Как найти любую точку на прямой

Как найти точку на прямой

В современной математике точкой называются элементы весьма различной природы, из которых состоят различные пространства. Например, в n-мерном евклидовом пространстве точкой называется упорядоченная совокупность из n чисел.

Как найти точку на прямой

Вам понадобится

  • Знания по математике.

Инструкция

Прямая — одно из основных понятий в математике. Аналитически прямая на плоскости задается уравнением первого порядка вида Ax+By=C. Принадлежность точки к заданной прямой легко определить, подставив координаты точки в уравнение прямой. Если уравнение обращается в верное равенство, значит точка принадлежит прямой. Например, рассмотрим точку с координатами A(4, 5) и прямую заданную уравнением 4х+3у=1. Подставим в уравнение прямой координаты точки А и получим следующее: 4*4+3*5 = 1 или 31 = 1. Получили равенство, которое является не верным, а значит, эта точка не принадлежит прямой.

Для поиска точки на прямой достаточно взять одну из координат, и подставить в уравнение, а затем выразить из полученного уравнение вторую. Таким образом найдется точка с заданной одной из координат. Так как прямая проходит через всю плоскость, то и точек, которые ей принадлежат бесконечно много, а значит, для любой одной координаты всегда найдется другая, такая что полученная точка будет принадлежать заданной прямой. Возьмем для примера прямую с уравнением 3x-2y=2. И возьмем координату равную x=0. Тогда подставим значение x в уравнение прямой и получим следующее: 3*0-2у=2 или у=-1. Таким образом мы нашли точку лежащую на прямой и ее координаты равны (0, -1). Аналогичным образом можно найти точку, принадлежащую прямой, когда известна координата y.

В трехмерном пространстве у точки 3 координаты, а прямая задается системой из двух линейных уравнений вида Ax+By+Cz=D. Аналогичным образом, как и в двумерном случае, если вы знаете хоть одну координату точки, решив систему, найдете две остальные и эта точка будет принадлежать исходной прямой.

Видео по теме

Обратите внимание

После того как найдены все координаты точки, необходимо проверить их правильность. Подставьте найденные координаты в уравнение прямой, и если получится верное равенство, все решено корректно.

Полезный совет

Способ поиска точки по известной координате справедлив для любой размерности пространства, разница лишь в том, сколько необходимо уравнений решить, для поиска остальных координат.

Источники:

  • найти точки прямой

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямых, параллельных осям координат

Возьмем прямую линию, параллельную оси Оу и проходящую на расстоянии а от нее (рис. 10).

Прямая линия

Все точки этой прямой одинаково удалены от оси ординат на расстояние, равное а. Следовательно, для каждой точки прямой АМ абсцисса одна и та же, а именно:

х = а, (1)

ордината же различна. Таким образом, уравнение (1) вполне определяет прямую, параллельную оси Оу, а потому оно является ее уравнением. Возьмем прямую, параллельную оси Ох, на расстоянии.

Прямая линия

равном b от нее (рис. 11). Все точки этой прямой одинаково удалены от оси Ох на расстояние, равное b , т. е. любая точка прямой ВМ имеет постоянную ординату, а именно:

Прямая линия

абсциссу же различную. Как видно, уравнение (2) вполне определяет прямую, параллельную оси Ох, а потому оно является ее уравнением.

По уравнениям (1) и (2) можно построить соответствующие им прямые. Пусть, например, дана прямая х = — 4. Отложив на оси Ох отрезок ОА = — 4 (рис. 12) и проведя через точку А прямую, параллельную оси Оу, получим искомую прямую.

Прямая линия

Уравнения осей координат

Возьмем уравнение прямой, параллельной оси Оу:

х = а

и станем в нем уменьшать абсолютную величину а, тогда прямая, определяемая этим уравнением, будет приближаться к оси Оу, оставаясь все время ей параллельной, и при а = 0 сольется с ней. Уравнение х = 0 является уравнением оси Оу.

Если же в уравнении у = b прямой, параллельной оси Ох, будем уменьшать абсолютную величину b то эта прямая станет приближаться к оси Ох, оставаясь ей параллельной, и при b = 0 с ней совпадет. Таким образом, уравнение у = 0 будет уравнением оси Ох.

Уравнение прямой, проходящей через начало координат

Проведем прямую через начало координат под угломПрямая линия

к оси Ох (рис. 13). Принято положительный угол а отсчитывать от положительного направления оси абсцисс в сторону, противоположную движению часовой стрелки (рис. 13), а отрицательный — по часовой стрелке.

