a:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (7)

Соотношение (7) называется формулой тонкой линзы (или просто формулой линзы). Пока что формула линзы получена для случая собирающей линзы и для a>f. В дальнейшем мы выведем модификации этой формулы для остальных случаев.

Теперь вернёмся к соотношению (6). Его важность не исчерпывается тем, что оно доказывает теорему об изображении. Мы видим также, что b не зависит от расстояния SA (рис. 1, 2) между источником S и главной оптической осью!

Это означает, что какую бы точку M отрезка SA мы ни взяли, её изображение будет находиться на одном и том же расстоянии b от линзы. Оно будет лежать на отрезке S{} — а именно, на пересечении отрезка S{} с лучом MO, который пойдёт сквозь линзу без преломления. В частности, изображением точки A будет точка A{}.

Тем самым мы установили важный факт: изображением отрезка SA лужит отрезок S{}. Отныне исходный отрезок, изображение которого нас интересует, мы называем предметом и обозначаем на рисунках красной стрелочкой. Направление стрелки нам понадобится для того, чтобы следить — прямым или перевёрнутым получается изображение.

к оглавлению ▴

Перейдём к рассмотрению изображений предметов. Напомним, что пока мы находимся в рамках случая a>f. Здесь можно выделить три характерных ситуации.

1. f<a<2f. Изображение предмета является действительным, перевёрнутым, увеличенным (рис. 4; двойной фокус обозначен 2F). Из формулы линзы следует, что в этом случае будет b>2f (почему?).

Такая ситуация реализуется, например, в диапроекторах и киноаппаратах — эти оптические приборы дают на экране увеличенное изображение того, что находится на плёнке. Если вам доводилось показывать слайды, то вы знаете, что слайд нужно вставлять в проектор перевёрнутым — чтобы изображение на экране выглядело правильно, а не получилось вверх ногами.

Отношение размера изображения к размеру предмета называется линейным увеличением линзы и обозначается Г — (это заглавная греческая «гамма»):

Gamma =frac{displaystyle A{}.

Из подобия треугольников triangle ABO и triangle A{} получим:

Gamma =frac{displaystyle A{}. (8)

Формула (8) применяется во многих задачах, где фигурирует линейное увеличение линзы.

2. a=2f. В этом случае из формулы (6) находим, что и b=2f. Линейное увеличение линзы согласно (8) равно единице, т. е. размер изображения равен размеру предмета (рис. 5).

Рис. 5.a=2f: размер изображения равен размеру предмета

3. a>2f. В этом случае из формулы линзы следует, что b<2f (почему?). Линейное увеличение линзы будет меньше единицы — изображение действительное, перевёрнутое, уменьшенное (рис. 6).

Рис. 6.a>2f: изображение действительное, перевёрнутое, уменьшенное

Данная ситуация является обычной для многих оптических приборов: фотоаппаратов, биноклей, телескопов — словом, тех, в которых получают изображения удалённых объектов. По мере удаления предмета от линзы его изображение уменьшается в размерах и приближается к фокальной плоскости.

Рассмотрение первого случая a>2f нами полностью закончено. Переходим ко второму случаю. Он уже не будет столь объёмным.

к оглавлению ▴

Собирающая линза: мнимое изображение точки.

Второй случай: a<f. Точечный источник света S расположен между линзой и фокальной плоскостью (рис. 7).

Рис. 7. Случай a < f: мнимое изображение точки

Наряду с лучом SO, идущим без преломления, мы снова рассматриваем произвольный луч SX. Однако теперь на выходе из линзы получаются два расходящихся луча OE и XP. Наш глаз продолжит эти лучи до пересечения в точке S{}.

Теорема об изображении утверждает, что точка S{} будет одной и той же для всех лучей SX, исходящих из точки S. Мы опять докажем это с помощью трёх пар подобных треугольников:

triangle SAOsim triangle S{}

Снова обозначая через b расстояние от S{} до линзы, имеем соответствующую цепочку равенств (вы уже без труда в ней разберётесь):

frac{displaystyle a}{displaystyle b}=frac{displaystyle AO}{displaystyle A{}. (9)

Отсюда

b=frac{displaystyle fa}{displaystyle f-displaystyle a}. (10)

Величина b не зависит от луча SX, что и доказывает теорему об изображении для нашего случая a<f. Итак, S{} — мнимое изображение источника S. Если точка S не лежит на главной оптической оси, то для построения изображения S{} удобнее всего брать луч, идущий через оптический центр, и луч, параллельный главной оптической оси (рис. 8).

Рис. 8. Построение изображения точки S, не лежащей на главной оптической оси

Ну а если точка S лежит на главной оптической оси, то деваться некуда — придётся довольствоваться лучом, падающим на линзу наклонно (рис. 9).

Рис. 9. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (9) приводит нас к варианту формулы линзы для рассматриваемого случая a<f. Сначала переписываем это соотношение в виде:

1-frac{displaystyle a}{displaystyle b}=frac{displaystyle a}{displaystyle f},

а затем делим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f}. (11)

Сравнивая (7) и (11), мы видим небольшую разницу: перед слагаемым 1/b стоит знак плюс, если изображение действительное, и знак минус, если изображение мнимое.

Величина b, вычисляемая по формуле (10), не зависит также от расстояния SA между точкой S и главной оптической осью. Как и выше (вспомните рассуждение с точкой M), это означает, что изображением отрезка SA на рис. 9 будет отрезок S{}.

к оглавлению ▴

Учитывая это, мы легко строим изображение предмета, находящегося между линзой и фокальной плоскостью (рис. 10). Оно получается мнимым, прямым и увеличенным.

Такое изображение вы наблюдаете, когда разглядываете мелкий предмет в увеличительное стекло — лупу. Случай a<f полностью разобран. Как видите, он качественно отличается от нашего первого случая a>f. Это не удивительно — ведь между ними лежит промежуточный «катастрофический» случай a=f.

к оглавлению ▴

Собирающая линза: предмет в фокальной плоскости.

Промежуточный случай:a=f. Источник света S расположен в фокальной плоскости линзы (рис. 11).

Как мы помним из предыдущего раздела, лучи параллельного пучка после преломления в собирающей линзе пересекутся в фокальной плоскости — а именно, в главном фокусе, если пучок падает перпендикулярно линзе, и в побочном фокусе при наклонном падении пучка. Воспользовавшись обратимостью хода лучей, мы заключаем, что все лучи источника S, расположенного в фокальной плоскости, после выхода из линзы пойдут параллельно друг другу.

Рис. 11. a=f: изображение отсутствует

Где же изображение точки S? Изображения нет. Впрочем, никто не запрещает нам считать, что параллельные лучи пересекаются в бесконечно удалённой точке. Тогда теорема об изображении сохраняет свою силу и в данном случае — изображение S{} находится на бесконечности.

Соответственно, если предмет целиком расположен в фокальной плоскости, изображение этого предмета будет находиться на бесконечности (или, что то же самое, будет отсутствовать).

Итак, мы полностью рассмотрели построение изображений в собирающей линзе.

к оглавлению ▴

Рассеивающая линза: мнимое изображение точки.

К счастью, здесь нет такого разнообразия ситуаций, как для собирающей линзы. Характер изображения не зависит от того, на каком расстоянии предмет находится от рассеивающей линзы, так что случай тут будет один-единственный.

Снова берём луч SO и произвольный луч SX (рис. 12). На выходе из линзы имеем два расходящихся луча OE и XY, которые наш глаз достраивает до пересечения в точке S{}.

Рис. 12. Мнимое изображение точки S в рассеивающей линзе

Нам снова предстоит доказать теорему об изображении — о том, что точка S{} будет одной и той же для всех лучей SX. Действуем с помощью всё тех же трёх пар подобных треугольников:

triangle SAOsim triangle S{}.

Имеем:

frac{displaystyle a}{displaystyle b}= frac{displaystyle AO}{displaystyle A{} (12)

Отсюда

b=frac{displaystyle af}{displaystyle a+displaystyle f}. (13)

Величина b не зависит от луча span
SX, поэтому продолжения всех преломлённых лучей span
XY пересекутся в точке S{} — мнимом изображении точки S. Теорема об изображении тем самым полностью доказана.

Вспомним, что для собирающей линзы мы получили аналогичные формулы (6) и (10). В случае a=f их знаменатель обращался в нуль (изображение уходило на бесконечность), и поэтому данный случай разграничивал принципиально разные ситуации a>f и a<f.

А вот у формулы (13) знаменатель не обращается в нуль ни при каком a. Стало быть, для рассеивающей линзы не существует качественно разных ситуаций расположения источника — случай тут, как мы и сказали выше, имеется только один.

Если точка S не лежит на главной оптической оси, то для построения её изображения удобны два луча: один идёт через оптический центр, другой — параллельно главной оптической оси (рис. 13).

Рис. 13. Построение изображения точки S, не лежащей на главной оптической оси

Если же точка S лежит на главной оптической оси, то второй луч приходится брать произвольным (рис. 14).

