Как найти лунный метеорит

Светлана Ивановна Демидова,
кандидат геолого-минералогических наук
«Химия и жизнь» №6, 2015

О классификации

<b>Рис. 1.</b> Фрагменты метеоритов в каменистой пустыне Омана

Один из основных источников информации о составе космического вещества Солнечной системы — метеориты. Среди них есть редкие гости с Луны и Марса. О том, как их обнаружили, как их распознать, и о многом другом пойдет речь в этой статье.

Сначала напомним несколько основных понятий. Метеориты бывают железные, железокаменные и каменные. Каменные метеориты состоят в основном из силикатов (оливина и пироксена) и, в свою очередь, подразделяются на два подкласса: хондриты и ахондриты. Хондриты получили свое имя благодаря тому, что они все (за редким исключением) содержат хондры, сферические образования менее миллиметра в диаметре, преимущественно силикатного состава, образовавшиеся в результате короткого локального нагрева небулярного газа и пыли. Метеориты этого подкласса образовались в протопланетном облаке.

Ахондриты не содержат хондр и представляют собой магматические (изверженные) породы либо брекчии, обломочные породы, возникшие в результате дробления и перемешивания в ходе ударных процессов. Ахондриты образовались не в протопланетном облаке, а уже в космических телах. Из-за плавления, причем в планетарных масштабах, и последующего фракционирования (разделения) расплавов и твердого вещества ахондриты так или иначе отличаются по составу от исходного хондритового материала. Поэтому по степени дифференцированности вещества материнского космического тела различают примитивные и дифференцированные ахондриты.

К дифференцированным, в частности, относятся лунные и марсианские метеориты. Именно марсианские называют также SNC-метеоритами — по имени метеоритов Shergotty, Nakhla, Chassigny. По этим метеоритам дали название и соответствующим подгруппам — шерготтиты, наклиты, шассиньиты. Для каждой из подгрупп характерны свои типы пород и составы.

<b>Рис. 2.</b>

Немного истории

Свидетельства о падениях метеоритных камней прослеживаются с VII века до н. э., они упомянуты в Библии, китайских рукописях, работах Ливия и Плутарха. В русских летописях падение метеорита впервые отмечено в 1091 году: «…Спаде превелик змий от небес, ужасошася вси людье. В се же время земля стукну, яко мнози слышаша…» (Лаврентьевская летопись).

В древности метеоритам приписывалось божественное происхождение, они были предметом почитания. Объяснить их природу пытался еще Диоген. Парацельс высказал мнение, что метеориты — внеземные объекты. Впервые о возможности падения на Землю камней с Луны заговорил итальянский астроном Джованни Батиста Ричолли еще в 1651 году. Тем удивительнее, что в период бурного развития науки в XVIII веке ученые пришли к заключению о невозможности падения метеоритов на Землю, что задержало развитие науки о метеоритах. Перелом в отношении ученых к метеоритам наступил на рубеже XVIII–XIX веков, в частности, благодаря работам выдающегося ученого, члена-корреспондента Петербургской Академии наук Э. Ф. Хладни.

На заре становления научной метеоритики предполагалось, что все метеориты (тогда их называли аэролитами) имеют лунное происхождение. Позднее эта гипотеза была математически обоснована и широко пропагандировалась. В те годы в газетах публиковались прогнозы о предстоящем падении камней с Луны, а в Париже торговали лунными камнями. Последующие многолетние исследования показали, что большинство метеоритов прибывает на Землю из пояса астероидов, идея о метеоритах с Луны была забыта на долгие годы. О возможности существования марсианских метеоритов в то время даже не помышляли.

Триумфальные космические программы XX века, доставка на Землю 382 кг лунных образцов в ходе миссий «Аполлон» и «Луна» в 1969–1976 годах позволили изучить их всеми доступными на тот момент методами и создать основательную базу знаний о составе Луны. Несмотря на это, первый лунный метеорит Yamato 791197, обнаруженный в ноябре 1979 года во льдах Антарктиды 20-й японской антарктической экспедицией, не смогли идентифицировать сразу из-за его внешнего сходства с некоторыми углистыми хондритами. Он долгое время оставался неизученным, поэтому первым лунным метеоритом считается ALHA81005, найденный в 1982 году там же, в Антарктиде. К настоящему времени на Земле обнаружено более 150 лунных метеоритов общей массой больше 80 кг. Их источники — примерно 70 различных метеоритных дождей. Фрагментами одного метеоритного дождя, то есть парными находками, считаются метеориты, найденные рядом, имеющие сходный состав и одинаковый земной возраст.