Прямая линия

Возьмем на проведенной прямой произвольную точку М (х; у). Опустив перпендикуляр МР на ось Ох, получим прямоугольный треугольник ОМР, из которого найдем:

Прямая линия

Но

Прямая линия

Прямая линия

Координаты любой точки прямой ОМ удовлетворяют полученному уравнению; можно показать, что координаты любой точки, не лежащей на прямой ОМ, не удовлетворяют ему; поэтому оно является уравнением прямой ОМ. Итак,

Прямая линия

есть уравнение прямой, проходящей через начало координат. В нем х и утекущие координаты, а Прямая линияугловой коэффициент.

Определение:

Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к положительному направлению оси Ох.

Величина Прямая линия может быть как положительной, так и отрицательной. Если угол а острый, то тангенс его имеет положительное значение; если же угол а тупой, —то отрицательное. Поэтому величина Прямая линия в уравнении прямой будет положительной, если а — острый угол, и отрицательной, если тупой.

Заметим, что при а = 90° углового коэффициента не существует, так как 90° не имеет числового значения.

Зная угловой коэффициент прямой у = Прямая линиях, можно определить ее положение.

Пусть требуется построить прямую у= 2х.

Для этого найдем угол а из условия

откуда:

Прямая линия

Построив при точке О найденный угол, мы и получим искомую прямую (рис. 14).

Прямая линия

Построение этой прямой можно провести и проще.

Известно, что положение прямой определяется двумя точками, поэтому для решения задачи нужно знать их координаты. В нашем же случае достаточно определить координаты одной точки, так как вторая (начало координат) нам известна. Для этого дадим х произвольное значение, например х = 2, тогда из уравнения прямой найдем:

Прямая линия

Значения х = 2 и у = 4 и будут координатами точки, лежащей на данной прямой. Построив эту точку, проведем через нее и начало координат прямую линию (рис. 14).

Уравнение прямой с угловым коэффициентом и начальной ординатой

Пусть дана прямая ОС, проходящая через начало координат под углом а к положительному направлению оси Ох (рис. 15)

Прямая линия

Ее уравнение имеет вид

Прямая линия

где Прямая линия .

Проведем прямую Прямая линия отсекающую на оси Оу отрезок ОВ = b. Прямая АВ составляет с положительным направлением оси Ох тот же угол а. Пусть М(х; у)— произвольная точка прямой АВ. Из рис. 15 найдем:

Но

Прямая линия

Подставив значение РМ1 в равенство (1), получим уравнение прямой АВ в виде:

Прямая линия

где Прямая линияугловой коэффициент, а b называется начальной ординатой.

Заметим что прямая Прямая линия получается смещением всех точек прямой Прямая линия (рис. 15) на отрезок b вверх (при положительном b) и вниз при отрицательном b .

Прямая линия

Уравнение Прямая линия определяющее прямую проходящую через начало координат, является частным случаем уравнения (2) при b = 0.

Зная угловой коэффициент Прямая линия и начальную ординату b можно определить положение прямой. Пусть, например, требуется построить прямую Прямая линия

Из данного уравнения имеем:

откуда

Прямая линия

Проведем через начало координат прямую МN под углом в 45 градусов к положительному направлению оси Ох (рис. 16). На прямуюПрямая линия

Как видно из уравнения ее пересекает ось Оу на расстоянии ОС, равном 4 единицам масштаба от начала координат.

Поэтому прямая АВ, проведенная через точку С параллельно прямой МN, и будет искомой.

Однако проще построить указанную прямую по двум ее точкам. Удобнее для этого брать точки пересечения прямой с осями координат. Одна из них — точка С пересечения прямой с осью Оу— дается самим уравнением, а именно С(0; 4). Для нахождения точки D пересечения этой прямой с осью Ох положим в данном уравнении y = 0, получим х = — 4; значит, прямая пересекает ось Ох в точке D (-4; 0). Строим точки С и D и проводим через них искомую прямую.

Прямая линия

Пример:

Найти уравнения прямых АВ, СD и ЕF, изображенных на рис. 17.