Рис. 14. Построение изображения точки S, лежащей на главной оптической оси

Соотношение (13) даёт нам ещё один вариант формулы линзы. Сначала перепишем:

1-frac{displaystyle a}{displaystyle b}=-frac{displaystyle a}{displaystyle f},

а потом разделим обе части полученного равенства на a:

frac{displaystyle 1}{displaystyle a}-frac{displaystyle 1}{displaystyle b}=-frac{displaystyle 1}{displaystyle f}. (14)

Так выглядит формула линзы для рассеивающей линзы.

Три формулы линзы (7), (11) и (14) можно записать единообразно:

frac{displaystyle 1}{displaystyle a}+frac{displaystyle 1}{displaystyle b}=frac{displaystyle 1}{displaystyle f},

если соблюдать следующую договорённость о знаках:

— для мнимого изображения величина b считается отрицательной;
— для рассеивающей линзы величина f считается отрицательной.

Это очень удобно и охватывает все рассмотренные случаи.

к оглавлению ▴

Величина b , вычисляемая по формуле (13), опять-таки не зависит от расстояния SA между точкой S и главной оптической осью. Это снова даёт нам возможность построить изображение предмета AB, которое на сей раз получается мнимым, прямым и уменьшенным (рис. 15).

Рис. 15. Изображение мнимое, прямое, уменьшенное

Разберем задачи ЕГЭ по теме: Тонкие линзы. Построение изображений.

1. Тонкая собирающая линза с фокусным расстоянием F находится между двумя точечными источниками света на расстоянии d=15 см от одного из них. Источники расположены на главной оптической оси на расстоянии L=22,5 см друг от друга. Найдите фокусное расстояние линзы, если их изображения получились в одной точке. Ответ выразите в сантиметрах.
Дано:
d_1 = 15 см = 0,15 м
L = 22,5 см=0,225 м
Найти:
Фокусное расстояние F — ?

Решение:
Тонкая собирающая линза дает различные виды изображений: увеличенные (уменьшенные), прямые (обратные), действительные (мнимые). Характеристика изображения зависит от расстояния от предмета до линзы, т.е. от соотношения d и F.
Так как в задаче говорится о получении изображений в одной точке, то один из точечных источников должен находиться за фокусом линзы – он дает действительное изображение. Второй точечный источник должен находиться перед фокусом – он дает мнимое изображение.

На рис. 1 представлено получение изображения для точечного источника света S_1, находящегося на расстоянии больше фокусного, S_1 — изображение точечного источника света S_1.

На рис. 2 представлено получение изображения для точечного источника света S_2, находящегося на расстоянии меньше фокусного, S_2— изображение точечного источника света S_2.
После создания модели, поясняющей условие этой задачи, можно переходить к её решению. Для этого надо применить формулу тонкой линзы для двух случаев. С учетом правила знаков f_1>0,f_2<0, так как изображение в первом случае действительное, во втором – мнимое.

frac{1}{d_1}+frac{1}{f_1}=frac{1}{F} (1)

frac{1}{d_2}-frac{1}{f_2}=frac{1}{F} (2)

Сложим эти два уравнения и учтем, что frac{1}{f_1}+left(-frac{1}{f_2}right)=0. Так как изображения в двух случаях получались в одной точке, то f_1=f_2.

frac{1}{d_1}+frac{1}{d_2}=frac{2}{F}

frac{d_1+d_2}{d_1cdot d_2}=frac{2}{F}

F=frac{2d_1cdot d_2}{d_1+d_2}

Определим, что d_2=L-d_1; d_2=0,225-0,15=0,075 (м).

F=frac{2cdot 0,15cdot 0,075}{0,15+0,075}=0,1 (м) =10 (см).

Ответ: 10

2. Какая из точек (1, 2, 3 или 4) является изображением точки S, созданным тонкой собирающей линзой с фокусным расстоянием F (см. рисунок)?

Решение:

Для получения изображения точечного источника S необходимо осуществить построение двух любых лучей, исходящих от этого источника. Самым «удобным» лучом является луч, проходящий через оптический центр линзы. Такие лучи, после прохождения через линзу, не меняют своего направления. На рисунке таким лучом является луч 1-1ʹ.
Второй и третий лучи от точечного источника S попадают на линзу произвольно. Дальнейший ход таких лучей определяется следующим алгоритмом:

  1. необходимо построить побочные оптические оси, параллельные падающим лучам (на рисунке они проведены пунктирной линией);
  2. провести фокальную плоскость и найти точки пересечения этой плоскости с побочными оптическими осями;
  3. продолжить ход световых лучей после прохождения через линзу (на рисунке это лучи 2ʹ и 3ʹ).

Поэтому изображением точечного источника S (точки S) будет являться точка 2.
При решении этой задачи мы рассмотрели ход трех лучей сквозь линзу, для получения ответа достаточно взять любую комбинацию лучей (1-1ʹ и 2 — 2ʹ) или (1-1ʹ и 3 — 3ʹ ).
Ответ: 2

3. Спираль лампочки расположена вблизи главной оптической оси тонкой рассеивающей линзы на расстоянии а от неё перпендикулярно этой оси, причем F < a < 2F, где F – модуль фокусного расстояния линзы. Затем рассеивающую линзу заменили на собирающую с фокусным расстоянием F. Установите соответствие между видом линзы, использованной в опыте, и свойствами даваемого ею изображения.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Виды линз Свойства изображения
А) линза рассеивающая 1) мнимое, прямое, уменьшенное
Б) линза собирающая 2) мнимое, перевёрнутое, увеличенное
3) действительное, перевёрнутое, увеличенное
4) действительное, прямое, увеличенное

Решение
Решение подобных задач опирается на умение строить изображения протяженных (имеющих размеры) предметов при прохождении лучей через линзу.

Рис.1

На рис.1 выполнено построение изображения предмета АВ в тонкой собирающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный за линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
увеличенное (размер изображения превышает размер предмета),
перевернутое (направления стрелок АВ и АʹВʹ противоположны),
действительное (предмет и его изображения находятся по разные стороны от линзы).

Рис.2

На рис.2 выполнено построение изображения предмета АВ в тонкой рассеивающей линзе. Для этого применялись следующие лучи:
1-1ʹ — луч, проходящий через оптический центр, не преломляется;
2 — 2ʹ — луч, падающий на линзу параллельно главной оптической оси, после преломления идет через фокус, расположенный перед линзой .
Полученное изображение АʹВʹ имеет следующие характеристики:
уменьшенное (размер изображения меньше размера предмета),
прямое (направления стрелок АВ и АʹВʹ совпадают),
мнимое (предмет и его изображения находятся с одной стороны от линзы).
Полученные изображения и их характеристики приводят к следующему ответу:

4. На рисунке показан ход лучей от точечного источника света S через тонкую линзу. Какова оптическая сила этой линзы? (Ответ дать в диоптриях.)

Решение:

На рисунке представлен ход световых лучей от точечного источника света S. Луч, проходящий через оптический центр, не меняет своего направления. Второй луч, идущий параллельно главной оптической оси, после преломления идет через фокус. Это позволяет определить фокусное расстояние линзы. Согласно рисунку, оно равно двум клеткам. С учётом указанного масштаба, длина одной клетки равна 4 см. Таким образом, фокусное расстояние этой линзы F=8 см = 0,08 м.

Так как оптическая сила линзы D=frac{1}{F}=frac{1}{0,08}=12,5 (дптр).

Ответ: 12,5

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн
 

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тонкие линзы. Построение изображений.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Содержание:

Линзы:

На уроках природоведения вы. наверное, пользовались микроскопом. Кое-кто из ваших друзей (а может, и вы сами) имеет очки. Вероятнее всего, большинство из вас знакомы с биноклем, зрительной тру бой, телескопом. У всех этих приборов есть общее: их основной частью является линза.

Равные виды линз

Линзой (сферической*) называют прозрачное тело, ограниченное с двух сторон сферическими поверхностями (в частности, одна из поверхностей может быть плоскостью). По форме линзы делятся на выпуклые (рис. 3.50) и вогнутые (рис. 3.51).

Если толщина линзы d во много раз меньше радиусов Линзы в физике - виды, формулы и определения с примерами

Обычно выпуклые линзы являются собирающими: параллельные лучи, которые падают на собирающую линзу, пройдя сквозь нее, пересекаются в одной точке (рис. 3.53).

Вогнутые линзы чаще всего бывают рассеивающими: параллельные лучи после прохождения сквозь рассеивающую линзу выходят расходящимся пучком (рис. 3.54).

Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Характеристики линз

Проведем прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу. Эту прямую называют главной оптической осью линзы. Точку линзы, которая расположена на главной оптической оси и через которую луч света проходит, не изменяя своего направления, называют оптическим центром линзы (рис. 3.55). На рисунках оптический центр линзы обычно обозначают буквой О.

Точку, в которой собираются после преломления лучи, параллельные главной оптической оси собирающей линзы, называют действительным фокусом собирающей линзы (рис. 3.56).

Если пучок лучей, параллельных главной оптической оси, направить на рассеивающую линзу, то после преломления они выйдут расходящимся пучком.

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Однако их продолжения соберутся в одной точке на главной оптической оси линзы (рис. 3.57). Эту точку называют мнимым фокусом рассеивающей линзы.

На рисунках фокус линзы обозначают буквой F.

Расстояние от оптического центра линзы до фокуса называют фокусным расстоянием линзы.

