Как найти литий химия

Физические свойства

Литий это щелочной металл, серебристо-белого цвета. Самый легкий из металлов, мягкий, низкая температура плавления.

Способ получения 

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Качественная реакция

Качественная реакция на литий — окрашивание пламени солями лития в карминно-красный цвет.

Химические свойства

Литий — активный металл; на воздухе  реагирует с кислородом и азотом, и покрывается оксидно-нитридной пленкой. Воспламеняется при умеренном нагревании; окрашивает пламя газовой горелки в темно-красный цвет.

1. Литий — сильный восстановитель. Поэтому он реагирует почти со всеми неметаллами.

1.1. Литий легко реагирует с галогенами с образованием галогенидов:

2Li  +  I2  =  2LiI

1.2. Литий реагирует с серой с образованием сульфида лития:

2Li  +  S  =  Li2S

1.3. Литий активно реагирует с фосфором и водородом. При этом образуются бинарные соединения — фосфид лития и гидрид лития:

3Li    +    P    =   Li3P

2Li  +  H2  =  2LiH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

6Li   +  N2  =  2Li3N

1.5. Литий реагирует с углеродом с образованием карбида:

2Li   +   2C    =    Li2C2

1.6. При взаимодействии с кислородом литий образует оксид.

4Li   +   O2   =   2Li2O

2. Литий активно взаимодействует со сложными веществами:

2.1. Литий бурно реагирует с водой. Взаимодействие лития с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

2Li0 + H2+O = 2Li+OH + H20

Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Литий взаимодействует с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, литий бурно реагирует с соляной кислотой:

2Li  +  2HCl  =  2LiCl  +  H2

2.3. При взаимодействии лития с концентрированной серной кислотой выделяется сероводород.

Например, при взаимодействии лития с концентрированной серной кислотой образуется сульфат лития, диоксид серы и вода:

2Li + 3H2SO4(конц.) = 2LiHSO4 + SO2↑ +2H2O

2.4. Литий реагирует с азотной кислотой:

3Li + 4HNO3(разб.) = 3LiNO3 + NO↑ +2H2O

2.5. Литий может реагировать даже с веществами, которые проявляют очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртамифенолом и органическими кислотами.

Например, при взаимодействии лития с аммиаком образуются амиды и водород:

2Li + 2NH3 = 2LiNH2 + H2

2.6. В расплаве литий может взаимодействовать с некоторыми солями. Обратите внимание! В растворе литий будет взаимодействовать с водой, а не с солями других металлов.

Например, литий взаимодействует в расплаве с хлоридом алюминия :

3Li + AlCl3 → 3LiCl + Al

Литий
Очень лёгкий, очень мягкий металл серебристо-белого цвета
Литий

Литий

Название, символ, номер литий / Lithium (Li), 3
Атомная масса
(молярная масса)
[6,938; 6,997]а. е. м. (г/моль)
Электронная конфигурация [He] 2s1
Радиус атома 145 пм
Ковалентный радиус 134 пм
Радиус иона 76 (+1e) пм
Электроотрицательность 0,98 (шкала Полинга)
Электродный потенциал -3,06В
Степени окисления +1
Энергия ионизации
(первый электрон)
 519,9 (5,39) кДж/моль (эВ)
Плотность (при н. у.) 0,534 г/см³
Температура плавления 453,69 K (180,54 °C, 356,97 °F)
Температура кипения 1613 K (1339,85 °C, 2443,73 °F)
Уд. теплота плавления 2,89 кДж/моль
Уд. теплота испарения 148 кДж/моль
Молярная теплоёмкость 24,86 Дж/(K·моль)
Молярный объём 13,1 см³/моль
Структура решётки кубическая объёмноцентрированная
Параметры решётки 3,490 Å
Температура Дебая 400 K
Теплопроводность (300 K) 84,8 Вт/(м·К)
Номер CAS 7439-93-2

Литий (Li, лат. lithium) — химический элемент первой группы, второго периода периодической системы с атомным номером 3. Как простое вещество представляет собой мягкий щелочной металл серебристо-белого цвета.