Решение:

Чтобы написать уравнения данных прямых, нужно определить величины Прямая линия и b, а затем подставить их значения в уравнение Прямая линия

Для прямой АВ

Прямая линия

Прямая линия

Следовательно, уравнения данных прямых будут:

Прямая линия

Общее уравнение прямой

В предыдущей лекции были выведены следующие виды уравнения прямой: уравнение прямой, параллельной оси Оу:

Прямая линия

уравнение прямой, параллельной оси Ох:

Прямая линия

уравнение оси Оу:

Прямая линия

уравнение оси Ох:

Прямая линия

уравнение прямой, проходящей через начало координат:

Прямая линия

уравнение прямой с угловым коэффициентом и начальной ординатой:

Прямая линия

Уравнения (1) — (6) исчерпывают все возможные положения прямой, поэтому можно сказать, что

всякая прямая линия определяется уравнением первой степени относительно текущих координат.

Покажем теперь, что указанные виды уравнения прямой можно получить из уравнения

Прямая линия

при некоторых частных значениях коэффициентов А, В и С.

I. Если В = 0, то уравнение (7) обратится в следующее:

Прямая линия

откуда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия есть уравнение прямой, параллельной оси Оу.

II. Если А = 0, то

Прямая линия

отсюда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия определяет прямую, параллельную оси Ох.

III. Если В = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

IV. Если А = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

V. Если С = 0, то

Прямая линия

отсюда

Прямая линия

Положим

Прямая линия

тогда

Прямая линия

Уравнение Прямая линия определяет прямую, проходящую через начало координат.

VI. Если ни один из коэффициентов уравнения (7) не равен нулю, то и в этом случае его можно преобразовать в знакомую нам форму уравнения прямой. Найдем из уравнения (7) значение у:

Прямая линия

Положив

Прямая линия

и

Прямая линия

можем написать

Прямая линия

Следовательно, уравнение

Прямая линия

включает в себя все рассмотренные нами ранее уравнения прямой; поэтому оно называется общим уравнением прямой. Итак, всякое уравнение первой степени

Прямая линия

при любых значениях коэффициентов А, В и С, исключая одновременное равенство А и В нулю, определяет прямую линию.

Пример:

Построить прямую Прямая линия

Решение:

Проще всего построить прямую по двум ее точкам пересечения с осями координат. Положив в данном уравнении у = 0, получим х =- 5; координаты (-5; 0) и будут определять положение точки пересечения прямой с осью Ох. Для нахождения точки пересечения прямой с осью Оу положим в том же уравнении х = 0 тогда найдем у = 2; координаты искомой точки будут (0; 2).

Построив эти точки, проводим через них прямую 2х— 5у —10 = 0 (рис. 18).

Пример:

Найти угловой коэффициент и начальную ординату прямой 4х+ 6у — 3 = 0.

Решение:

Преобразуем это уравнение к виду Прямая линия

для этого находим:

6у = — 4х + 3,

отсюда

Прямая линия

Сравнив полученное уравнение с уравнением Прямая линия найдем:

Прямая линия

Угловой коэффициент можно найти и из равенства (8). Для этого, как видно, нужно коэффициент при х общего уравнения прямой разделить на коэффициент при у и частное

Прямая линия

взять с противоположным знаком. Таким образом, в данном примере

Прямая линия

Уравнение прямой в отрезках

Как мы уже знаем, положение прямой определяется или двумя точками или одной точкой и углом наклона прямой к оси Ох. Если прямая не параллельна ни одной из координатных осей и не проходит

Прямая линия

через начало координат, то ее положение может быть определено и другими данными, например отрезками, которые она отсекает на осях. Выведем уравнение прямой для этого случая.

Пусть дана прямая, отсекающая на координатных осях отрезки ОА = а и ОВ = b (рис. 19).

Возьмем на этой прямой произвольную точку M (х; у) и проведем

МР Прямая линия Ох. Из подобия треугольников РМА и ОВА имеем:

Прямая линия

или

Прямая линия

Разделив а — х почленно на а, будем иметь:

Прямая линия

откуда

Прямая линия

Можно показать, что координаты любой точки нашей прямой будут удовлетворять этому равенству, а потому его нужно рассматривать как уравнение прямой АВ.

В уравнение (1) входят отрезки а и b , отсекаемые прямой на осях; поэтому оно называется уравнением прямой в отрезках.

Величины а и b могут быть как положительными, так и отрицательными в зависимости от того, в какую сторону от начала координат откладываются отрезки а и b .