Примерно в то же время были идентифицированы марсианские метеориты. Их, в отличие от лунных, сравнивать было не с чем, и предположение об их марсианской природе сделали на основе нескольких косвенных признаков. Первая зацепка возникла, когда выявилась необычная группа метеоритов с молодым по «метеоритным» меркам кристаллизационным возрастом (он определяется методами изотопной геохронологии). Действительно, возраст большинства метеоритов, и хондритов, и ахондритов, — порядка 4,5 млрд лет, тогда как SNC-метеориты значительно моложе — в основном менее 1 млрд лет. Кроме того, оказалось, что они богаче летучими элементами (например, азотом, благородными газами) по сравнению с другими ахондритами. На основе этих наблюдений возникла идея, что источником SNC-метеоритов должно быть крупное планетное тело, сопоставимое по размерам с Землей, то есть способное удерживать летучие элементы и оставаться геологически активным длительное время после образования.

Лучшим претендентом на эту роль был Марс — его размеры достаточно велики, и он имеет разреженную атмосферу, которая не так сильно препятствует выбросу материала с поверхности в космос, как могла бы атмосфера Венеры. Кроме того, можно было предположить, что на Марсе, при его размерах, достаточно и радиоактивных теплогенерирующих элементов для обеспечения продолжительной геологической активности. Окончательно утвердило ученых во мнении, что SNC-метеориты — пришельцы с Марса, исследование Дональда Богарда и Пратта Джонсона, которые в 1983 году изучили газовые пузырьки в некоторых шерготтитах. Они показали, что соотношения содержаний благородных газов и их изотопный состав соответствовали таковым в марсианской атмосфере, исследованной аппаратом «Викинг». На сегодня обнаружено около 70 марсианских метеоритов; некоторые из них могут быть фрагментами одного и того же метеоритного дождя.

Вы с Луны или Марса?

Чтобы отличить лунные и марсианские метеориты, посмотрим на их родителей. У Луны нет атмосферы, а на ее поверхности — рыхлый слой обломочного материала мощностью до 10 м — реголит. Он образовался за счет дробления и перемешивания материала коренных пород при метеоритной бомбардировке лунной поверхности. Коренные породы Луны подразделяют на две группы — материковые (это в основном анортозиты, состоящие из полевого шпата), и морские (базальты). Морские, конечно, не имеют отношения к водяным морям — морями называют темные участки поверхности. Материковые породы очень древние, возрастом до 4,5 млрд лет, что близко к времени формирования планетных тел. Образовались они преимущественно в период интенсивной метеоритной бомбардировки более 3,9 млрд лет назад. Поэтому материковые породы Луны — это в основном брекчии, обломочные породы. По окончании этого периода происходили излияния морских базальтов, главным образом 3,8–3,2 млрд лет назад. Лунные моря занимают 17% ее поверхности, приблизительно такова же доля морских метеоритов. Вообще, популяция лунных метеоритов соответствует составу лунной поверхности, среди них преобладают материковые метеориты, меньше морских и довольно много смешанных.


<b>Рис. 3.</b> Фрагмент шлифа лунного метеорита Dhofar 311 (проходящий свет). Типичная лунная материковая брекчия, в которой обломки пород и минералов находятся в стекловатой основной массе ударного расплава

Большинство материковых и смешанных метеоритов, разумеется, представлено брекчиями — породами, содержащими обломки пород и минералов в похожей на стекло матрице, образовавшейся при ударе и плавлении. Среди морских метеоритов присутствуют как обычные базальты, так и базальтовые брекчии. Брекчиями они стали потому, что метеоритная бомбардировка продолжается до сих пор, только масштабы ее уменьшились, и реголит, образовавшийся в районе морей, имеет меньшую мощность, чем в районе материков.

