Как найти lобщ в физике

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

Eпот+Eкин=const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

2 (1).svg

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия 

3) Самая верхняя 

(h = max)

Eпот

 = 

m⋅g⋅h

 (max)

Eкин

 = 0

 Eполная

 =

m⋅g⋅h

2) Средняя 

(h = средняя)

Eпот

 =

m⋅g⋅h

Eкин

 =

m⋅v22

Eполная

=

m⋅v22

+

m⋅g⋅h

1) Самая нижняя 

(h = 0)

Eпот

 = 0

Eкин

 =

m⋅v22

 (max)

Eполная

 =

m⋅v22

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке», в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

3 (1).svg

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна (нулю). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна (нулю). Жёлто-зелёная линия изображает полную механическую энергию — сумму потенциальной и кинетической — в каждый момент движения и в каждой точке траектории. Как видно, она остаётся (неизменной) во всё время движения. Частота точек характеризует скорость движения — чем дальше точки расположены друг от друга, тем больше скорость движения.

4.svg

На графике видно, что значение потенциальной энергии в начальной точке совпадает со значением кинетической энергии в середине рампы.

В реальной ситуации всегда происходят потери энергии, так как часть энергии выделяется в виде тепла под влиянием сил трения и сопротивления. 

Поэтому для того, чтобы автомобиль двигался с равномерной и неизменной скоростью, необходимо постоянно подводить дополнительную энергию, которая компенсировала бы энергетические потери.

  1. Закон ома I=U/R из него U=I*R, при параллельном соединении сопротивлений 1/Rобщ=1/R1+1/R2+1/R3+1/R4, при последовательном соединении сопротивлений Rобщ=R1+R2+R3+R4, находим общее (эквивалентное) сопротивление и результат подставляем в закон ома и высчитываем ток или напряжение

    если ответ лучший отметь

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Как находить I общую и U общую, при параллельном и последовательном соединении? (Известно R общая) …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Физика » Как находить I общую и U общую, при параллельном и последовательном соединении? (Известно R общая)

Электрический заряд

q = ne

q — заряд
n — число частиц
e — заряд электрона



Найти

  • q
  • n
  • e


  Известно, что:


=
  



Вычислить ‘q

Закон Кулона

F = k* q1 * q2 / r^2

F — сила
k — коэффициент пропорциональности
q1, q2 — заряды
r — расстояние



Найти

  • F
  • k
  • q1
  • q2
  • r


  Известно, что:


=
  



Вычислить ‘F

Постоянная Кулона

k = 1 /(4π*ε_0)

k — коэффициент пропорциональности
ε_0 — электрическая постоянная



Найти

  • k
  • π
  • ε_0


  Известно, что:


=
  



Вычислить ‘k

Относительная диэлектрическая проницаемость

ε = F_vak / F_apl

ε — диэлектрическая постоянная (проницаемость)
F_вак — сила в вакууме
F_окр — сила в окружающей среде



Найти

  • ε
  • F_вак
  • F_окр


  Известно, что:


=
  



Вычислить ‘ε

Электрическое поле

E = F / q

E — электрическое поле
F — сила
q — заряд



Найти

  • E
  • F
  • q


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле точечного заряда в вакууме

E = k * q_0 / r^2

E — электрическое поле
k — коэффициент пропорциональности
q_0 — заряд
r — расстояние



Найти

  • E
  • k
  • q_0
  • r


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле точечного заряда в окружающей среде

E_apl = k * q_0 / (ε * r^2)

E — электрическое поле
k — коэффициент пропорциональности
q — заряд
ε — диэлектрическая постоянная (проницаемость)
r — расстояние



Найти

  • E_окр
  • k
  • q_0
  • ε
  • r


  Известно, что:


=
  



Вычислить ‘E_окр

Электрическое поле вне заряженной сферы

E = k σ 4 π R^2 / r^2

E — электрическое поле
k — коэффициент пропорциональности
σ — плотность поверхностного заряда
R — радиус
r — расстояние



Найти

  • E
  • k
  • σ4
  • π
  • R
  • r


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле вне заряженной сферы

E = kq/r^2

E — электрическое поле
k — коэффициент пропорциональности
q — заряд
r — расстояние



Найти

  • E
  • k
  • q
  • r


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле бесконечной заряженной плоскости

E = k 2 π σ

E — электрическое поле
k — коэффициент пропорциональности
σ — плотность поверхностного заряда



Найти

  • E
  • k2
  • π
  • σ


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле бесконечной заряженной плоскости

E = σ / (2 ε_0)

E — электрическое поле
σ — плотность поверхностного заряда
ε_0 — электрическая постоянная



Найти

  • E
  • σ
  • ε_0


  Известно, что:


=
  



Вычислить ‘E

Электрическое поле конденсатора

E = 4 k π σ

E — электрическое поле
k — коэффициент пропорциональности
σ — плотность поверхностного заряда



Найти

  • E
  • k
  • π
  • σ


  Известно, что:


=
  



Вычислить ‘E

Работа в электрическом поле

A = F * Δ_d

A — работа
F — сила
Δd — расстояние



Найти

  • A
  • F
  • Δ_d


  Известно, что:


=
  



Вычислить ‘A

Потенциальная энергия системы двух точечных зарядов

W = k *q0 * q / (εr)

W — потенциальная энергия
k — коэффициент пропорциональности
q0, q — заряды
ε — диэлектрическая постоянная (проницаемость)
r — расстояние



Найти

  • W
  • k
  • q0
  • q
  • ε
  • r


  Известно, что:


=
  



Вычислить ‘W

Работа в электрическом поле — разность потенциальных энергий

A = W1 - W2

A — работа
W1 — начальная потенциальная энергия
W2 — конечная потенциальная энергия