Содержание

  • 1 История и происхождение названия
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 Нахождение в природе
    • 4.1 Геохимия лития
    • 4.2 Месторождения
    • 4.3 Изотопы лития
    • 4.4 В космосе
  • 5 Получение
    • 5.1 Добыча
  • 6 Применение
    • 6.1 Термоэлектрические материалы
    • 6.2 Химические источники тока
    • 6.3 Лазерные материалы
    • 6.4 Окислители
    • 6.5 Дефектоскопия
    • 6.6 Пиротехника
    • 6.7 Сплавы
    • 6.8 Электроника
    • 6.9 Металлургия
      • 6.9.1 Металлургия алюминия
    • 6.10 Ядерная энергетика
      • 6.10.1 Литий-6
      • 6.10.2 Литий-7
    • 6.11 Сушка газов
    • 6.12 Медицина
    • 6.13 Смазочные материалы
    • 6.14 Регенерация кислорода в автономных аппаратах
    • 6.15 Силикатная промышленность
    • 6.16 Прочие области применения
  • 7 Биологическое значение лития
  • 8 Цены

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом Иоганном Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите K2Li3Al5[Si6O20](F,OH)4. Металлический литий впервые получил Гемфри Дэви в 1818 году.

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра. Кристаллическая решётка относится к пространственной группе P 63/mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды). Вследствие своей низкой плотности литий всплывает не только в воде, но и, например, в керосине.

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Литий

Карминово-красное окрашивание пламени солями лития

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранят в керосине (к тому же плотность лития столь мала, что он будет в нём плавать); он может непродолжительное время храниться на воздухе.

Во влажном воздухе медленно реагирует с азотом и другими газами, находящимися в воздухе, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3.

 6Li + N2 ⟶ 2Li3N

 2Li + 2H2O ⟶ 2LiOH + H2

Поэтому длительно литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках.

В кислороде при нагревании горит, превращаясь в оксид Li2O.

 4Li + O2 ⟶ 2Li2O

Интересная особенность лития в том, что в интервале температур от 100 °C до 300 °C он покрывается плотной оксидной плёнкой и в дальнейшем не окисляется. В отличие от остальных щелочных металлов, дающих стабильные надпероксиды и озониды; надпероксид и озонид лития — нестабильные соединения.

В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура самовоспламенения находится в районе 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.

Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H2.

 2Li + 2H2O → 2LiOH + H2

Реагирует также с этиловым спиртом (с образованием этанолята):

 2Li + 2C2H5OH ⟶ 2C2H5OLi + H2

Вступает в реакцию с водородом (при 500—700 °C) с образованием гидрида лития:

 2Li + H2 ⟶ 2LiH

Реагирует с аммиаком при нагревании, при этом сначала образует амид лития (220 °C), а затем имид лития (400 °C):

 2Li + 2NH3 ⟶ 2LiNH2 + H2 

 2Li + NH3 ⟶ Li2NH + H2 

Реагируя с галогенами (с йодом — только при нагревании, выше 200 °C) образует соответствующие галогениды:

 2Li + F2 ⟶ 2LiF

 2Li + Cl2 ⟶ 2LiCl 

 2Li + Br2 ⟶ 2LiBr

 2Li + I2 ⟶ 2LiI 

При 130 °C реагирует с серой с образованием сульфида:

 2Li + S ⟶ Li2S

В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид):

 2Li + 2C ⟶ Li2C2 

При 600—700 °C литий реагирует с кремнием с образованием силицида:

 4Li + Si ⟶ Li4Si 

Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор.

В водном растворе ион лития имеет самый низкий стандартный электродный потенциал (−3,045 В) из-за малого размера и высокой степени гидратации иона лития.

Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.

Нахождение в природе

Геохимия лития

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.

Основные минералы лития — слюда лепидолит — KLi1,5Al1,5[Si3AlO10](F, OH)2 и пироксен сподумен — LiAl[Si2O6]. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространённых породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносолёных озёр.

Месторождения

Месторождения лития известны в Чили, Боливии (Солончак Уюни — крупнейшее в мире), США, Аргентине, Конго, Китае (озеро Чабьер-Цака), Бразилии, Сербии, Австралии.