Фокусное расстояние обозначается символом F и измеряется в метрах. Фокусное расстояние собирающей линзы договорились считать положительным (F>0), а рассеивающей — отрицательным (F<0).

Очевидно, что чем сильнее преломляющие свойства линзы, тем меньшим будет ее фокусное расстояние (рис. 3.58).

Физическая величина, характеризующая преломляющие свойства линзы и обратная фокусному расстоянию, называется оптической силой линзы.

Оптическая сила линзы обозначается символом D и вычисляется по формулеЛинзы в физике - виды, формулы и определения с примерами
где F — фокусное расстояние линзы.

Единицей оптической силы является диоптрия

Линзы в физике - виды, формулы и определения с примерами

1 диоптрия (дптр) — это оптическая сила такой линзы, фокусное рас стояние которой равняется 1 м.

Если линза собирающая, то ее оптическая сила положительна. Оптическая сила рассеивающей линзы отрицательна. Например, оптическая сила линз в бабушкиных очках +3 дптр, а в маминых -3 дптр. Это означает, что в бабушкиных очках стоят собирающие линзы, а в маминых — рассеивающие.
 

Пример №1

Оптическая сила линзы равняется -1,6 дптр. Каково фокусное расстояние этой линзы? Эта линза собирающая или рассеивающая?

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Анализ физической проблемы

Для определения фокусного расстояния этой линзы воспользуемся формулой для вычисления оптической силы линзы. Поскольку 1)< 0, то линза рассеивающая.

Поиск математической модели, решение:

Линзы в физике - виды, формулы и определения с примерами

Определим числовое значение искомой величины:

Линзы в физике - виды, формулы и определения с примерами

Ответ: F = -62,5 см, линза рассеивающая.

Итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линзы бывают собирающими и рассеивающими, а по форме — выпуклыми и вогнутыми.

Линза называется собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке. Эту точку называют действительным фокусом линзы.

Линза называется рассеивающей, если параллельные лучи, падающие на нее, после преломления в линзе идут расходящимся пучком, однако продолжения этих преломленных лучей пересекаются в одной точке. Эта точка называется мнимым фокусом линзы.

Физическая величина, характеризующая преломляющие свойства линзы и являющаяся обратной фокусному расстоянию линзы, называется оптической силой линзы = Оптическая сила линзы измеряется в диоптриях (дптр).
 

Формула тонкой линзы

Сейчас никого не удивляет, что можно увидеть бактерии и другие микроорганизмы, рассмотреть невидимые невооруженным глазом детали рельефа поверхности Луны или полюбоваться портретом, нарисованным на маковом зернышке. Все это стало возможным потому, что с по мощью линзы получают разные по размеру изображения предметов.
Линзы в физике - виды, формулы и определения с примерами

Изображение предмета, полученное с помощью линзы

Расположив последовательно зажженную свечу, собирающую линзу и экран, получим на экране четкое изображение пламени свечи (рис. 3.59). Изображение может быть как большим, так и меньшим, чем само пламя, или равным ему — в зависимости от расстояния между свечой и экраном. Чтобы выяснить, при каких условиях с помощью линзы образуется то или иное изображение предмета, рассмотрим приемы его построения.
 

Строим изображение предмета, которое дает тонкая линза

Любой предмет можно представить как совокупность точек. Каждая точка предмета, который светится собственным или
Линзы в физике - виды, формулы и определения с примерами

  1. — луч, проходящий через оптический центр О линзы (не преломляется и не изменяет своего направления);
  2. — луч, параллельный главной оптической оси / линзы (после преломления в линзе идет через фокус F);
  3. — луч, проходящий через фокус F (после преломления в линзе идет параллельно главной оптической оси/линзы)
  4. отраженным светом, испускает лучи во всех направлениях.

Для построения изображения точки S, получаемого с помощью линзы, достаточно найти точку пересечения Линзы в физике - виды, формулы и определения с примерами, любых двух лучей, выходящих из точки S и проходящих сквозь линзу (точка Линзы в физике - виды, формулы и определения с примерами и будет действительным изображением точки S). Кстати, в точке Линзы в физике - виды, формулы и определения с примерамипересекаются все лучи, выходящие из точки S, однако для построения изображения достаточно двух лучей (любых из трех показанных на рис. 3.60).

Изобразим схематически предмет стрелкой АВ и удалим его от линзы на расстояние, большее, чем 2F (за двойным фокусом) (рис. 3.61, а). Сначала построим изображение Линзы в физике - виды, формулы и определения с примерами точки В. Для этого воспользуемся двумя «удобными* лучами (луч 1 и луч 2). Эти лучи после преломления в линзе пересекутся в точке Линзы в физике - виды, формулы и определения с примерами. Значит, точка Линзы в физике - виды, формулы и определения с примерами является изображением точки В. Для построения изображения Линзы в физике - виды, формулы и определения с примерами точки А из точки Линзы в физике - виды, формулы и определения с примерамиопустим перпендикуляр на главную оптическую ось /. Точка пересечения перпендикуляра и оси / и является точкой Линзы в физике - виды, формулы и определения с примерами

Значит, Линзы в физике - виды, формулы и определения с примерамии является изображением предмета АВ, полученное с помощью линзы. Мы видим: если предмет расположен за двойным фокусом собирающей линзы, то его изображение, полученное с помощью линзы, будет уменьшенным, перевернутым, действительным. Такое изображение получается, например, на пленке фотоаппарата (рис. 3.61, б) или сетчатке глаза.

На рис. 3.62, а показано построение изображения предмета АВ, полученного с помощью собирающей линзы, в случае, когда предмет расположен
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Но, посмотрев на предмет сквозь линзу, увидим изображение предмета — оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломления в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком. Однако их продолжения пересекутся в точке В,. Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. Построение показывает, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экраном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реальные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке — Линзы в физике - виды, формулы и определения с примерами то «удобные лучи*, с помощью которых мы строим изображение, тоже пересеклись бы в точке Линзы в физике - виды, формулы и определения с примерами

Как выглядит формула тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фокусным расстоянием F линзы. Эта зависимость называется формулой тонкой линзы и записывается так:
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изображение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей — отрицательное.

Пример №2

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изображение монет

Дано:

d = 2 см = 0,02 м

D = + 5 дптр

f- ?

Анализ физической проблемы, поиск математической модели

Лупу можно считать тонкой линзой, поэтому чтобы найти расстояние от лупы до изображения, воспользуемся
формулой тонкой линзыЛинзы в физике - виды, формулы и определения с примерами Фокусное расстояние F неизвестно, но мы знаем, что Линзы в физике - виды, формулы и определения с примерами (2), где

D — оптическая сила линзы, данная в условии задачи.
Решение и анализ результатов

Подставив формулу (2) в формулу (1), получаем
Линзы в физике - виды, формулы и определения с примерами
Проверим единицу: Линзы в физике - виды, формулы и определения с примерами

Найдем числовое Линзы в физике - виды, формулы и определения с примерами

Проанализируем результат: знак ♦-* говорит о том, что изображение является мнимым.

Ответ: f = -21 см, изображение мнимое.

Итоги:

В зависимости от вида линзы (собирающая или рассеивающая) и местоположения предмета относительно этой линзы получают разные изображения предмета с помощью линзы (см.таблицу):

Линзы в физике - виды, формулы и определения с примерами

Таким образом, по типу изображения можно судить так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до линзы и фокусное расстояние F связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

Что такое линза

Многие люди носят очки. А задумывались ли вы над вопросами: что собой представляют стекла очков и какова их роль? Стекла очков есть не что иное, как линзы. Ни один оптический прибор (от простой лупы до сложных телескопов) не обходится без линз. Что же такое линза?

Линза представляет собой прозрачное тело, ограниченное криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Материалом для линз обычно служит оптическое или органическое стекло.

Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

На рисунках 261, 262 представлены сечения линз двух типов: двояковыпуклой (см. рис. 261) и двояковогнутой (см. рис. 262). Одна из поверхностей линзы может быть плоской, как, например, на рисунке 263. Такие линзы называются плосковыпуклая (см. рис. 263, а) и плосковогнутая, (см. рис. 263, б).

Линзы в физике - виды, формулы и определения с примерами

Прямая, проходящая через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей (рис. 264), называется главной оптической осью линзы. Радиусы Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами есть радиусы кривизны поверхностей линзы (см. рис. 264).

Если толщина линзы мала но сравнению с радиусами Линзы в физике - виды, формулы и определения с примерами кривизны ее поверхностей (см. рис. 264), то линза называется тонкой. Ее часто изображают Линзы в физике - виды, формулы и определения с примерами Всякая тонкая линза имеет точку, проходя через которую, луч не меняет своего направления (лучи 1 и 2 на рисунке 264). Эта точка О называется оптическим центром линзы. В дальнейшем мы будем рассматривать только тонкие линзы, изготовленные из вещества, оптически более плотного, чем среда (воздух), в которой они находятся.

Как линзы меняют направление падающих на них лучей после преломления? Ответ получим с помощью опыта.