Теперь о другом родителе — Марсе. Его поверхность также покрыта чехлом реголита, но не таким мощным, как на Луне. На Марсе его образованию способствовали не только метеоритная бомбардировка, но и выветривание. Когда-то у Марса имелась довольно плотная атмосфера, которая обеспечивала относительно теплый климат и наличие жидкой воды на поверхности. Об этом свидетельствует присутствие, вероятно, самых впечатляющих форм марсианского рельефа, так называемых долин истечения, — это сухие русла, напоминающие земную речную сеть. Затем атмосфера становилась всё более разреженной, что постепенно привело к полному опустыниванию. Все это сопровождалось периодами вулканической активности; ее продукты на поверхности Марса — базальтовые покровы и щитовые вулканы. Как и на Земле, на Марсе важную роль играли процессы накопления осадков.

Все SNC-метеориты — это магматические породы основного и ультраосновного состава (главные минералы: пироксен, оливин, плагиоклаз), которые образовались при кристаллизации базальтовых магм. Интересно, что, несмотря на большое количество ударных кратеров на поверхности Марса, из 70 известных марсианских метеоритов лишь один метеорит NWA 7034 представлен импактной брекчией, хотя все SNC-метеориты несут в себе признаки ударного воздействия. Кроме того, среди них не известно ни одного образца осадочных пород с Марса, подобных найденным космическими аппаратами «Opportunity» и «Curiosity». То ли это связано с непредставительностью выборки марсианских метеоритов, то ли с невысокой прочностью таких пород, к тому же велика вероятность спутать их с земными осадочными породами. Но в любом случае новые находки марсианских метеоритов могут преподнести сюрпризы.

К исследователю попал ахондрит

Откуда он? С Луны? С Марса? Или еще откуда-нибудь?

Если метеорит брекчирован, содержит более 50% плагиоклаза, причем плагиоклаз кальциевый (анортит), то, скорее всего, это лунный материковый метеорит, что можно подтвердить дополнительными критериями. Если плагиоклаза менее 50%, тут возможны варианты: это может быть лунный морской метеорит, или марсианский метеорит, или метеорит группы говардитов, эвкритов, диогенитов (HED), источником которых считается астероид Веста.

Другой идентификационный признак лунных и марсианских метеоритов — Fe/Mn-отношение в главных породообразующих минералах оливине и пироксене. Для лунных пород в оливинах оно составляет приблизительно 89, а в пироксенах — 54. Для марсианских соответственно около 43 и 30.

Еще критерий, универсальный не только для лунных, марсианских, но и для всех метеоритов, — изотопный состав кислорода. Он отражает первичные характеристики вещества и имеет специфические особенности в разных космических телах. В отличие от марсианских метеоритов с их неповторимым изотопным составом кислорода, лунные породы по этому признаку неотличимы от земных.

Но спутать лунное вещество с земным невозможно из-за его минерального состава. Как уже отмечалось ранее, главный минерал материковых пород — плагиоклаз, имеющий состав анортита, — на Земле встречается нечасто. В земных породах, так же, как и в марсианских, плагиоклаз содержит больше щелочных элементов. Есть различия и в химическом составе других породообразующих минералов — оливинов и пироксенов. Типично лунные акцессорные минералы — армолколит, транквиллитиит, пироксферроит — были впервые обнаружены в лунных образцах и лишь позднее в земных породах, где они крайне редки, а в марсианских их вообще нет. В последних, в свою очередь, можно найти магнетит, которого вы не увидите в лунных породах. Это объясняется существенными различиями в окислительно-восстановительных условиях на Луне и Марсе. Поэтому, в частности, в SNC-метеоритах отсутствует Fe,Ni-металл — природный сплав Fe и Ni, а в лунном веществе он обычно есть. Другое следствие — аномальное поведение европия в процессе образования лунных пород. В окислительных условиях Земли и Марса Eu подобно другим редкоземельным элементам проявляет валентность +3 и не отделяется от них, тогда как в восстановительной обстановке Луны европий двухвалентен и концентрируется в плагиоклазе, замещая в нем кальций.

Важнейшая особенность лунных пород — отсутствие в них воды и других легколетучих соединений, поэтому водосодержащих минералов на Луне нет, что значительно обедняет разнообразие минеральных видов. Хотя сейчас считается, что в небольших количествах вода в виде льда может находиться в районе лунных полюсов. Присутствие воды на Марсе, хоть и в прошлом, привело к образованию вторичных глинистых минералов и карбонатов, которые редко, но встречаются во всех SNC-метеоритах, особенно в наклитах и ALH84001. Именно в последнем были обнаружены карбонатные образования с включениями углеводородов и магнетита специфической морфологии, которые из-за предположения об их биогенном происхождении принесли ему мировую известность (см. «Химию и жизнь», 1997, №3, «Есть ли выгода от жизни на Марсе»). Однако большинство ученых сейчас придерживаются абиогенной гипотезы их образования.