В России более 50 % запасов сосредоточено в редкометалльных месторождениях Мурманской области.

Изотопы лития

Основная статья: Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6Li (7,5 %) и 7Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов (4Li − 12Li) и два ядерных изомера (10m1Li и 10m2Li). Наиболее устойчивый из них, 8Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3Li (трипротон), по-видимому, не существует как связанная система.

7Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть в период от 1 секунды до 3 минут после Большого Взрыва) в количестве не более 10−9 от всех элементов. Некоторое количество изотопа 6Li, как минимум в десять тысяч раз меньшее, чем 7Li, также образовано в первичном нуклеосинтезе.

Примерно в десять раз больше 7Li образовались в звёздном нуклеосинтезе. Литий является промежуточным продуктом реакции ppII, но при высоких температурах активно преобразуется в два ядра гелия-4 (через 8Be).

В космосе

Аномально высокое содержание лития наблюдается в звёздных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау — Торна — Житкова.

Также имеется большое количество звёзд-гигантов с необычно высоким содержанием лития, что объясняется попаданием лития в атмосферу звёзд при поглощении ими экзопланет-гигантов.

Получение

Сырьё

Исходным сырьём для лития служат два источника: минеральное сырьё (например, сподумен) и солевые растворы из соляных озёр, богатые солями лития. В обоих случаях результатом работы является карбонат лития Li2CO3.

Сподумен (силикат лития и алюминия) можно перерабатывать несколькими способами. Например, спеканием с сульфатом калия получают растворимый сульфат лития, который осаждают из раствора содой:

 Li2SO4 + Na2CO3 ⟶ Li2CO3↓ + Na2SO4 .

Солевые растворы предварительно выпаривают. В солевых растворах содержится хлорид лития LiCl. Однако вместе с ним содержатся большие количества других хлоридов. Для увеличения концентрации лития из выпаренного раствора осаждают карбонат лития Li2CO3, например по схеме

 2LiCl + Na2CO3 ⟶ Li2CO3↓ + 2NaCl.
Получение металла

Металлический литий чаще всего получают электролизом расплава солей или восстановлением из оксида.

Электролиз

При электролизе используется хлорид лития. Его получают из карбоната по схеме:

 Li2CO3 + 2HCl ⟶ 2LiCl + H2O + CO2.

Поскольку температура плавления хлорида лития близка к температуре кипения лития, применяют эвтектическую смесь с хлоридом калия или бария, что понижает температуру расплава и позволяет избавиться от необходимости улавливать пары металла. Расход электроэнергии до 14 кВт∙ч на 1 кг лития. На другом электроде получают газообразный хлор.

Восстановление

Поскольку литий — активный металл, его восстановление из оксидов или галогенидов возможно только при немедленном удалении лития из зоны реакции. В противном случае невозможно сместить баланс реакции в нужную сторону. Литий удаляют из зоны реакции путём поддержания температур, при которых литий испаряется и покидает зону реакции в виде паров. Другие реагенты при этом должны оставаться в расплаве. Для восстановления используются кремний или алюминий, например:

 2Li2O + Si ⟶  4Li↑ + SiO2
Рафинирование

Полученный литий очищают методом вакуумной дистилляции, последовательно выпаривая разные металлы из сплава при определённых температурах.

Добыча

В 2015 году в мире добыли 32,5 тыс. тонн лития и его соединений в пересчёте на металл. Крупнейшие страны по добыче — Австралия, Чили и Аргентина. В России собственная добыча лития была полностью утрачена после распада СССР, но в 2017 году Россия запустила экспериментальную установку, позволяющую добывать литий из бедных руд с небольшими затратами.

Большая часть добывается из естественных водных линз в толще соляных озёр, в насыщенных соляных растворах которых концентрируется хлорид лития. Раствор выкачивается и выпаривается на солнце, полученная смесь солей перерабатывается. Содержание лития в растворе колеблется от 0,01 % до 1 %. Также значительная доля добычи приходится на минеральное сырьё, например, минерал сподумен.