Линзы в физике - виды, формулы и определения с примерами

Направим на двояковыпуклую линзу (рис. 265, а) параллельно главной оптической оси лучи света. После преломления в линзе они пересекают главную оптическую ось в одной точке F. Значит, двояковыпуклая линза собирает преломленные лучи, поэтому такая линза называется собирающей. Также превращают параллельный пучок в сходящийся линзы 2, 3, изображенные на рисунке 270. При замене линзы на двояковогнутую (рис. 265, б) лучи после преломления в линзе расходятся, а центральный луч, как и в первом случае, не испытывает преломления. Итак, двояковогнутая линза рассеивает параллельный пучок падающих на нее лучей, поэтому такая линза называется рассеивающей. Рассеивают параллельный пучок и линзы 5, 6 (см. рис. 270).

Линзы в физике - виды, формулы и определения с примерами

Точка F (см. рис. 265, а, рис. 266, а), в которой пересекаются преломленные линзой лучи, падающие параллельно главной оптической оси, или их продолжения (см. рис. 265, б, рис. 266, б), называется главным фокусом линзы. Так как параллельные лучи можно пустить как с одной, так и с другой стороны линзы, то и главных фокуса у линзы два. Оба фокуса лежат на главной оптической оси симметрично относительно оптического центра линзы (см. рис. 266). А в какой точке собирает линза лучи, идущие под углом к главной оптической оси? Оказывается, в точке Линзы в физике - виды, формулы и определения с примерами которая находится в плоскости Линзы в физике - виды, формулы и определения с примерами(см. рис. 266, а), проходящей через главный фокус перпендикулярно главной оптической оси. Эта плоскость называется фокальной плоскостью, а точка Линзы в физике - виды, формулы и определения с примерами в отличие от главного фокуса, называется фокусом.

Обратите внимание, что у собирающей линзы в фокусе пересекаются сами преломленные лучи, несущие энергию, поэтому фокус называется действительным. У рассеивающей линзы в фокусе пересекаются продолжения преломленных лучей. Такой фокус называют мнимым.

Расстояние от оптического центра до главного фокуса называется фокусным расстоянием. Его тоже принято обозначать буквой F.

Линзы в физике - виды, формулы и определения с примерами

Линза, имеющая более выпуклые поверхности, преломляет лучи сильнее. Линза 1 (рис. 267, а) преломляет лучи сильнее, чем линза 2 (рис. 267, 6). Фокусное расстояние Линзы в физике - виды, формулы и определения с примерами у линзы 1 меньше, чем Линзы в физике - виды, формулы и определения с примерами у линзы 2.

Чтобы количественно оценить преломляющую способность линзы, введем величину, обратную фокусному расстоянию, и назовем ее оптической силой линзы (обозначается буквой D):

Линзы в физике - виды, формулы и определения с примерами
Оптическая сила измеряется в диоптриях (сокращенно дптр). Очевидно, что D = 1 дптр, если фокусное расстояние линзы F = 1 м.

А как оценивается оптическая сила рассеивающей линзы, у которой фокус мнимый? В этом случае фокусное расстояние считается отрицательным, а следовательно, и оптическая сила — отрицательной величиной.

Например, если F = -0,5 м, то оптическая сила

Линзы в физике - виды, формулы и определения с примерами

Теперь для вас не будет загадкой рекомендация врача-окулиста: «Вам нужны очки со стеклами +1,5 диоптрии или -2 диоптрии».
 

Для любознательных:

Не следует думать, что любая линза с выпуклой поверхностью будет обязательно собирающей, а с вогнутой — рассеивающей. Собирающей является всякая линза, у которой середина толще краев (например, линзы 2, 2, 3 на рисунке 270), а рассеивающей — линза, у которой середина тоньше краев (см. рис. 270, линзы 4, 5, 6). И не забывайте, что все наши рассуждения справедливы, если вещество линзы (стекло) имеет большую оптическую плотность, чем окружающая среда (воздух).

В природе собирающими линзами являются капельки росы, в быту — наполненные водой прозрачные сосуды — кувшин, пластиковая бутылка. Подумайте и ответьте, какие это линзы.

Главные выводы:

  1. Линзы меняют направление падающих на них лучей после преломления, за исключением тех, которые проходят через оптический центр линзы.
  2. Собирающая линза после преломления делает параллельный пучок лучей сходящимся, рассеивающая линза — расходящимся.
  3. Лучи, идущие параллельно главной оптической оси, после преломления в собирающей линзе пересекаются в главном фокусе. В рассеивающей линзе в главном фокусе пересекаются продолжения преломленных лучей.
  4. Величина, обратная фокусному расстоянию, определяет оптическую силу линзы.

Построение изображений в тонких линзах

Глядя в окуляр микроскопа на уроках биологии, задумывались ли вы, как получается увеличенное изображение клеток? Главными частями микроскопа являются линзы. Именно они позволяют получать увеличенное или уменьшенное (например, в фотоаппарате) изображение предмета.

Какие изображения предмета создает линза?

Линзы в физике - виды, формулы и определения с примерами

Проведем опыт. На столе расположим экран, собирающую линзу и зажженную свечу (рис. 271, а), удаленную от линзы на расстояние б/, большее, чем удвоенное фокусное, т. е. d > 2F. Будем передвигать экран до тех пор, пока не увидим на нем четкое изображение пламени свечи. Чем оно отличается от изображения, которое мы увидим в зеркале, поместив перед ним эту же свечу? Во-первых, оно уменьшенное, во-вторых, перевернутое. Ио самое главное, что это изображение, в отличие от мнимого изображения в зеркале, реально существует. На экране концентрируется энергия света. Чувствительный термометр, помещенный в изображение пламени свечи, покажет повышение температуры. Поэтому полученное в линзе изображение называют действительным, в отличие от мнимых изображений, наблюдаемых в плоском зеркале.

Подтвердим сказанное построением (рис. 271, б). Для получения изображения точки А достаточно использовать два луча, ход которых после преломления в линзе известен. Луч 1 идет параллельно главной оптической оси и после преломления в линзе проходит через главный фокус. Луч 2 идет через оптический центр и не меняет своего направления после прохождения сквозь линзу. Точка А’, являющаяся пересечением прошедших линзу лучей Линзы в физике - виды, формулы и определения с примерамии 2′, есть действительное изображение точки А. Заметим, что через точку А пройдет и любой другой преломленный луч идущий от точки А, благодаря чему энергия, излученная точкой А пламени свечи, будет сконцентрирована в точке А’.

Продолжим опыт. Поставим свечу на расстоянии d = 2F. Перемещая экран, мы увидим на нем действительное, перевернутое изображение пламени свечи, но размер его будет равен размеру пламени самой свечи (рис. 272). Сделайте сами построение изображения для этого случая.

Линзы в физике - виды, формулы и определения с примерами

Передвигая свечу ближе к линзе (F < d < 2F) и удаляя экран, мы увидим на нем действительное, перевернутое, увеличенное изображение пламени свечи (построение сделайте сами).

Линзы в физике - виды, формулы и определения с примерами

Наконец поставим свечу на расстоянии d от линзы, меньше фокусного, т. е. d

Линзы в физике - виды, формулы и определения с примерами

А какие изображения предмета дает рассеивающая линза? Пусть параллельно главной оптической оси надает луч 1 (рис. 275). После линзы преломленный луч Линзы в физике - виды, формулы и определения с примерами идет так, что только его продолжение проходит через фокус. Луч 2 не испытывает преломления. Видно, что лучи Линзы в физике - виды, формулы и определения с примерами и 2′ не пересекаются. В точке А’ пересекаются их продолжения. Тогда изображение точки А, а значит, и всего предмета АВ — мнимое. Как все мнимые изображения, оно прямое, но уменьшенное. Даст ли рассеивающая линза действительное изображение, если менять положение предмета? Может ли оно быть увеличенным? Ответьте на эти вопросы сами, сделав соответствующие построения изображений предмета в тетради.

Главные выводы:

  1. Собирающая линза дает как действительные, так и мнимые изображения, рассеивающая — только мнимые.
  2. Все мнимые изображения — прямые, все действительные — перевернутые.
  3. Для нахождения изображения точки наиболее целесообразно использовать луч, идущий параллельно главной оптической оси линзы, и луч, идущий через ее оптический центр.

Пример №3

С помощью стеклянной линзы на экране, удаленном от линзы на расстояние f = 36 см, получено увеличенное в 3 раза изображение предмета. Определите расстояние от предмета до линзы и оптическую силу линзы.

Дано:

Н = Зh

f = 36 см

d — ?

D — ?

Решение

Построим изображение предмета в линзе (рис. 276).

Линзы в физике - виды, формулы и определения с примерами

Поскольку изображение есть на экране, то оно действительное. Кроме того, оно увеличенное, значит, предмет находится между фокусом и двойным фокусом, а линза собирающая.

По условию размер предмета АВ в 3 раза меньше размера изображения А’В’. Из подобия треугольников АОВ и А’ОВ’ следует, что таким же будет и соотношение их сторон ВО и OB’, Значит, искомое расстояние d будет в 3 раза меньше заданного расстояния f. Это дает первый ответ: Линзы в физике - виды, формулы и определения с примерами Для ответа на второй вопрос используем подобие другой нары треугольников — CFO и A’FB’. И здесь подобные стороны треугольников различаются в 3 раза.
Так как одна из них — OF равна фокусному расстоянию F линзы, а другая — FB’ равна разности f — F, то их связь можно записать так: 3F = f — F, или 4F = f = 36 см. Вычислив значение фокусного расстояния Линзы в физике - виды, формулы и определения с примерами найдем и искомое значение оптической силы D линзы: Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Оптическая сила и фокусное расстояние линзы

Граница разделения двух, прозрачных для света, тел может быть искривленной. Если прозрачное тело ограничить искривленными поверхностями, получим линзу (нем. linse — «чечевица»).