К сожалению, многие пустынные находки имеют подобную вторичную минерализацию, то есть содержат карбонаты и глинистые минералы, но уже земного происхождения, и, чтобы отличить одно от другого, нужны дополнительные трудоемкие исследования. К счастью,некоторые марсианские метеориты, например Chassigny, Shergotty, Nakhla, Tissint и Zagami, — свежие падения, собранные сразу же после приземления, антарктические находки тоже не несут в себе следов пребывания на Земле. Что касается обстоятельств падения лунных метеоритов, то их никто никогда не видел. Удивительно, но все 180 лунных метеоритов — находки, то есть метеориты, падения которых никто не наблюдал.

Окончательно убеждает исследователя в происхождении метеорита его возраст. Лунные метеориты гораздо старше марсианских. Исключение составляет уникальный метеорит ALH 84001 (4,5 млрд лет), все остальные марсианские образцы существенно младше —0,1–1,4 млрд лет.

И последнее: конечно, для определения всех этих параметров требуются серьезные исследования с использованием современной техники, однако специалисту часто бывает достаточно взглянуть в микроскоп, чтобы определить источник метеорита.

Где ищут и находят

Метеориты падали всегда и везде, но обнаружить их в горах или лесах трудно, кроме тех случаев, когда наблюдают падение или рассеяние фрагментов метеоритного дождя и можно указать участок поиска. Однако на Земле существуют места, где метеориты найти легче. В Антарктиде метеориты стали находить с самого начала изучения этого континента. Первый метеорит был найден в 1912 году, еще несколько — в 1960-х, но поворотное событие случилось в 1969 году, когда японские ученые обнаружили сразу девять метеоритов на площади 3 км2. Самым удивительным оказалось то, что эти метеориты представляли пять разных типов. Далее последовали успешные японские и американские антарктические экспедиции по сбору метеоритного вещества, в результате которых было получено более 40 000 образцов.

С чем же связано такое богатство Антарктиды? Прежде всего, темные метеориты хорошо видны на белой поверхности, а холодный сухой климат позволяет им хорошо сохраниться. Кроме того, в некоторых местах они могут и концентрироваться. Метеориты выпадают на поверхность и с течением времени оказываются погребенными в мощном слое снега и льда. Если ледник начинает двигаться к краю материка в более теплую область и встречает на своем пути преграду, затрудняющую его дальнейшее продвижение, например горный хребет, то, остановившись, лед сублимирует и на поверхности ледника остаются метеориты, которые можно собирать.

Другое хорошее место для сбора метеоритов — пустыни. Впервые идею о поиске метеоритов в пустыне высказал Антуан де Сент-Экзюпери в повести «Планета людей»: «На скатерть, разостланную под яблоней, может упасть только яблоко, на скатерть, разостланную под звездами, может падать только звездная пыль, — никогда ни один метеорит не показывал так ясно, откуда он родом». Одновременно с находками в Антарктиде были обнаружены метеориты в пустынях Австралии, где с 1971 года ведется их систематический поиск. С 1986 года стали успешно собирать метеориты в Сахаре, а с 1999-го — и в пустынях Аравийского полуострова. Излюбленные места поиска — каменистые пустыни, их поверхность подолгу остается неизменной, а сухой климат способствует сохранности метеоритов. Если есть вода, то она проникает по трещинкам, и из-за эффекта Ребиндера (расклинивающее действие) может разрушить метеорит, кроме того, образуются более хрупкие вторичные минералы, то есть со временем метеориты рассыпаются, так же, как и земные породы. В сухом климате метеориты выживают лучше и накапливаются. На сегодня в пустынях собрано около 15 000 метеоритов, и их количество растет. Обычно поиск ведут так называемые охотники за метеоритами, участники специальных экспедиций или энтузиасты, либо местные жители.