Применение

Литий

Оценка использования лития в мире в 2011 году:      Керамика и стекло (29 %)      Источники тока (27 %)      Смазочные материалы (12 %)      Непрерывная разливка стали (5 %)      Регенерация кислорода (4 %)      Полимеры (3 %)      Металлургия алюминия (2 %)      Фармацевтика (2 %)      другое (16 %)

Термоэлектрические материалы

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530 мкВ/К).

Химические источники тока

Из лития изготовляют аноды химических источников тока (аккумуляторов, например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов.

Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития).

Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом).

Лазерные материалы

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски и для изготовления оптики с широкой спектральной полосой пропускания.

Окислители

Перхлорат лития используют в качестве окислителя.

Дефектоскопия

Сульфат лития используют в дефектоскопии.

Пиротехника

Нитрат лития используют в пиротехнике для окрашивания огней в красный цвет.

Сплавы

Сплавы лития с серебром и золотом, а также медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике (из-за их лёгкости). На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придаёт им пластичность и стойкость против коррозии.

Электроника

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике.
Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп.
Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Металлургия

В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Литий иногда применяется для восстановления методами металлотермии редких металлов.

Металлургия алюминия

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия, и его потребление растёт с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5—3,5 кг на тонну выплавляемого алюминия).

Легирование алюминия

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются.

Наиболее известны системы легирования Al-Mg-Li (пример — сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример — сплав 1460, применяемый для изготовления ёмкостей для сжиженных газов).

Ядерная энергетика

Изотопы 6Li и 7Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафниат лития входит в состав специальной эмали, предназначенной для захоронения высокоактивных ядерных отходов, содержащих плутоний.

Литий-6

Применяется в термоядерной энергетике.

При облучении нуклида 6Li тепловыми нейтронами получается радиоактивный тритий 3H:

 36Li + 01n → 13H + 24He

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7

Применяется в ядерных реакторах. Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов жидкий литий-7 (часто в виде сплава с натрием или цезием) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF2) носит название «флайб» (FLiBe) и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и для производства трития.

Соединения лития, обогащённые по изотопу лития-7, применяются на реакторах PWR для поддержания водно-химического режима, а также в деминерализаторе первого контура. Ежегодная потребность США оценивается в 200—300 кг, производством обладают лишь Россия и Китай.

Сушка газов

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина

Основная статья: Препараты лития

Соли лития обладают нормотимическими и другими лечебными свойствами. Поэтому они находят применение в медицине.

Смазочные материалы

Стеарат лития («литиевое мыло») используется в качестве загустителя для получения пастообразных высокотемпературных смазок машин и механизмов. См. напр.: Литол, ЦИАТИМ-201.

Регенерация кислорода в автономных аппаратах

Гидроксид лития LiOH, пероксид Li2O2 применяются для очистки воздуха от углекислого газа; при этом последнее соединение реагирует с выделением кислорода (например, 2Li2O2 + 2CO2 → 2Li2CO3 + O2), благодаря чему используется в изолирующих противогазах, в патронах для очистки воздуха на подлодках, на пилотируемых космических аппаратах и т. д.

Силикатная промышленность

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий.

Прочие области применения

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Весьма перспективно использовать литий в качестве наполнителя поплавка батискафов — этот металл имеет плотность, почти в два раза меньшую, чем вода (точнее, 534 кг/м³), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий — щелочной металл, активно реагирующий с водой, следует каким-то образом надёжно разделить эти вещества, не допустить их контакта.

Из лития изготавливают аноды химических источников тока (например, литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, Литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран, пропиленкарбонат, метилформиат, ацетонитрил). Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов. Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития). Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом). Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO3 и танталат лития LiTaO3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике. Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп. Гидроксид лития добавляют в электролит щелочных аккумуляторов для увеличения срока их службы.

Биологическое значение лития

Литий в небольших количествах необходим организму человека (порядка 100 мкг/день для взрослых). Преимущественно в организме находится в щитовидной железе, лимфоузлах, сердце, печени, лёгких, кишечнике, плазме крови, надпочечниках.