Линза — это прозрачное тело, ограниченное двумя выпуклыми или вво-гнутыми прозрачными поверхностями, преломляющими лучи света.
Одна из поверхностей линз может быть плоской. Линзы изготавливают из какого-либо прозрачного для света вещества: стекла, кварца, разных пластмасс, каменной соли, но чаще всего — из специальных сортов стекла.

Наибольшее распространение получили линзы, ограниченные сферическими поверхностями. В зависимости от взаимного размещения сферических поверхностей, ограничивающих линзу, различают 6 типов линз: двояковыпуклая, плоско-выпуклая, вогнуто-выпуклая (рис. 165, а, б, в); двояковогнутая, плоско-вогнутая, выпукло-ввогнутая (рис. 165, г, д, е).
Линзы в физике - виды, формулы и определения с примерами

Любая линза имеет характерные точки и линии. Выясним, какие именно.

1.    Прямую, проходящую через центры Линзы в физике - виды, формулы и определения с примерами сферических поверхностей, которые ограничивают линзу, называют ее главной оптической осью (рис. 166).

2.    Точку О, которая лежит на главной оптической оси в центре линзы, называют оптическим центром линзы (рис. 166).

Линзы в физике - виды, формулы и определения с примерами

Опыт 1. Направим на линзу пучок лучей, параллельных ее главной оптической оси. Проходя через линзу, световые лучи преломляются и пересекаются в одной точке, лежащей на главной оптической оси линзы (рис. 167).

Линзы в физике - виды, формулы и определения с примерами

Эту точку называют главным фокусом линзы F.

3.    Главный фокус линзы F — точка, в которой сходятся все, параллельные главной оптической оси, лучи после их преломления в линзе.

4.    Фокусное расстояние f — расстояние от оптического центра линзы О до главного фокуса F.

Каждая линза имеет два главных фокуса.

Любая тонкая линза характеризуется двумя основными параметрами -фокусным расстоянием и оптической силой. Оптическую силу линзы обозначают большой буквой D и определяют по формуле:

Линзы в физике - виды, формулы и определения с примерами
Единицей оптической силы является одна диоптрия (1 дптр), 1 дптр = Линзы в физике - виды, формулы и определения с примерами.

Как видно из опыта, линза преобразует пучок параллельных лучей в сходящийся, то есть собирает его в одну точку. Такую линзу называют собирательной.

Собирательная линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления собирает на этой оси в одну точку.

Опыт 2. Возьмем линзу другого типа и направим на нее параллельный главной оптической оси пучок лучей света. Лучи, преломившись на границе воздух-стекло, выходят из линзы расходящимся пучком, или рассеиваются (рис. 168).

Линзы в физике - виды, формулы и определения с примерами

Такую линзу называют рассеивающей.

Рассеивающая линза — это линза, которая световые лучи, падающие на нее параллельно ее главной оптической оси, после преломления отклоняет от этой оси.

Если пучок лучей, выходящий из рассеивающей линзы, продолжить в противоположном направлении, то продолжения лучей пересекутся в точке F, которая лежит на оптической оси с той же стороны, с которой свет падает на линзу. Эту точку F называют мнимым главным фокусом рассеивающей линзы (рис. 169).

Опыт 3. Пропустим световые лучи только через оптические центры линз. В результате опыта убеждаемся (рис. 170), что световые лучи, проходящие через оптический центр линзы, не преломляются, то есть не изменяют своего направления.

Линзы в физике - виды, формулы и определения с примерами

С помощью линз можно не только собирать или рассеивать световые лучи, но и строить изображение предметов. Как раз благодаря этому свойству линзы широко используют в практических целях.

Каким же образом строятся изображения предметов с помощью линз?

Изображение предмета — это воссоздание вида, формы и цвета предмета световыми лучами, проходящими через оптическую систему линз, которые имеют одну общую оптическую ось.

Если изображение предмета образовано пересечением самих лучей, то его называют действительным, если их продолжением — мнимым.

Определить ход лучей, отраженных всеми точками поверхности тела, невозможно. Поэтому для построения изображения будем использовать такие лучи, ход которых известен:

  • 1.    Луч, проходящий через оптический центр линзы, не преломляется (рис. 171, а).
  • 2.    Луч, параллельный главной оптической оси линзы, после преломления в линзе проходит через главный фокус линзы (рис. 171, б).
  • 3.    Луч, проходящий через главный фокус линзы, после преломления в ней, проходит параллельно главной оптической оси (рис. 171, в).

Линзы в физике - виды, формулы и определения с примерами

Рассмотрим случаи, при которых получается то или другое изображение, и особенности этих изображений.

1.    Предмет АВ размещен между линзой и ее фокусом F.

Линзы в физике - виды, формулы и определения с примерами

Построим изображение точки А, использовав для этого упомянутые лучи. Луч АС (рис. 172), параллельный главной оси линзы, преломившись в линзе, пройдет через главный фокус, а луч АО не изменит своего направления. Как видно на рисунке, эти лучи расходятся. Чтобы построить изображение точки А, следует продолжить лучи в противоположном направлении до пересечения, это будет точка Линзы в физике - виды, формулы и определения с примерами Это изображение точки есть мнимым. Такое же построение хода лучей можно выполнить для всех точек предмета, находящихся между точками А и В. Изображение этих промежуточных точек будут лежать междуЛинзы в физике - виды, формулы и определения с примерами. Таким образом, Линзы в физике - виды, формулы и определения с примерами — изображение предмета АВ.

Если предмет находится между линзой и ее фокусом, то получают увеличенное, прямое, мнимое его изображение, размещенное дальше от линзы, чем сам предмет.

Такое изображение получают, когда пользуются лупой — прибором для рассматривания мелких предметов (например, чтения мелкого текста).

2.    Предмет размещен в главном фокусе линзы F.

Для построения изображения предмета АВ снова воспользуемся лучами АС и АО (рис. 173). После прохождения лучей сквозь линзу мы увидим, что они параллельны между собой. Следовательно, изображение предмета АВ мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Если в главном фокусе разместить источник света, то мы превратим пучок расходящихся лучей на пучок параллельных лучей, который хорошо освещает отдаленные предметы.

Если предмет размещен в главном фокусе линзы F, изображение предмета получить нельзя.

3.    Предмет размещен между главным фокусом линзы F и двойным фокусом линзы 2F.

Во время построения изображения (рис. 174) мы видим, что лучи АС и АО после прохождения линзы пересекаются в точке Линзы в физике - виды, формулы и определения с примерами. В этой точке образуется действительное изображение точки А. Изображение Линзы в физике - виды, формулы и определения с примерамипредмета АВ также будет действительным.

Линзы в физике - виды, формулы и определения с примерами

Если предмет находится между фокусом F и двойным фокусом 2F линзы, то образуется увеличенное, перевернутое и действительное изображение предмета; оно размещено с противоположной относительно предмета стороны линзы на расстоянии, больше двойного фокусного расстояния.

Такое изображение используют в проекционном аппарате, киноаппарате. Чтобы изображение на экране было прямым, диапозитивы или киноленту устанавливают в аппарат в перевернутом виде.

4.    Предмет находится в двойном фокусе линзы. 2F.

В этом случае линза дает (рис. 175) перевернутое, действительное изображение предмета такого же размера, как и он сам. Это изображение размещено в ее двойном фокусе 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

5.    Если предмет находится за двойным фокусом линзы 2F (рис. 176), линза дает уменьшенное, перевернутое и действительное изображение предмета, которое размещено между ее главным фокусом F и двойным фокусом 2F с противоположной относительно предмета стороны линзы.
Линзы в физике - виды, формулы и определения с примерами

Такое изображение используют в фотоаппарате.

Пример №4

Почему не рекомендуется поливать растения днем, когда они освещены солнечными лучами, особенно те, на листьях которых остаются капельки воды?

Ответ: потому что капельки играют роль линз, фокусирующих солнечные лучи, и растения получают ожоги.

Пример №5

На рисунке 177 показан ход лучей в линзах. Какие это линзы?
Линзы в физике - виды, формулы и определения с примерами
Ответ: (слева направо) источник света, собирательная линза, рассеивающая линза.

Простые оптические приборы

Знания законов отражения и преломления света в зеркалах и линзах дали возможность создать ряд оптических приборов, имеющих важное значение для современной науки и техники. Их используют специалисты разных отраслей. Это микроскоп биолога и фотоаппарат журналиста, кинокамера оператора и телескоп астронома, перископ подводника и т. п. Кроме того, оптическими приборами являются очки миллионов людей разного возраста и специальностей.

Самый простой оптический прибор — лупа.

Лупа (франц. loupe — «нарост») — оптический прибор, являющийся собирательной линзой, применяется для рассматривания мелких деталей, плохо заметных невооруженным глазом.