Называют метеориты по месту их нахождения. Например, метеориты под названием Yamato собраны в Антарктиде близ одноименного горного хребта, метеориты NWA (North West Africa) — в районе Западной Сахары. Все антарктические и большинство пустынных находок не имеют точных координат места находки, а жаль: многие метеориты выпадают в виде метеоритных дождей, определение же парности (то есть принадлежности к одному метеоритному дождю) — задача нелегкая.

В заключение приведем слова немецкого философа Иоганна Готлиба Фихте: «Ничто истинное и полезное, раз оно стало достоянием человечества, не пропадет даром, хотя бы лишь отдаленное потомство научилось этим пользоваться». Метеориты были и остаются источником уникальных знаний и новых неожиданных открытий, и нам повезло, что мы живем на Земле, — потому что у жителей Луны и Марса шансов найти метеориты с Земли практически нет.

Что еще можно прочитать о метеоритах:

Сайт лаборатории метеоритики ГЕОХИ РАН (много полезной информации, а также рекомендации тем, кто нашел метеорит или наблюдал его падение).
Лунные метеориты.
Марсианские метеориты.

From Wikipedia, the free encyclopedia

Lunar meteorite (Lunaite)
— Clan —
Allan Hills 81005, lunar meteorite.jpg

Lunar meteorite Allan Hills 81005

Type Achondrite
Subgroups
  • Highland breccia
  • Mare basalt
Parent body Moon
Total known specimens 306
Alternative names Lunaite

Large slice of NWA5000, the largest known lunar meteorite. It was found in the Sahara desert in 2007.[1]

A lunar meteorite is a meteorite that is known to have originated on the Moon. A meteorite hitting the Moon is normally classified as a transient lunar phenomenon.

Discovery[edit]

In January 1982, John Schutt, leading an expedition in Antarctica for the ANSMET program, found a meteorite that he recognized to be unusual. Shortly thereafter, the meteorite now called Allan Hills 81005 was sent to Washington, DC, where Smithsonian Institution geochemist Brian Mason recognized that the sample was unlike any other known meteorite and resembled some rocks brought back from the Moon by the Apollo program.[2] Several years later, Japanese scientists[who?] recognized that they had also collected a lunar meteorite, Yamato 791197, during the 1979 field season in Antarctica. As of July 2019, 371 lunar meteorites have been discovered,[3] perhaps representing more than 30 separate meteorite falls (i.e., many of the stones are «paired» fragments of the same meteoroid).[4] The total mass is more than 190 kilograms (420 lb).[4] All lunar meteorites have been found in deserts; most have been found in Antarctica, northern Africa, and the Sultanate of Oman. None have yet been found in North America, South America, or Europe.[5]

Lunar origin is established by comparing the mineralogy, the chemical composition, and the isotopic composition between meteorites and samples from the Moon collected by Apollo missions.

Transfer to Earth[edit]

Most lunar meteorites are launched from the Moon by impacts making lunar craters of a few kilometers in diameter or less.[6] No source crater of lunar meteorites has been positively identified, although there is speculation that the highly anomalous lunar meteorite Sayh al Uhaymir 169 derives from the Lalande impact crater on the lunar nearside.[7][8]

Cosmic-ray exposure history established with noble-gas measurements have shown that all lunar meteorites were ejected from the Moon in the past 20 million years. Most left the Moon in the past 100,000 years. After leaving the Moon, most lunar meteoroids go into orbit around Earth and eventually succumb to Earth’s gravity. Some meteoroids ejected from the Moon get launched into orbits around the Sun. These meteoroids remain in space longer, but eventually intersect the Earth’s orbit and land.[9]

Scientific relevance[edit]

All six of the Apollo missions on which samples were collected landed in the central nearside of the Moon, an area that has subsequently been shown to be geochemically anomalous by the Lunar Prospector mission. In contrast, the numerous lunar meteorites are random samples of the Moon and consequently provide a more representative sampling of the lunar surface than the Apollo samples. Half the lunar meteorites, for example, likely sample material from the farside of the Moon.

At the time the first meteorite from the Moon was discovered in 1982, there was speculation that some other unusual meteorites that had been found previously originated from Mars. The positive identification of lunar meteorites on Earth supported the hypothesis that meteoroid impacts on Mars could eject rocks from that planet. There are also speculations about the possibility of finding «Earth meteorites» on the surface of the Moon.[10] This would be very interesting because in this case stones from Earth older than 3.9 billion years, which are destroyed on Earth by various geological processes, may have survived on the Moon. Thus some scientists propose new missions to the Moon to search for ancient rocks from Earth.