Литий принимает участие в важных процессах:

  • участвует в углеводном и жировом обменах;
  • поддерживает иммунную систему;
  • предупреждает возникновение аллергии;
  • снижает нервную возбудимость.

Препараты лития широко используются в терапии психических расстройств.

Выделяется литий преимущественно почками.

Цены

По состоянию на конец 2007 — начало 2008 года, цены на металлический литий (чистота 99 %) составляли 63—66 долларов за 1 кг.

Литий

Ли́тий (лат. Lithium; обозначается символом Li) — элемент главной подгруппы первой группы, второго периода периодической системы химических элементов таблицы Менделеева, с атомным номером 3. Простое вещество литий (CAS-номер: 7439-93-2) — мягкий щелочной металл серебристо-белого цвета.

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F,OH)2. Металлический литий впервые получил Гемфри Дэви в 1825 году.
Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Нахождение в природе

Геохимия лития
Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.
Основные минералы лития — слюда лепидолит — KLi1.5Al1.5[Si3AlO10] (F, OH)2 и пироксен сподумен — LiAl [Si2O6]. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах.
Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития.
Другой тип месторождений лития — рассолы некоторых сильносоленых озёр.

Месторождения
Месторождения лития известны в России (более 50% запасов страны сосредоточено в редкометальных месторождениях Мурманской области), Боливии, Аргентине, Мексике, Афганистане, Чили, США, Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве, Конго.

Получение

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси).

2LiCl = 2Li + Cl2

В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.
Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды).
Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранится в керосине (к тому же плотность лития столь мала, что он будет в нём плавать) и может непродолжительное время храниться на воздухе.
Во влажном воздухе медленно реагирует с азотом, находящимся в воздухе, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3. В кислороде при нагревании горит, превращаясь в оксид Li2O. Есть интересная особенность, что в интервале температур от 100 °C до 300 °C литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется.
В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура возгорания находится около 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.
Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H2. Реагирует также с этиловым спиртом (с образованием алкоголята), с водородом (при 500—700 °C) с образованием гидрида лития, с аммиаком и с галогенами (с иодом — только при нагревании). При 130 °C реагирует с серой с образованием сульфида. В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид). При 600—700 °C литий реагирует с кремнием с образованием силицида. Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор.
Литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.


Источник: Википедия

Другие заметки по химии

Литий

Литий — химический элемент 2-го периода, 1-й группы в периодической системе Менделеева. Данное название получил от собственного местонахождения (в «камнях», от греч. λίθος), в дальнейшем название видоизменялось. Представляет собой щелочной металл с атомным номером 3.

 

Изотопы

Литий природного происхождения состоит из двух изотопов: 6Li и 7Li, являющихся стабильными. 7Li входит в несчетно малое число изотопов, произошедших при таком процессе, как нуклеосинтез. Также, у лития существует 7 радиоактивных изотопов искусственного происхождения и 2 атомных изомера. Большей устойчивость среди них обладает 8Li.

Физические свойства лития

  • Мягкий и пластичный металл с серебряно-белым окрасом
  • Имеет способность к обработке прессом или прокатом
  • При нормальных условиях имеет кристаллическую решетку в виде куба
  • Температура плавления-180,54°С, кипения-1340 °C
  • Низкая плотность
  • Из-за малых размеров атома, литий имеет специфические свойства смешивания с другими металлами.

Химические свойства

Литий является самым неактивным среди щелочных металлов, оттого при комнатной температуре почти не вступает в реакции даже с воздухом (сухим). С тесанием долгого времени и только во влажном воздухе взаимодействует с азотом и прочими газами. При нагревании вступает в реакцию с кислородом, образуя оксид лития. Интересен и тот факт, что в пределах температур от 100°С до 300°С литий покрывается плотным слоем оксидный пленки, что позволяет ему не окисляться в дальнейшем. Качественные реакции заключаются в том, что литий и его соединения придают пламени красноватый оттенок. Спокойно протекает реакция лития с водой. Реагирует с рядом веществ: водород, аммиак и галогены (в большинстве случаев только при наличии определенной температуры). Взаимодействует и с такими веществами, как сера,углерод и кремний. Реагирует также с этиловым спиртом.