Общий вид луп разного вида представлен на рисунке 181, а.

Чтобы увидеть изображение предмета увеличенным, лупу следует разместить так, чтобы данный предмет был между лупой и ее фокусом (рис. 181, б).

Лучи, падающие на лупу от крайних точек предмета, преломляются в линзе и сходятся.
Линзы в физике - виды, формулы и определения с примерами

Каким же образом все это видит наш глаз?

Оказывается, наш глаз не замечает преломления лучей. Лучи, идущие от предмета сквозь линзу, воспринимаются глазом как прямолинейные. Нам кажется, что лучи, идущие от лупы к глазу, продолжаются после лупы, не преломляясь. Благодаря этому мы видим предмет увеличенным по сравнению с его действительными размерами.

Лупа дает увеличение в 10-40 раз.

Значительное увеличение изображения предметов можно получить с помощью двух линз, размещенных в металлической трубе на определенном расстоянии друг от друга. Такой прибор называют микроскопом.

Микроскоп (греч. mikro — «маленький», skopeo — «смотрю») — оптический прибор для рассматривания мелких предметов и их деталей (рис. 182, а).

Ход лучей в микроскопе показан на рисунке 182, б. Линзу, размещенную со стороны глаза, называют окуляром (лат. oculus — «глаз»), а линзу, размещенную со стороны данного предмета, называют объективом (лат. objectivus — «предметный»).

Первое увеличение изображения предмета дает объектив. Предмет в микроскопе размещается немного дальше от фокуса обьектива. В результате этого выходит увеличенное и перевернутое изображение предмета.
Линзы в физике - виды, формулы и определения с примерами

Это изображение увеличивается еще раз линзой-окуляром: оно будто служит для окуляра предметом. Окуляр, подобно лупе, размещают на расстоянии (меньше фокусного) от промежуточного изображения. В итоге мы получаем новое, более увеличенное изображение.

Если, например, объектив микроскопа дает изображение предмета, увеличенное в 20 раз, а окуляр увеличивает это изображение в 15 раз, то общее увеличение, которое дает микроскоп, будет уже 20*15 = 300 раз.

Современные электронные микроскопы дают увеличение в десятки тысяч раз. Например, так выглядят под микроскопом бактерии, увеличенные в 25 000 раз (рис. 183).

Посмотрите еще раз на схему микроскопа (рис. 182, б). Объектив микроскопа — линза — имеет меньшее фокусное расстояние, чем окуляр этого прибора. А что будет, если мы возьмем объектив, который имеет большее фокусное расстояние, чем окуляр?

В этом случае мы получим новый прибор, который называют телескопом, или рефрактором (лат. refringo — «преломляю»). Такой телескоп создал еще в 1611 г. немецкий астроном Иоганн Кеплер. А вообще первый телескоп на основе зрительной трубы построил в 1609 г. Галилео Галилей.

Телескоп (греч. tele — «далеко», skopeo — «смотреть») — оптический прибор для астрономических исследований космических объектов (рис. 184).

Прохождение в телескопе лучей от небесного тела показано на рисунке 185.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами

Как следует из рисунка, изображение небесного тела в телескопе мы видим под большим углом зрения, в отличие от невооруженного глаза. Окуляр телескопа, как и окуляр микроскопа, действует как обычная лупа.

Следует отметить, что, рассматривая с помощью телескопа отдаленные предметы на Земле, мы видим их перевернутыми. Однако для наблюдения за небесными телами это обстоятельство не столь важно.

Самый большой телескоп-рефрактор установлен в Йеркской обсерватории университета в Чикаго (США). Его объектив в диаметре достигает 102 см.

Другой тип — это телескопы-рефлекторы (лат. reflecto — «отображаю»). В таких телескопах, кроме преломления лучей света, используют другое их свойство — способность отражаться от зеркальных поверхностей.

Изображение небесного тела отражается с помощью маленького плоского зеркальца и рассматривается с помощью окуляра (рис. 186), который увеличивает отраженное изображение.

Линзы в физике - виды, формулы и определения с примерами

Первый рефлектор с диаметром зеркала 2,5 см и фокусным расстоянием 16,5 см построил в 1668 г. Исаак Ньютон. Сегодня самым большим в мире является зеркальный телескоп HESS II, установленный в Намибии, его площадь достигает 600 Линзы в физике - виды, формулы и определения с примерами. Устройство предназначено для изучения происхождения космических лучей.

Линзы в физике - виды, формулы и определения с примерами

Фотоаппарат — это оптический прибор, с помощью которого на цифровом устройстве (англ, digital device — «техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии»), фотопленке, фотопластинке, фотобумаге получают изображение предмета.

Сегодня существует много различных типов фотоаппаратов (рис. 187, а). Они отличаются формой и размерами, но их строение и основные части одинаковы. Ход лучей в фотоаппарате изображен на рисунке 187, б.

  • Заказать решение задач по физике

Подробное объяснение формулы тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 58).

Линзы в физике - виды, формулы и определения с примерами

Основные типы линз и лучи, используемые для построения изображений в них, даны на рисунках 59, 60.
Линзы в физике - виды, формулы и определения с примерамиЛинзы в физике - виды, формулы и определения с примерами
Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием I м: 1 дптр= 1 Линзы в физике - виды, формулы и определения с примерами.

Между фокусным расстоянием F тонкой линзы, расстоянием от предмета до линзы d и расстоянием от линзы до изображения f существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы, рассматривая ход характерных лучей (рис. 61).

Линзы в физике - виды, формулы и определения с примерами

Пусть расстояние от предмета до линзы d, расстояние от линзы до изображения f, фокусное расстояние линзы F, расстояние от предмета до переднего главного фокуса а, расстояние от заднего главного фокуса до изображения а’.

Из рисунка 61 видно, что Линзы в физике - виды, формулы и определения с примерами следовательно

Линзы в физике - виды, формулы и определения с примерами

Из формул (1) и (2) следует формула Ньютона:

Линзы в физике - виды, формулы и определения с примерами

С учетом того, что d = а + F, f = а’ + F, получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h. Из выражения (3) находим

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы тонкой линзы следует запомнить правило знаков:

  • для собирающей линзы, действительных источника и изображения величины F, d, f считают положительными;
  • для рассеивающей линзы, мнимых источника и изображения величины F, d,f считают отрицательными.

Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F< 0 — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды.

В современных оптических приборах используются системы линз для улучшения качества изображений. Оптическая сила D системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами:

Линзы в физике - виды, формулы и определения с примерами

Пример №6

Предмет расположен на расстоянии d = 0,15 м от рассеивающей линзы с фокусным расстоянием F=-0,30 м. На каком расстоянии f от линзы получается изображение данного предмета?

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Отрицательное значение f соответствует мнимому изображению предмета.

Ответ: f =-0,10 м, изображение мнимое.

Пример №7

На каком расстоянии d от рассеивающей линзы с оптической силой D = -4 дптр надо поместить предмет, чтобы его мнимое изображение получилось в k = b раз меньше (Г = Линзы в физике - виды, формулы и определения с примерами) самого предмета?

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для увеличения

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Из формулы линзы

Линзы в физике - виды, формулы и определения с примерами

с учетом выражения для f получаем

Линзы в физике - виды, формулы и определения с примерами

Ответ: d= 1 м.

Пример №8

Определите фокусное расстояние F собирающей линзы, дающей мнимое изображение предмета, помещенного перед ней на расстоянии d- 0,4 м, если расстояние от линзы до изображения f =-1,2 м. 

Линзы в физике - виды, формулы и определения с примерами
Решение

Из формулы тонкой линзы

Линзы в физике - виды, формулы и определения с примерами

находим

Линзы в физике - виды, формулы и определения с примерами

Ответ: F= 0,6 м.

Разбираем формулу тонкой линзы

Линза называется собирающей, если после преломления в ней параллельный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей (рис. 80).

Линзы в физике - виды, формулы и определения с примерами

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силы — 1 диоптрия (1 дптр).

1 дптр соответствует оптической силе линзы с фокусным расстоянием

Линзы в физике - виды, формулы и определения с примерами

Линзы можно представить в виде совокупности частей трехгранных призм. На рисунке 81, а изображена модель двояковыпуклой линзы, собранной из частей призм, повернутых основаниями к центру линзы. Соответственно, модель двояковогнутой линзы будет представлена частями призм, повернутых основаниями от центра линзы (рис. 81, б).

Преломляющие углы этих призм можно подобрать таким образом, чтобы падающие на нее параллельные лучи после преломления в призмах собрались в одной точке Линзы в физике - виды, формулы и определения с примерами

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев,
  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.
Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Между фокусным расстоянием тонкой линзы, расстоянием от предмета до линзы и от линзы до изображения существует определенная количественная зависимость, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей. Обратим внимание на луч, идущий через оптический центр Линзы в физике - виды, формулы и определения с примерами линзы, луч, параллельный главной оптической оси линзы, и луч, проходящий через главный фокус линзы.