Пусть, например, дана прямая АВ (рис. 20). Здесь а = — 2, b = — 3; следовательно, уравнение прямой АВ запишется в таком виде:

Прямая линия

По уравнению вида (1) Очень просто строится прямая. Для этого нужно только отложить на осях отрезки а и b взятые из уравнения, и через их концы провести прямую.

Заметим, что уравнение в отрезках легко получается из общего уравнения прямой: Ах + Ву + С= 0, если все коэффициенты общего уравнения отличны от нуля (иначе уравнение в отрезках не имеет смысла).

Уравнение пучка прямых

Пусть прямая АВ проходит через точку М(х1; у1) и образует угол а с положительным направлением оси Ох (рис. 21). Составим для прямой АВ уравнение вида

Прямая линия

Для этого нужно найти величины Прямая линия и b определяющие прямую АВ, а затем подставить в уравнение (1) их значения. Так как угол а дан, то величина Прямая линияопределится из равенства

Прямая линия

Для нахождения b воспользуемся тем, что точка М лежит на прямой (1) и, следовательно, ее координаты удовлетворяют уравнению этой прямой.

Подставив в уравнение (1) вместо х и у их значения х1 и у1, а величину Прямая линия полагая известной, получим

Прямая линия

откуда

Прямая линия

Уравнение (1) можем теперь записать в виде

Прямая линия

или

Прямая линия

Таково искомое уравнение прямой АВ; в нем Прямая линия имеет одно, вполне определенное значение.

Допустим, что через ту же точку M(х1; у1) проходит несколько прямых; тогда угол а наклона этих прямых к оси Ох, и также множитель Прямая линия в уравнении (2) будут иметь различные значения.

В таком случае уравнение (2) будет определять уже не одну прямую, проходящую через данную точку M, а множество прямых, пересекающихся в эточке.

Совокупность всех прямых, проходящих через одну точку М, называется пучком прямых с центром в точке М. Таким образом, уравнение (2) с переменным Прямая линияможно рассматривать как уравнение пучка прямых, проходящих через данную точку, исключая прямую, параллельную оси ординат (так как tg 90° не имеет числового значения) (рис. 21).

Чтобы выделить из этого пучка прямую, образующую заданный угол с осью Ох, нужно в уравнении (2) вместо Прямая линия подставить его числовое значение. Пусть, например, пучок прямых проходит через точку М(2;—5), тогда его уравнение будет:

Прямая линия

Выделим из этого пучка одну прямую, которая наклонена к положительному направлению оси Ох под углом а = 45°;

тогда

Прямая линия

и уравнение (3) обратится в следующее:

Прямая линия

или

Прямая линия

Уравнение прямой, проходящей через две данные точки

Пусть даны две точки A(х1; у1) и В(х2; у2); требуется найти уравнение прямой, проходящей через эти точки.

Если взять одну точку, например А, то через нее можно провести пучок прямых, уравнение которого будет:

Прямая линия

где каждому значению Прямая линия отвечает одна прямая.

Выделим из этого пучка прямую, которая проходит и через вторую точку В (рис. 22). Чтобы найти ее уравнение, необходимо определить угловой коэффициент. Для этого примем во внимание, что точка В лежит на искомой прямой, и потому ее координаты должны обращать уравнение (1)

Прямая линия

в тождество при Прямая линия равном угловому коэффициенту этой прямой. Подставив в уравнение (1) вместо текущих координат х и у координаты точки В, получим:

Прямая линия

отсюда находим угловой коэффициент искомой прямой:

Прямая линия

Уравнение (1) можно переписать так:

Прямая линия

Преобразуем это уравнение, разделив обе части его на у2 — у1 получим:

Прямая линия

гле х и у — текущие координаты. Равенство (2) является уравнением прямой, проходящей через две данные точки. Это, как и уравнение в отрезках, частный случай общего уравнения прямой.

Если х1 = х2 или у1 = у2, то формула (2) теряет смысл, так как делить на нуль нельзя. В этих случаях точки А и В лежат либо на прямой, параллельной оси Оу, либо на прямой, параллельной оси Ох. В первом случае уравнение прямой запишется в виде

х = х1

а во втором — в виде

у = у1

Пример:

Написать уравнение прямой, проходящей через две точки: А(—4; 6) и В(2; —3).

Решение:

Имеем:

х1 = —- 4, х2 = 2

и

у1 = 6, у2 = — 3.

Подставим эти значения в уравнение (2); получим:

Прямая линия

или

Прямая линия

Умножив обе части последнего уравнения на —18, будем иметь:

2у— 12 = — 3х— 12,

откуда

Зх + 2у = 0.