Найти

  • A
  • W1
  • W2


  Известно, что:


=
  



Вычислить ‘A

Потенциал электростатического поля

φ = W / q

φ — потенциал
W — потенциальная энергия
q — заряд



Найти

  • φ
  • W
  • q


  Известно, что:


=
  



Вычислить ‘φ

Напряжение — разность потенциалов

U = φ1 - φ2

U — напряжение
φ1 — начальный потенциал
φ2 — конечный потенциал



Найти

  • U
  • φ1
  • φ2


  Известно, что:


=
  



Вычислить ‘U

Работа переноса заряда

A = q U

A — работа
q — заряд
U — напряжение



Найти

  • A
  • q
  • U


  Известно, что:


=
  



Вычислить ‘A

Потенциал электростатического поля вокруг точечного заряда

φ = k*q0 / (εr)

φ — потенциал
k — коэффициент пропорциональности
q_0 — заряд
ε — диэлектрическая постоянная (проницаемость)
r — расстояние



Найти

  • φ
  • k
  • q0
  • ε
  • r


  Известно, что:


=
  



Вычислить ‘φ

Напряжённость электростатического поля

E = U / Δ_d

E — электрическое поле
U — напряжение
Δd — расстояние



Найти

  • E
  • U
  • Δ_d


  Известно, что:


=
  



Вычислить ‘E

Результирующее электрическое поле

E = E0 - E1

E — результирующее электрическое поле
E0 — внешнее электрическое поле
E1 — внутреннее электрическое поле



Найти

  • E
  • E0
  • E1


  Известно, что:


=
  



Вычислить ‘E

Электрический момент

p = q l

p — электрический момент
q — заряд
l — расстояние



Найти

  • p
  • q
  • l


  Известно, что:


=
  



Вычислить ‘p

Электрическая ёмкость

C = q / φ

C — электрическая ёмкость
q — заряд
φ — потенциал



Найти

  • C
  • q
  • φ


  Известно, что:


=
  



Вычислить ‘C

Электрическая ёмкость шара

C = ε R /k

C — электрическая ёмкость
ε — диэлектрическая постоянная (проницаемость)
R — радиус
k — коэффициент пропорциональности



Найти

  • C
  • ε
  • R
  • k


  Известно, что:


=
  



Вычислить ‘C

Электрическая ёмкость двух проводников

C = q / U

C — электрическая ёмкость
q — заряд
U — напряжение



Найти

  • C
  • q
  • U


  Известно, что:


=
  



Вычислить ‘C

Электрическая ёмкость плоского конденсатора

C = ε * ε0 * S / d

C — электрическая ёмкость
ε — диэлектрическая постоянная (проницаемость)
ε0 — электрическая постоянная
S — площадь
d — расстояние между плас



Найти

  • C
  • ε
  • ε0
  • S
  • d


  Известно, что:


=
  



Вычислить ‘C

Электрическая ёмкость сферического конденсатора

C = 4 * π * ε * ε0 * R1 * R2 / (R2-R1)

C — электрическая ёмкость
ε — диэлектрическая постоянная (проницаемость)
ε0 — электрическая постоянная
R1 — радиус внутренней сферы
R2 — радиу



Найти

  • C
  • π
  • ε
  • ε0
  • R1
  • R2


  Известно, что:


=
  



Вычислить ‘C

Потенциальная энергия заряженного плоского конденсатора

W = q * E1 * d

W — потенциальная энергия
q — заряд
E1 — напряженность электрического поля, создаваемого пластиной конденсатора
d — расстояние между пластин



Найти

  • W
  • q
  • E1
  • d


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = q E d / 2

W — потенциальная энергия
q — заряд
E — электрическое поле
d — расстояние между пластинами



Найти

  • W
  • q
  • E
  • d


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = qU / 2

W — потенциальная энергия
q — заряд
U — напряжение



Найти

  • W
  • q
  • U


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = C*U^2 / 2

W — потенциальная энергия
C — электрическая ёмкость
U — напряжение



Найти

  • W
  • C
  • U


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = q^2 / (2C)

W — потенциальная энергия
q — заряд
C — электрическая ёмкость



Найти

  • W
  • q
  • C


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = ε * ε0 * E^2 * V / 2

W — потенциальная энергия
ε — диэлектрическая постоянная (проницаемость)
ε0 — электрическая постоянная
E — электрическое поле
V — объём



Найти

  • W
  • ε
  • ε0
  • E
  • V


  Известно, что:


=
  



Вычислить ‘W

Потенциальная энергия заряженного плоского конденсатора

W = ε * ε0 * E^2 *S *d / 2

W — потенциальная энергия
ε — диэлектрическая постоянная (проницаемость)
ε0 — электрическая постоянная
E — электрическое поле
S — площадь
d —



Найти

  • W
  • ε
  • ε0
  • E
  • S
  • d


  Известно, что:


=
  



Вычислить ‘W

Плотность энергии электрического поля

ω_p = W / V

ω_p — плотность энергии электрического поля
W — потенциальная энергия
V — объём



Найти

  • ω_p
  • W
  • V


  Известно, что:


=
  



Вычислить ‘ω_p

Плотность энергии электрического поля

ω_p = ε0 * ε * E^2 / 2

ω_p — плотность энергии электрического поля
ε0 — электрическая постоянная
ε — диэлектрическая постоянная (проницаемость)
E — электрическое п



Найти

  • ω_p
  • ε0
  • ε
  • E


  Известно, что:


=
  



Вычислить ‘ω_p

Понравилась статья? Поделить с друзьями:
  • Как можно найти детскую работу
  • Как найти свое счастье гадание
  • Доспехи альтаира как найти
  • Зная диагональ как найти катет
  • Знает как найти подход