Построим изображение предмета Линзы в физике - виды, формулы и определения с примерами в тонкой собирающей линзе (рис. 82). Пусть расстояние от предмета до линзы Линзы в физике - виды, формулы и определения с примерами расстояние от линзы до изображения Линзы в физике - виды, формулы и определения с примерами фокусное расстояние линзы Линзы в физике - виды, формулы и определения с примерами расстояние от предмета до переднего главного фокуса Линзы в физике - виды, формулы и определения с примерами расстояние от заднего главного фокуса до изображения Линзы в физике - виды, формулы и определения с примерами высота предмета Линзы в физике - виды, формулы и определения с примерами высота его изображения Линзы в физике - виды, формулы и определения с примерами

Из рисунка 82 видно, что Линзы в физике - виды, формулы и определения с примерами Из подобия треугольников следует:

Линзы в физике - виды, формулы и определения с примерами

Используя соотношения (1) и (2), получим:

Линзы в физике - виды, формулы и определения с примерами

Соотношение Линзы в физике - виды, формулы и определения с примерами называется формулой Ньютона.

С учетом того, что Линзы в физике - виды, формулы и определения с примерами (см. рис. 82), находим: Линзы в физике - виды, формулы и определения с примерами и подставляем в формулу (4):

Линзы в физике - виды, формулы и определения с примерами

Разделив обе части последнего выражения на Линзы в физике - виды, формулы и определения с примерами получаем формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

Линейным (поперечным) увеличением Г называется отношение линейного размера изображения Линзы в физике - виды, формулы и определения с примерами к линейному размеру предмета Линзы в физике - виды, формулы и определения с примерами Из соотношения (3) находим линейное увеличение тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами

В 1604 г. в исследовании «Дополнения к Вителло» И. Кеплер изучал преломление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

Заметим, что предмет или источник является мнимым, только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с Линзы в физике - виды, формулы и определения с примерами является собирающей (положительной), а с Линзы в физике - виды, формулы и определения с примерами — рассеивающей (отрицательной).

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).

В современных оптических приборах для улучшения качества изображений используются системы линз. Оптическая сила Линзы в физике - виды, формулы и определения с примерами системы тонких линз, сложенных вместе, равна сумме их оптических сил Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Пример №9

На каком расстоянии Линзы в физике - виды, формулы и определения с примерами от рассеивающей линзы с оптической силой Линзы в физике - виды, формулы и определения с примерами дптр надо поместить предмет, чтобы его мнимое изображение получилось в Линзы в физике - виды, формулы и определения с примерами раз меньше Линзы в физике - виды, формулы и определения с примерами самого предмета? Постройте изображение предмета.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Решение

Из формулы для линейного увеличения

Линзы в физике - виды, формулы и определения с примерами

находим:

Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы ( рис. 83) с учетом правила знаков:

Линзы в физике - виды, формулы и определения с примерами

и с учетом выражения для Линзы в физике - виды, формулы и определения с примерами получаем:

Линзы в физике - виды, формулы и определения с примерами

Ответ: Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами

Изучаем линзы

Скорее всего, вы пользовались фотоаппаратом, знакомы с биноклем, подзорной трубой, телескопом, на уроках биологии работали с микроскопом. Некоторые из вас носят очки. Все эти устройства имеют общее — их основной частью является линза. О том, какое значение имеют данные устройства в жизни человека, вы можете рассказать и сами, а вот о том, что такое линза, какие существуют виды линз и каковы их свойства, вы узнаете из этого параграфа.

Линза — прозрачное тело, ограниченное с двух сторон сферическими поверхностями*.

Линзы в физике - виды, формулы и определения с примерамиОдна из поверхностей линзы может быть плоскостью, поскольку плоскость можно рассматривать как сферу бесконечного радиуса. Линзы также бывают цилиндрическими, но встречаются такие линзы редко.

По форме линзы делят на выпуклые (рис. 14.1) и вогнутые (рис. 14.2).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.1. Толщина выпуклой линзы посредине больше, чем у краев: а — вид; б — разные выпуклые линзы в разрезе

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.2. Толщина вогнутой линзы посредине меньше, чем у краев: а — вид; б — разные вогнутые линзы в разрезе

Если толщина Линзы в физике - виды, формулы и определения с примерами линзы во много раз меньше радиусов сферических поверхностей, ограничивающих линзу, такую линзу называют тонкой. Далее мы будем рассматривать только тонкие линзы. Прямую, которая проходит через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы (рис. 14.3).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.3. Тонкая сферическая линза: Линзы в физике - виды, формулы и определения с примерами — главная оптическая ось линзы; Линзы в физике - виды, формулы и определения с примерами — толщина линзы; Линзы в физике - виды, формулы и определения с примерами— радиусы сферических поверхностей, ограничивающих линзу; Линзы в физике - виды, формулы и определения с примерами — оптический центр линзы

Если на линзу направить пучок световых лучей, они преломятся на ее поверхностях и изменят свое направление. В то же время на главной оптической оси линзы есть точка, которую луч света проходит практически не изменяя своего направления. Эту точку называют оптическим центром линзы (см. рис. 14.3).

Направим на линзу пучок лучей, параллельных ее главной оптической оси. Если лучи, пройдя сквозь линзу, идут сходящимся пучком, такая линза — собирающая. Точка F, в которой пересекаются преломленные лучи, — действительный главный фокус линзы (рис. 14.4).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.4. Ход лучей после преломления в собирающей линзе. Точка F — действительный главный фокус линзы

Линза является рассеивающей, если лучи, параллельные ее главной оптической оси, пройдя сквозь линзу, идут расходящимся пучком. Точку F, в которой пересекаются продолжения преломленных лучей, называют мнимым главным фокусом линзы (рис. 14.5).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.5. Ход лучей после преломления в рассеивающей линзе. Точка F — мнимый главный фокус линзы

Обратите внимание: любой пучок параллельных лучей, даже если эти лучи не параллельны главной оптической оси, после преломления в собирающей линзе всегда пересекаются в одной точке (рис. 14.6) (если линза рассеивающая, в одной точке пересекаются продолжения преломленных лучей).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.6. Ход параллельных лучей после преломления в собирающей линзе

Если оптическая плотность материала, из которого изготовлена линза, больше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет собирать лучи (будет собирающей), а вогнутая линза будет рассеивать лучи (будет рассеивающей) (см. рис. 14.4, 14.5).

Если оптическая плотность материала, из которого изготовлена линза, меньше оптической плотности среды Линзы в физике - виды, формулы и определения с примерами то выпуклая линза будет рассеивающей (рис. 14.7, а), а вогнутая линза — собирающей (рис. 14.7, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.7. Выпуклая (а) и вогнутая (б) воздушные линзы в воде

Определение оптической силы линзы

Любая линза имеет два главных фокуса*, расположенных на одинаковом расстоянии от оптического центра линзы (см. рис. 14.8).

Линзы в физике - виды, формулы и определения с примерамиДалее главный фокус линзы, как правило, будем называть фокусом линзы.

Линзы в физике - виды, формулы и определения с примерами

Рис. 14.8. Чем меньше радиусы R сферических поверхностей, ограничивающих линзу, тем сильнее эта линза преломляет свет, а значит, тем меньше ее фокусное расстояние F

Расстояние от оптического центра линзы до главного фокуса называют фокусным расстоянием линзы.

Фокусное расстояние, как и фокус, обозначают символом F. Единица фокусного расстояния в СИметр:

Линзы в физике - виды, формулы и определения с примерами

Фокусное расстояние собирающей линзы договорились считать положительным, а рассеивающей — отрицательным. Очевидно, что чем сильнее преломляющие свойства линзы, тем меньше по модулю ее фокусное расстояние (рис. 14.8).

Физическую величину, которая характеризует линзу и является обратной фокусному расстоянию линзы, называют оптической силой линзы.

Оптическую силу линзы обозначают символом D и вычисляют по формуле:

Линзы в физике - виды, формулы и определения с примерами

Единица оптической силыдиоптрия: Линзы в физике - виды, формулы и определения с примерами

1 диоптрияэто оптическая сила линзы, фокусное расстояние которой равно 1 м. Оптическая сила собирающей линзы положительна, а рассеивающей линзы — отрицательна.

Подводим итоги:

Прозрачное тело, ограниченное с двух сторон сферическими поверхностями, называют линзой. Линза является собирающей, если пучок параллельных лучей, падающий на нее, после преломления в линзе пересекается в одной точке (эта точка — действительный фокус линзы). Линза является рассеивающей, если параллельные лучи, падающие на нее, после преломления идут расходящимся пучком, а продолжения преломленных лучей пересекаются в одной точке (эта точка — мнимый фокус линзы).

Физическую величину, которая характеризует преломляющие свойства линзы и обратна ее фокусному расстоянию, называют оптической силой линзы: Линзы в физике - виды, формулы и определения с примерами Единица оптической силы линзы — диоптрия Линзы в физике - виды, формулы и определения с примерами

Построение изображений в линзах

Основное свойство линз заключается в том, что линзы дают изображение точки, а соответственно, и предмета (как совокупности точек) (рис. 15.1). В зависимости от расстояния между предметом и линзой изображение предмета может быть больше или меньше, чем сам предмет, мнимым или действительным. Выясним, при каких условиях с помощью линзы образуются те или иные изображения, и рассмотрим приемы их построения.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.1. Получение изображения пламени свечи с помощью собирающей линзы

Любой предмет можно представить как совокупность точек. Каждая точка предмета излучает (или отражает) свет во всех направлениях. В создании изображения участвует множество лучей, однако для построения изображения некоторой точки S достаточно найти точку пересечения любых двух лучей, выходящих из точки S и проходящих через линзу. Обычно для этого выбирают два из трех «удобных лучей» (рис. 15.2).