Observation history[edit]

About one in every thousand newly discovered meteorites is a lunar meteorite,[11] whereas the vast majority of meteorites are from the asteroid belt. In the early 19th century most scientists believed that all meteorites falling towards the Earth were from the Moon. Although today supported only by a minority of researchers, there are also theories that tektites are from the Moon and should therefore also be regarded as lunar meteorites. However, most scientists regard such theories as outdated.[citation needed]

Private ownership[edit]

A privately owned 11 milligrams (0.17 gr) (2.2 by 2.0 millimetres (0.087 in × 0.079 in)) piece of the lunar meteorite NWA 4483

Lunar meteorites collected in Africa and Oman are, for all practical purposes, the only source of Moon rocks available for private ownership. This is because all rocks collected during the Apollo Moon-landing program are property of the United States government or of other nations to which the U.S. conveyed them as gifts. Similarly, all lunar meteorites collected by the U.S. and Japanese Antarctic programs are, by treaty, held by those governments for research and education purposes only. Although there is no U.S. law specifically against the ownership of Apollo Moon rocks, none has ever been (or is likely to ever be) given or sold by the U.S. government to private citizens. Even in the cases of plaques containing genuine Apollo Moon rocks given in 2004 to astronauts and Walter Cronkite, NASA retained ownership of the rocks themselves.[12] Most of the moonrocks collected by the Luna 16 probe are also unavailable for private ownership, although three tiny samples were sold at auction for $442,500 in 1993.[13][14][15]

See also[edit]

  • Glossary of meteoritics
  • Geology of the Moon
  • List of lunar meteorites
  • List of meteorites on Mars
  • Martian meteorite
  • Moon rocks

References[edit]

  1. ^ «Terrestrial History». www.themeteoritesite.com. Retrieved 8 April 2018.
  2. ^ Marvin, U. B. (1983). «The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite». Geophys. Res. Lett. 10 (9): 775–778. Bibcode:1983GeoRL..10..775M. doi:10.1029/GL010i009p00775.
  3. ^ «Meteoritical Bulletin Database — Lunar Meteorite search results». Meteoritical Bulletin Database. The Meteoritical Society. 10 July 2019. Retrieved 20 July 2019.
  4. ^ a b «List of Lunar Meteorites — Feldspathic to Basaltic Order». meteorites.wustl.edu. Retrieved 8 April 2018.
  5. ^ Washington University in St. Louis: How Do We Know That It’s a Rock from the Moon? Archived 2017-08-04 at the Wayback Machine
  6. ^ Head, James N.; Melosh, H. Jay; Ivanov, Boris A. (2002). «High-speed ejecta from small craters». Science. 298 (5599): 1752–1756. Bibcode:2002Sci…298.1752H. doi:10.1126/science.1077483. PMID 12424385. S2CID 2969674.
  7. ^ Gnos, E.; Hofmann, B. A.; Al-Kathiri, A.; et al. (2004). «Pinpointing the source of a lunar meteorite: Implications for the evolution of the Moon». Science. 305 (5684): 657–659. Bibcode:2004Sci…305..657G. doi:10.1126/science.1099397. PMID 15286369. S2CID 29316907.
  8. ^ G. Jeffrey Taylor (October 31, 2004). «New Lunar Meteorite Provides its Lunar Address and Some Clues about Early Bombardment of the Moon». Planetary Science Research Discoveries.
  9. ^ Gladman, B.; Burns, J. (1996). «The Delivery of Martian and Lunar Meteorites to Earth». Bulletin of the American Astronomical Society. 28: 1054. Bibcode:1996DPS….28.0107G.
  10. ^ Armstrong, John; Wells, Llyd E.; Gonzalez, Guillermo (2002). «Rummaging through Earth’s Attic for Remains of Ancient Life». Icarus. 160 (1): 183–196. arXiv:astro-ph/0207316. Bibcode:2002Icar..160..183A. doi:10.1006/icar.2002.6957. S2CID 8939024.
  11. ^ Chan, Athena (12 October 2018). «Meteorite From The Moon Auctioned, Could Fetch $500,000». Tech Times. Retrieved 18 October 2018.
  12. ^ Oberg, James (16 July 2004). «Astronauts, Cronkite to get moon rock plaques». NBC News. Retrieved 8 April 2018.
  13. ^ Gelder, Lawrence Van (December 2, 1995). «F.B.I. Revisits Earthly Theft of Moon Rock». New York Times. Retrieved 8 April 2018.
  14. ^ Gutheinz, Joseph (November 2004). «In Search of the Goodwill Moon Rocks: A Personal Account». Geotimes Magazine.
  15. ^ Zavalla, Judy (November 4, 2009). «Hunting Moon Rocks». The Alvin Sun-Advertiser.