Пример:

Через две точки А( 3; 2) и В (5; 2) проходит прямая. Написать ее уравнение.

Решение:

Так как ординаты данных точек равны, то заключаем, что искомая прямая параллельна оси Ох, а потому ее уравнение будет

у = 2.

Угол между двумя прямыми

Пусть даны уравнения двух прямых:

y=klx+blt

Прямая линия

где Прямая линия имеют вполне определенные значения. Выведем формулу для определения угла между этими прямыми.

Обозначим углы, образуемые данными прямыми с положительным направлением оси Ох, через а1 и а2, а угол между этими прямыми через Прямая линия (рис. 23).

Угол а2, как внешний угол треугольника ABC, будет равен сумме внутренних, с ним не смежных, т. е.

Прямая линия

откуда

Прямая линия

Если углы равны между собой, то и тангенсы их равны друг другу, поэтому

Прямая линия

Применяя формулу для тангенса разности двух углов, получим:

Прямая линия

Но

Прямая линия

Поэтому

Прямая линия

Определив tg Прямая линия по формуле (1), можно найти и самый угол Прямая линия.

Прямая линия

Пример:

Определить угол между прямыми:

2х — 3у + 6 =0

и

х + 5у — 2=0.

Решение:

Из данных уравнений найдем угловые коэффициенты этих прямых :

Прямая линия

Согласно формуле (1) имеем:

Прямая линия

откуда

Прямая линия

Полученный угол между прямыми тупой. Но если принять

Прямая линия

то вычисляя Прямая линия по той же формуле (1), получим:

Прямая линия

откуда Прямая линия = 45°. Получился угол острый, смежный с ранее

Прямая линия

найденным тупым углом (рис. 24). Первое и второе значение угла будет ответом на вопрос задачи.

Условие параллельности прямых

Если прямые параллельны между собой, то они образуют одинаковые углы а1 и а2 с положительным направлением оси Ох (рис. 25).

Прямая линия

Из равенства углов а1 и а2 следует

Прямая линия

или

Прямая линия

Обратно, если Прямая линия т.е. Прямая линиято а1 = а2, а это значит, что данные прямые параллельны.

Итак, если прямые параллельны между собой, то их угловые коэффициенты равны (и наоборот).

Пример:

Написать уравнение прямой, проходящей через точку А (—2; 6) и параллельной прямой 5х—3у — 7 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится искомая прямая. Следовательно, прежде всего пишем уравнение пучка прямых , проходящих через точку А:

Прямая линия

Затем находим из данного в задаче уравнения прямой ее угловой коэффициент; применяя равенство (8) , получим:

Прямая линия

Согласно условию параллельности угловой коэффициент искомой прямой тоже равен Прямая линия

Подставим найденное значение Прямая линия в уравнение

пучка:

Прямая линия

Выполнив необходимые преобразования, получим искомое уравнение прямой:

Прямая линия

Условие перпендикулярности прямых

Пусть две прямые взаимно перпендикулярны и образуют с положительным направлением оси Ох углы а1 и а2 (рис. 26). В этом случае

Прямая линия

отсюда

Прямая линия

Но

Прямая линия

Следовательно,

Прямая линия

или

Прямая линия

Обратно, если

Прямая линия

то

Прямая линия

Отсюда

Прямая линия

т. е. данные прямые взаимно перпендикулярны.

Таким образом, если прямые взаимно перпендикулярны, то их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку (и наоборот).

Прямая линия

Так, например, если у одной прямой угловой коэффициент

равен Прямая линия то у перпендикулярной ей прямой он равен Прямая линия .

Пример:

Написать уравнение прямой, проходящей через точку А(—3; 5) и перпендикулярной прямой 4х — Зу—10 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится и искомая прямая. Поэтому напишем сначала уравнение этого пучка

Прямая линия

Чтобы выделить из него нашу прямую, нужно найти ее угловой коэффициент Прямая линия связанный с угловым коэффициентом

данной прямой равенством (1). Но Прямая линия следовательно,

Прямая линия

Подставив в уравнение (2) вместо Прямая линия найденное его значение Прямая линия

получим:

Прямая линия

Это и есть искомое уравнение прямой. Преобразовав его, найдем:

Прямая линия

или

Прямая линия

Пересечение прямых

Пусть даны две прямые, определяемые уравнениями:

Прямая линия

Требуется найти точку их пересечения.