Точка S1 будет действительным изображением точки S, если в точке пересекаются сами преломленные лучи (рис. 15.2, а). Точка будет мнимым изображением точки S, если в точке пересекаются продолжения преломленных лучей (рис. 15.2, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.2. Три самых простых в построении луча («удобные лучи»):

  1. луч, проходящий через оптический центр О линзы, не преломляется и не изменяет своего направления;
  2. луч, параллельный главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы, после преломления в линзе идет через фокус Линзы в физике - виды, формулы и определения с примерами или через фокус Линзы в физике - виды, формулы и определения с примерами идет его продолжение (б);
  3. луч, проходящий через фокус Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идет параллельно главной оптической оси Линзы в физике - виды, формулы и определения с примерами линзы (а, б)

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.3. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен за двойным фокусом линзы; б — ход лучей в фотоаппарате

Строим изображение предмета, которое даёт линза:

Рассмотрим все возможные случаи расположения предмета АВ относительно собирающей линзы и докажем, что размеры и вид изображения зависят от расстояния между предметом и линзой.

1. Предмет расположен за двойным фокусом собирающей линзы (рис. 15.3, а). Сначала построим изображение точки Линзы в физике - виды, формулы и определения с примерами Для этого воспользуемся двумя лучами — 1 и 2. После преломления в линзе они пересекутся в точке Линзы в физике - виды, формулы и определения с примерами Значит, точка Линзы в физике - виды, формулы и определения с примерами является действительным изображением точки Линзы в физике - виды, формулы и определения с примерами Для построения изображения точки Линзы в физике - виды, формулы и определения с примерами опустим из точки Линзы в физике - виды, формулы и определения с примерами перпендикуляр на главную оптическую ось Линзы в физике - виды, формулы и определения с примерами Точка Линзы в физике - виды, формулы и определения с примерами пересечения перпендикуляра и оси I является изображением точки Линзы в физике - виды, формулы и определения с примерами

Итак, Линзы в физике - виды, формулы и определения с примерами — изображение предмета Линзы в физике - виды, формулы и определения с примерами Это изображение действительное, уменьшенное, перевернутое. Такое изображение получается, например, на сетчатке глаза или пленке фотоаппарата (рис. 15.3, б).

2. Предмет расположен между фокусом и двойным фокусом собирающей линзы (рис. 15.4, а). Изображение предмета действительное, увеличенное, перевернутое. Такое изображение позволяет получить на экране проекционная аппаратура (рис. 15.4, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.4. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между фокусом и двойным фокусом линзы; б — ход лучей в проекционном аппарате

3. Предмет расположен между фокусом и собирающей линзой (рис. 15.5, а). Лучи, вышедшие из точки Линзы в физике - виды, формулы и определения с примерами после преломления в линзе идут расходящимся пучком. Однако их продолжения пересекаются в точке Линзы в физике - виды, формулы и определения с примерами

В данном случае изображение предмета является мнимым, увеличенным, прямым. Изображение расположено по ту же сторону от линзы, что и предмет, поэтому мы не можем увидеть изображение предмета на экране, но видим его, когда смотрим на предмет через линзу. Именно такое изображение дает короткофокусная собирающая линза — лупа (рис. 15.5, б).

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.5. а — построение изображения Линзы в физике - виды, формулы и определения с примерами предмета Линзы в физике - виды, формулы и определения с примерами в собирающей линзе: предмет Линзы в физике - виды, формулы и определения с примерами расположен между линзой и ее фокусом; б — с помощью

4. Предмет расположен на фокусном расстоянии от собирающей линзы. После преломления все лучи идут параллельным пучком (рис. 15.6), следовательно, в данном случае ни действительного, ни мнимого изображения мы не получим.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.6. Если предмет расположен в фокусе собирающей линзы, мы не получим его изображения

Внимательно рассмотрите рис. 15.7, на котором показано построение изображений предмета, полученных с помощью рассеивающей линзы. Видим, что рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение, расположенное по ту же сторону от линзы, что и сам предмет.

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.7. Рассеивающая линза всегда дает мнимое, уменьшенное, прямое изображение

Чаще всего предмет больше, чем линза, или часть линзы закрыта непрозрачным экраном (как, например, линза в объективе фотоаппарата). Изменяется ли при этом внешний вид изображения? Конечно же нет. Ведь от каждой точки предмета на линзу падает множество лучей, и все они собираются в соответствующей точке изображения. Если закрыть часть линзы, это приведет лишь к тому, что энергия, попадающая в каждую точку изображения, уменьшится. Изображение будет менее ярким, однако ни его вид, ни месторасположение не изменятся. Именно поэтому, строя изображение, мы можем использовать все «удобные лучи», даже те, которые не проходят через линзу (рис. 15.8).

Формула тонкой линзы:

Построим изображение предмета в собирающей линзе (рис. 15.9).

Рассмотрим прямоугольные треугольники Линзы в физике - виды, формулы и определения с примерами и Линзы в физике - виды, формулы и определения с примерами Эти треугольники подобны Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Линзы в физике - виды, формулы и определения с примерами поэтому Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

Приравняв правые части равенств (1) и (2), имеем Линзы в физике - виды, формулы и определения с примерами то есть Линзы в физике - виды, формулы и определения с примерамиили Линзы в физике - виды, формулы и определения с примерами Разделив обе части последнего равенства на Линзы в физике - виды, формулы и определения с примерами получим формулу тонкой линзы:

Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами

где Линзы в физике - виды, формулы и определения с примерами — оптическая сила линзы.

При решении задач следует иметь в виду:

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.8. Построение изображения предмета в случае, когда предмет значительно больше линзы

Линзы в физике - виды, формулы и определения с примерами

Рис. 15.9. К выведению формулы тонкой линзы: h — высота предмета; Н — высота изображения; d — расстояние от предмета до линзы; f — расстояние от линзы до изображения; F — фокусное расстояние

Пример №10

Рассматривая монету с помощью лупы, оптическая сила которой +10 дптр, мальчик расположил монету на расстоянии 6 см от лупы. Определите: 1) фокусное расстояние линзы; 2) на каком расстоянии от лупы находится изображение монеты; 3) какое изображение дает лупа — действительное или мнимое; 4) какое увеличение дает лупа.

Анализ физической проблемы. Лупу можно считать тонкой линзой, поэтому воспользуемся формулой тонкой линзы. Фокусное расстояние найдем, воспользовавшись определением оптической силы линзы.

Дано:

Линзы в физике - виды, формулы и определения с примерами

Найти:

Линзы в физике - виды, формулы и определения с примерами

Поиск математической модели, решение

По определению Линзы в физике - виды, формулы и определения с примерами

По формуле тонкой линзы: Линзы в физике - виды, формулы и определения с примерами или Линзы в физике - виды, формулы и определения с примерами Следовательно, Линзы в физике - виды, формулы и определения с примерами

Зная расстояние Линзы в физике - виды, формулы и определения с примерами определим увеличение Линзы в физике - виды, формулы и определения с примерами

Найдем значения искомых величин:

Линзы в физике - виды, формулы и определения с примерами

Знак «-» перед значением Линзы в физике - виды, формулы и определения с примерами говорит о том, что изображение мнимое.

Ответ: Линзы в физике - виды, формулы и определения с примерами изображение мнимое; Линзы в физике - виды, формулы и определения с примерами

Подводим итоги:

В зависимости от типа линзы (собирающая или рассеивающая) и месторасположения предмета относительно данной линзы получают разные изображения предмета:

Расположение предмета Характеристика изображения в линзе
собирающей рассеивающей
За двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, уменьшенное, перевернутое мнимое, уменьшенное, прямое
В двойном фокусе линзы Линзы в физике - виды, формулы и определения с примерами действительное, равное, перевернутое
Между фокусом и двойным фокусом линзы Линзы в физике - виды, формулы и определения с примерами действительное, увеличенное, перевернутое
В фокусе линзы Линзы в физике - виды, формулы и определения с примерами изображения нет
Между линзой и фокусом Линзы в физике - виды, формулы и определения с примерами мнимое, увеличенное, прямое

Расстояние Линзы в физике - виды, формулы и определения с примерами от предмета до линзы, расстояние Линзы в физике - виды, формулы и определения с примерами от линзы до изображения и фокусное расстояние Линзы в физике - виды, формулы и определения с примерами связаны формулой тонкой линзы: Линзы в физике - виды, формулы и определения с примерами

  • Глаз как оптическая система
  • Звук в физике и его характеристики
  • Звуковые и ультразвуковые колебания
  • Инерция в физике
  • Дифракция света
  • Принцип Гюйгенса — Френеля
  • Прохождение света через плоскопараллельные пластинки и призмы
  • Поляризация света

Понравилась статья? Поделить с друзьями:
  • Как составить претензию за грузоперевозку
  • Как найти туфли с картинки
  • Найти песню как ты там живешь
  • Как найти трехзначное число в excel
  • Как найти тематические сайты