Scientific reference[edit]

  • Randy Korotev, Randy L. (2005). «Lunar geochemistry as told by lunar meteorites». Chemie der Erde. 65 (4): 297–346. Bibcode:2005ChEG…65..297K. doi:10.1016/j.chemer.2005.07.001.

General references[edit]

  • G. Jeffrey Taylor (November 22, 2005). «Gamma Rays, Meteorites, Lunar Samples, and the Composition of the Moon». Planetary Science Research Discoveries.
  • Bill Cooke (August 2006). «The Great Interplanetary Rock Swap». Astronomy. 34 (8): 64–67. Bibcode:2006Ast….34h..64C.

External links[edit]

  • Lunar Meteorites Archived 2011-04-13 at the Wayback Machine, Washington University in St. Louis
  • List of Lunar Meteorites
  • Lunar Meteorites, University of Arizona
  • Lunar meteorite articles in Planetary Science Research Discoveries

Часть 2.

В первой части мы выяснили, каким образом лунные метеориты попадают на Землю. Сегодня мы поговорим о том, сколько лунных метеоритов найдено на Земле и о трудностях их идентификации.

Трудность определения кратера-источника лунных метеоритов

По мере появления новых лунных метеоритов, которые находят каждый год, аргумент Уоррена становится действительным. Джеймс Хейд (2001) рассчитывает на теоретической основе, что столкновение с инородным объектом, с образованием кратера размером до 450 м в диаметре, может придать лунным метеоритам необходимую скорость для преодоления притяжения Луны. Совсем недавно, Базилевский и соавторы (2010) подтвердили, исходя из известного числа лунных метеоритов и частоты ударов на Луне, что «значительная часть лунных кратеров (источников метеоритов) не превышают нескольких сотен метров в диаметре». Если лунные метеориты происходят из таких маленьких кратеров, будет особенно трудно найти фактический кратер-источник лунных метеоритов на Земле.

Сколько лунных метеоритов на Земле?

Общая масса всех известных метеоритов лунного происхождения составляет всего около 58 кг. Для сравнения, каменные метеориты Альенде и Цзилинь весят 2 и 4 тонны каждый, в то время как некоторые железные метеориты весят более 10 тонн! (Например, метеорит Гоба, Гаваоне, Кампо-дель-Cielo). Ни одного  лунного метеорита до сих пор не найдено в Северной Америке, Южной Америке или Европе. Можем разумно предположить, что лунные метеориты падали на этих континентах в течение последних 100 000 лет, и если кто-то нашел их, то они еще не признаны в качестве лунных метеоритов.

Где можно найти лунные метеориты?

Почти все лунные метеориты были найдены в местах, которые хорошо известны в качестве оптимальных для поисков метеоритов. Все такие места — это сухие пустыни, где есть геологические механизмы для концентрации метеоритов, где породы земного происхождения встречаются редко, и где метеориты менее подвержены разрушающему воздействию воды или влажного воздуха Земли.

Найти лунный метеорит

Легче всего найти лунный метеорит в пустыне или в Антарктиде

Многие лунные метеориты были найдены в Антарктиде экспедициями, финансируемых правительством США (ANSMET) или Японии (NIPR). Несколько лунных метеоритов были найдены в пустыне Сахара в Северной Африке. Около половины всех лунных метеоритов были найдены в Омане — все с 1999 года. Почти все метеориты, найденные в жарких пустынях, можно найти исключительно в частных коллекциях или у местных жителей.

Лунный метеорит Allan Hills 81005 (ALHA81005) был первым метеоритом, который получил признание метеорита лунного происхождения. Он был найден во время сезона поиска метеоритов в коллекцию ANSMET, 18 января 1982 года. Три метеорита Ямато 79xxx были собраны ранее, но они были признаны лунными метеоритами после 1982 года. Первый лунный метеорит Yamato 791 197 был найден 20 ноября 1979 года. Когда был найден лунный метеорит Calcalong Крик не известно.