Геохимия лития

По степени распространенности относится к литофильным элементам (составляющие ~93 % массы земной коры и ~97 % массы солевого состава океанической воды). Основные его минералы — пироксен сподумен и слюда лепидолит. В случае, если литий не образовывает отдельные минералы, он в широких масштабах замещает калий в породообразующих минералах.

Его месторождениями является не только земля, но и рассолы немногих озёр. Также, необычайно высока концентрация лития в звездных образованиях, состоящих из сверхгиганта.

Широко применение лития в данных сферах:

  1. Как источник тока
  2. Материалы для смазки
  3. Регенерация кислорода
  4. Металлургия алюминия
  5. Фармацевтика
  6. Керамика и стекло
  7. Полимеры
  8. Безостановочная разливка стали
  9. Окислители
  10. Пиротехника
  11. Сплавы
  12. Электроника и радиоэлектроника
  13. Ядерная энергетика
  14. Сушка газов
  15. Медицина
  16. Текстильная промышленность
  17. Пищевая промышленность.

Биологическая роль лития

Так как литий участвует во многих важнейших для человека биологических процессах, его наличие в организме как микроэлемента незаменимо и достигает до 200 мкг/день для взрослого человека. В большей степени располагается в лимфоузлах, сердце, печени, кишечнике, щитовидной железе, лёгких, надпочечниках и в плазме крови.

Процессы, в которых литий принимает активное участие:

  • Понижает уровень нервной возбудимости
  • Поддерживает в норме иммунную систему
  • Предупреждает возникновение аллергии
  • Принимает участие в обменах углеродами и жирами

Помимо этого, литейные препараты нашли весьма обширное применение в профилактике и лечении психических расстройств. Выведение же лития из организма человека происходит главным образом через почки.

По материалам сайта chemicalportal.ru 

Ли́тий (от греч. λίθος – камень; лат. Lithium), Li, химический элемент I группы короткой формы (1-й группы длинной формы) периодической системы, атомный номер 3, атомная масса 6,941 а. е. м.; относится к щелочным металлам. Природный литий состоит из двух стабильных изотопов 6Li (7,59 %) и 7Li (92,41 %), для которых сечения захвата тепловых нейтронов сильно различаются (9,45·10–26 м2 и 3,3·10–30 м2 соответственно). Искусственно получены радиоизотопы с массовыми числами 4–11. Литий открыт в 1817 г. шведским химиком А. Арфведсоном в минерале петалите. Металлический литий впервые получен в 1818 г. Г. Дэви.

Распространённость в природе

Содержание лития в земной коре составляет 6,5·10–3 % по массе; в свободном состоянии вследствие высокой химической активности не встречается. Литий накапливается преимущественно в пегматитах. Близость ионных радиусов Li+, Fe2+ и Mg2+ обусловливает вхождение Li+ в решётки магнезиально-железистых силикатов – пироксенов и амфиболов; литий содержится в виде изоморфной примеси в слюдах и др. Все минералы лития (силикаты, фосфаты и др.) редкие. Основные минералы: сподумен LiAl[Si2O6], лепидолит KLi1,5Al1,5[Si3AlO10](F,OH)2, петалит LiAl[Si4O10] и амблигонит LiAl[PO4](F,OH). Основные промышленные источники лития – пегматиты редких и рассеянных элементов (около 60 %) и рапа некоторых соляных озёр (до 40 %).

Образец литияОбразец лития.

Свойства

Конфигурация внешней электронной оболочки атома лития 2s1; в соединениях проявляет степень окисления +1; энергия ионизации Li0→Li+ 5,392 эВ, электроотрицательность по Полингу 0,98; атомный радиус 145 пм, ионный радиус Li+ (в скобках приведены координационные числа) 73 пм (4); 90 пм (6); 106 пм (8).