Так как точка пересечения данных прямых есть их общая точка, то ее координаты должны удовлетворять как первому, так и второму уравнению, т. е. эти координаты должны быть общими корнями данных уравнений.

Чтобы найти эти корни, нужно, как известно из алгебры, решить совместно данные уравнения, рассматривая их как систему уравнений.

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Решим данные уравнения как систему. Умножив второе уравнение на 3 и сложив результат с первым уравнением, получим:

Прямая линия

откуда

Прямая линия

Зная х, находим у, например, из второго уравнения:

Прямая линия

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Умножив все члены первого уравнения на —2 и сложив полученное уравнение со вторым, найдем:

Прямая линия

что невозможно. Значит, данная система уравнений решений не имеет, а потому прямые, определяемые этими уравнениями, не имеют общих точек, т. е. данные прямые параллельны.

К этому же заключению можно прийти, сравнивая угловые коэффициенты данных прямых.

Дополнение к прямой линии

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Смотрите также:

Предмет высшая математика

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Проекция точки на прямую онлайн

С помощю этого онлайн калькулятора можно найти проекцию точки на прямую. Дается подробное решение с пояснениями. Для вычисления проекции точки на прямую, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точки и элементы уравнения в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Проекция точки на прямую − теория, примеры и решения

Рассмотрим эту задачу в двухмерном и трехмерном пространствах.

1. Пусть в двухмерном пространстве задана точка M0(x0, y0) и прямая L:

, (1)

где q=(m,p) направляющий вектор прямой L.

Найдем проекцию точки M0 на прямую (1)(Рис.1).

Алгоритм нахождения проекции точки на прямую L содержит следующие шаги:

  • построить прямую L1, проходящую через точку M0 и перпендикулярную прямой L,
  • найти пересечение прямых L и L1(точка M1)

Уравнение прямой, проходящей через точку M0(x0, y0) имеет следующий вид:

Как видно из рисунка Рис.1, для того, чтобы прямая L1 была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n прямой L1, поэтому в качестве нормального вектора прямой L1 достаточно взять направляющий вектор прямой L. Тогда уравнение прямой L1, представленной уравнением (2) можно записать так:

Для нахождения точки пересечения прямых L и L1, которая и будет проекцией точки M0 на прямую L, можно решить систему из двух уравнений (1) и (3) с двумя неизвестными x и y. Выражая неизвестную x из одного уравнения и подставляя в другое уравнение получим координаты точки M1(x1, y1).

Найдем точку пересечения прямых L и L1 другим методом.

Выведем параметрическое уравнение прямой (1):

(5)

Подставим значения x и y в (4):

m(mt+x’)+p(pt+y’)−mx0py0=0

m 2 t+mx’+p 2 t+py’mx0py0=0

(5′)

Мы нашли такое значение t=t’, при котором координаты x и y точки на прямой L удовлетворяют уравнению прямой L1(4). Следовательно, подставляя значение t’ в (5) получим координаты проекции точки M0 на прямую L:

Пример 1. Найти проекцию точки M0(1, 3) на прямую

(6)

Направляющий вектор прямой (6) имеет вид:

Т.е. m=4, p=5. Из уравнения прямой (6) видно, что она проходит через точку M’ (x’, y’)=(2, −3)(в этом легко убедится − подставляя эти значения в (6) получим тождество 0=0), т.е. x’=2, y’=-3. Подставим значения m, p, x0, y0, x’, y’ в (5′):

Подставляя значение t в (5), получим:

,

.

Проекцией точки M0(1, 3) на прямую (6) является точка:

, (7)

где q=(m, p, l) направляющий вектор прямой L.

Найдем проекцию точки M0 на прямую (7)(Рис.2).

Нахождение проекцию точки на прямую L содержит следующие шаги:

  • построить плоскость α, проходящую через точку M0 и перпендикулярную прямой L,
  • найти пересечение плоскости α и прямой L(точка M1)
A(xx0)+B(yy0)+C(zz0)=0 (8)

где n=(A,B,C) нормальный вектор плоскости α.