Трудности определения лунных метеоритов

Последние данные указывают об идентичности лунных пород с некоторыми породами на Земле, но лунные метеороиды наверняка падали на поверхность Земли на протяжении всей геологической истории. Михаил Назаров и его коллеги из института имени В. И. Вернадского полагают, что «несколько десятков или несколько сотен килограммов» лунных пород в интервале масс от 10-1000 г падают на поверхность Земли каждый год. Но этот факт не облегчает поиск и распознавание лунных метеоритов.

Типичный лунный метеорит

Типичный лунный метеорит

В идеальных условиях (например, Антарктида), некоторые лунные метеориты почти мгновенно распознаются как луниты по их коре плавления, имеющей везикулярный вид (крупнопузырчатая поверхность метеоритов QUE 93069 или PCA02007). В земных породах и в других видах метеоритов нет характерной для лунных метеоритов коры. Некоторые лунные метеориты (базальты) не имеют везикулярной корки, однако, кора плавления некоторых лунных метеоритов, найденных в жарких пустынях, была сглажена ветром. При отсутствии характерной коры плавления, лунный (или марсианский) метеорит, менее вероятно, что будет признан в качестве метеорита, потому что будет больше напоминать земные породы по минералогии и плотности.

Лунные метеориты содержат значительно меньшее количество металла, чем обыкновенные хондриты, поэтому они, в лучшем случае, лишь слабо притягиваются к магниту. Кроме того, они имеют плотность, приблизительно равной плотности земных пород, то есть они не тяжелые для своего размера, в отличие от большинства метеоритов. К сожалению, лунные метеориты и некоторые виды пород Земли сильно похожи друг на друга, поэтому даже опытный взгляд эксперта, не всегда может определить лунный метеорит. Только дорогие и трудоемкие тесты могут доказать, что представленный для идентификации образец породы, является лунным (или марсианским) метеоритом.

Наша компания имеет богатый опыт сотрудничества и участия в тендерах с государственными и частными компаниями. Мы предлагаем большой набор готовых решений для образовательных учреждений, а также работаем по индивидуальным техническим заданиям.

Если вы являетесь участником или организатором тендера или госзакупки, заполните, пожалуйста, форму и опишите свой запрос. Наш специалист по работе с корпоративными заказчиками обязательно с вами свяжется. Вы также можете связаться с нами по телефону: +7 (812) 418-29-44 (доб. 117 или доб. 106).

Лунные метеориты – это фрагменты Луны, выбитые из неё в результате удара с другими космическими телами и в дальнейшем попавшие на Землю в качестве метеоритов.

В январе 1982 года американский геолог Джон Шутт в ходе экспедиции в Антарктиду обнаружил метеорит с необычными характеристиками, не похожими на все другие метеориты. В результате проведённых исследований было установлено, что данный образец по своими свойствам соответствует характеристикам лунных пород, доставленных на Землю в ходе программы «Аполлон» . С тех пор, лунное происхождение метеорита устанавливается путём сравнения его химического и изотопного состава с образцами лунного грунта.

В настоящее время идентифицировано свыше 140 лунных метеоритов. Примечательно, что все они были найдены в пустынных местностях: в Антарктиде, Северной Африке и в султанате Оман. Лунные метеориты необычайно ценные и дорогие экспонаты. Встретить их можно не в каждом музее. А хотели бы вы своими глазами посмотреть на кусочек Луны?

У вас есть такая возможность! В нашем магазине на Флаконе представлены два музейных образца лунных метеоритов: Northwest Africa 6888, найденный в Марокко, и Dhofar 1442, найденный в государстве Оман. Эти уникальные образцы пробудут у нас не долго, так что не упустите свой шанс дотянуться до Луны!

Второе фото: Фрагмент крупнейшего из известных лунных метеоритов — NWA5000, найденного в пустыне Сахара в 2007 году.

Понравилась статья? Поделить с друзьями:
  • Как найти индекс своей банковской карты
  • Как найти прибыль от реализации к выручке
  • Как найти минус по мелодии
  • Как найти код окпо для ооо
  • Как найти мат ожидание от функции плотности