Компактный литий – серебристо-белый металл, быстро покрывающийся тёмно-серым налётом, состоящим из нитрида Li3N и оксида Li2O. При обычной температуре литий кристаллизуется в кубической объёмноцентрированной решётке; при температуре ниже –193 °C решётка гексагональная плотноупакованная; tпл 180,54 °C, tкип 1342 °C; самый лёгкий металл, плотность 0,534 г/см3 (25 °C); при 298 К температурный коэффициент линейного расширения 5,6·10–5 К–1, теплопроводность 85 Вт/(м·К), удельное электрическое сопротивление 9,4·10–8 Ом·м. Литий парамагнитен.

Литий – мягкий и пластичный металл, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку, твёрдость по Бринеллю 5 МПа (твёрже других щелочных металлов). Пары́ лития окрашивают пламя в тёмно-красный цвет.

Многие химические реакции лития протекают менее энергично, чем у других щелочных металлов. С сухим воздухом литий практически не реагирует при комнатной температуре, окисляется только при нагревании. Во влажном воздухе образуется преим. Li3N, при влажности воздуха более 80 % – LiOH и Li2CO3. С сухим O2 при комнатной температуре не реагирует, при нагревании горит голубым пламенем с образованием Li2O (пероксид Li2O2 получают только косвенным путём). С водой реагирует менее энергично, чем другие щелочные металлы, при этом образуется гидроксид LiOH и выделяется H2. Расплав лития при контакте с водой взрывается. Разбавленные минеральные кислоты энергично растворяют литий. В жидком аммиаке растворяется, образуя синий раствор. Литий непосредственно соединяется с F2, Cl2, Br2, при нагревании также и с I2, образуя галогениды (важнейший – хлорид лития LiCl). При нагревании (500 °С) взаимодействует с H2, образуя лития гидрид LiH, с серой – сульфид Li2S. С азотом литий медленно реагирует при комнатной температуре, энергично – при 250 °С с образованием нитрида Li3N. С фосфором литий непосредственно не взаимодействует, в специальных условиях могут быть получены фосфиды Li3P, LiP, Li2P2. Нагревание лития с углеродом приводит к образованию карбида Li2C2. Бинарные соединения лития – Li2O, LiH, Li3N, Li2C2, LiCl и др. и LiOH очень реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и др. Литий легко сплавляется со многими металлами (кроме Fe и Ni), образуя твёрдые растворы (с Mg, Zn, Al) или интерметаллиды (с Ag, Hg, Mg, Al и др.). Литий образует многочисленные литийорганические соединения, что определяет его важную роль в органическом синтезе.

Мелкая крошка лития вызывает ожоги влажной кожи и глаз. Загоревшийся литий засыпают NaCl или содой. Хранят литий в герметически закрытых жестяных коробках под слоем пастообразной массы из парафина и минеральные масла.

Наиболее важные соединения лития: лития карбонат Li2CO3 (бесцветные кристаллы с плотностью 2110 кг/м3 и tпл 732 °С, плохо растворимые в воде; используют для получения других соединений лития, а также в производстве ситаллов, керамики, электроизоляционного фарфора, эмалей, глазурей, в пиротехнике, в чёрной металлургии, в качестве добавки в электролит алюминиевых электролизёров и пр.); лития хлорид LiCl (бесцветные гигроскопичные кристаллы с плотностью 2070 кг/м3 и tпл 610 °С, растворимые в воде и во многих органических растворителях; используют как высаливающий и дегидратирующий агент, в промышленности – для получения металлического лития электролизом, для кондиционирования воздуха, в производстве флюсов для плавки металлов и пр.); лития фторид LiF (бесцветные кристаллы с плотностью 2600 кг/м3 и tпл 849 °С; используют как материал термолюминесцентных дозиметров, как оптический материал, компонент электролитов, эмалей, глазурей и пр.); лития гидроксид LiOH (бесцветные кристаллы с плотностью 1440 кг/м3 и tпл 473 °С, менее растворимы в воде, чем гидроксиды других щелочных металлов; используют как добавки к электролиту щелочных аккумуляторов, в качестве реагента для получения, например, олеатов, стеаратов и пальмитатов – компонентов консистентных смазок для авиации и военной техники с рабочим интервалом от –50 до +150 °С, как поглотитель CO2 на подводных лодках, самолётах и космических кораблях); лития ниобат (метаниобат лития) LiNbO3 (бесцветные кристаллы с плотностью 4628 кг/м3 и tпл 1260 °С; монокристаллы LiNbO3 выращивают по методу Чохральского и используют в качестве преобразователей энергии и звукопроводов, элементов модуляторов и другого в электрооптике, модуляторов лазерного излучения, пироэлектрических приёмников лучистой энергии и др.).

Получение

Соединения лития получают в результате гидрометаллургической переработки концентратов – продуктов обогащения литиевых руд. Основной промышленный минерал лития – сподумен – перерабатывают по известковому, сульфатному, сернокислотному и щёлочно-солевому методам. По известковому методу сподумен разлагается известняком при 1150–1200 °С:

Li2O⋅Al2O3⋅4SiO2+8CaCO3=Li2O⋅Al2O3+4(2CaO⋅SiO2)+8CO2.Li₂O· Al₂O₃· 4SiO₂ + 8CaCO_3= Li₂O· Al₂O₃ +4(2CaO·SiO₂) +8CO₂. Спек выщелачивают водой в присутствии избытка извести, при этом алюминат лития Li2O·Al2O3 разлагается: Li2O⋅Al2O3+Ca(OH)2=2LiOH+CaO⋅Al2O3.Li₂O·Al₂O₃ + Ca(OH)₂=2LiOH +CaO·Al₂O₃.По сульфатному методу сподумен (и другие алюмосиликаты) спекают с K2SO4 (при 1050–1100 °С): Li2O⋅Al2O3⋅4SiO2+K2SO4=Li2SO4+K2O⋅Al2O3⋅4SiO2,Li₂O· Al₂O₃· 4SiO₂ + K₂SO₄= Li₂SO₄ + K₂O· Al₂O₃· 4SiO₂,сульфат лития растворяют в воде и из раствора содой осаждают карбонат лития: Li2SO4+Na2CO3=Li2CO3+Na2SO4.Li₂SO₄ +Na₂CO₃=Li₂CO₃ +Na₂SO₄.По сернокислотному способу получают раствор сульфата лития, затем карбонат; реакция применима только для β-модификации сподумена. При щёлочно-солевом методе после разложения сподумена смесью CaCO3 и CaCl2 в раствор переходит LiCl.

Металлический литий получают электролизом расплавленной смеси LiCl и KCl при 400–460 °С с последующей очисткой от примесей (Na, K, Mg, Ca, Al, Fe) вакуумной дистилляцией, ректификацией или зонной плавкой. Металлический литий получают также вакуум-термическим восстановлением алюмината лития (алюминием при температуре 1150–1200 °С и давлении 15–66 Па), Li2O (кремнием или алюминием в присутствии CaO при температуре 950–1000 °С и давлении 0,1 Па), сподумена (ферросилицием в присутствии CaCO3 при температуре 1050–1150 °С и давлении 1,3–4,4 Па). Объём мирового производства лития около 7·106 т/год.

Применение

Важнейшая область применения лития – ядерная энергетика. Изотоп 6Li – единственный промышленный источник для производства трития. Жидкий литий используют в качестве теплоносителя в урановых реакторах, расплавленный 7LiF – как растворитель U и Th в гомогенных реакторах. Дейтерид 6Li – основа термоядерного оружия. Литий применяют в производстве анодов для химических источников тока на основе неводных и твёрдых электролитов; как компонент сплавов с Mg и Al, антифрикционных сплавов (баббитов), сплавов с Si для изготовления катодов в электровакуумных приборах; для раскисления, дегазации, рафинирования Cu, медных, цинковых и никелевых сплавов; как катализатор полимеризации (например, изопрена), ацетилирования и др. Соединения лития (например, карбонат) применяются для лечения психических заболеваний.

Дата публикации:  1 августа 2022 г. в 12:05 (GMT+3)

Понравилась статья? Поделить с друзьями:
  • Как найти объем фигуры полученной вращением
  • Как составить таблицу сложного процента
  • Как найти нужный сервер в майнкрафт
  • Как найти площадь бокового сечения конуса
  • Как составить кадровый архив