Как видно из рисунка Рис.2, для того, чтобы плоскость α была перпендикулярна прямой L нужно , чтобы направляющий вектор q прямой L была коллинеарна нормальному вектору n плоскости α, поэтому в качестве нормального вектора плоскости α достаточно взять направляющий вектор прямой L. Тогда уравнение плоскости α, представленной уравнением (8) можно записать так:

m(xx0)+p(yy0)+l(zz0)=0

mx+py+lzmx0py0lz0=0 (9)

Для нахождения точки пересечения плоскости α и прямой L, которая и будет проекцией точки M0 на прямую L, выведем параметрическое уравнение прямой (7):

(10)

Подставим значения x и y в (9):

m(mt+x’)+p(pt+y’)+l(lt+z’)−mx0py0lz0=0

m 2 t+mx’+p 2 t+py’+l 2 t+ly’mx0py0lz0=0

(10′)

Мы нашли такое значение t=t’, при котором координаты x,y и z точки на прямой L удовлетворяют уравнению плоскости (9). Следовательно, подставляя значение t’ в (10) получим координаты проекции точки M0 на прямую L:

Пример 2. Найти проекцию точки M0(3, −1, −2) на прямую

(11)

Направляющий вектор прямой (11) имеет вид:

Т.е. m=2, p=3, l=−4. Из уравнения прямой (11) видно, что она проходит через точку M’ (x’, y’, z’)=(2, 1, 1)(в этом легко убедится − подставляя эти значения в (11) получим тождество 0=0=0), т.е. x’=2, y’=1, z’=1. Подставим значения m, p, l x0, y0, z0 x’, y’, z’ в (10′):

Подставляя значение t=t’ в (10), получим:

.

.

.

Проекцией точки M0(3, −1, −2) на прямую (11) является точка:

Проекция точки на прямую, координаты проекции точки на прямую

Данная статья рассматривает понятие проекции точки на прямую (ось). Мы дадим ему определение с использованием поясняющего рисунка; изучим способ определения координат проекции точки на прямую (на плоскости или в трехмерном пространстве); разберем примеры.

Проекция точки на прямую, определение

В статье «Проекция точки на плоскость, координаты» мы упоминали, что проецирование фигуры является обобщенным понятием перпендикулярного или ортогонального проецирования.

Все геометрические фигуры состоят из точек, соответственно проекция этой фигуры есть множество проекций всех ее точек. Поэтому, чтобы иметь возможность спроецировать фигуру на прямую, необходимо получить навык проецирования точки на прямую.

Проекция точки на прямую – это или сама точка, если она принадлежит заданной прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.

Рассмотрим рисунок ниже: точка H 1 служит проекцией точки М 1 на прямую a , а точка М 2 , принадлежащая прямой, является проекцией сама себя.

Данное определение верно для случая на плоскости и в трехмерном пространстве.

Чтобы на плоскости получить проекцию точки М 1 на прямую a , проводится прямая b , проходящая через заданную точку M 1 и перпендикулярная прямой a . Таким образом, точка пересечения прямых a и b будет проекцией точки М 1 на прямую a .

В трехмерном пространстве проекцией точки на прямую будет служить точка пересечения прямой a и плоскости α , проходящей через точку М 1 и перпендикулярной прямой a .

Нахождение координат проекции точки на прямую

Рассмотрим данный вопрос в случаях проецирования на плоскости и в трехмерном пространстве.

Пусть нам заданы прямоугольная система координат O x y , точка М 1 ( x 1 , y 1 ) и прямая a . Необходимо найти координаты проекции точки М 1 на прямую a .

Проложим через заданную точку М 1 ( x 1 , y 1 ) прямую b перпендикулярно прямой a . Точку пересечения маркируем как H 1 . Точка Н 1 будет являться точкой проекции точки М 1 на прямую a .

Из описанного построения можно сформулировать алгоритм, который позволяет находить координаты проекции точки М 1 ( x 1 , y 1 ) на прямую a :

— составляем уравнение прямой (если оно не задано). Для совершения этого действия необходим навык составления основных уравнений на плоскости;

— записываем уравнение прямой b (проходящей через точку М 1 и перпендикулярной прямой a ). Здесь поможет статья об уравнении прямой, проходящей через заданную точку перпендикулярно заданной прямой;

— определяем искомые координаты проекции как координаты точки пересечения прямых a и b . Для этого решаем систему уравнений, составляющие которой – уравнения прямых a и b .

На плоскости O x y заданы точки М 1 ( 1 , 0 ) и прямая a (общее уравнение – 3 x + y + 7 = 0 ). Необходимо определить координаты проекции точки М 1 на прямую a .

Решение

Уравнение заданной прямой известно, поэтому, согласно алгоритму, переходим к шагу записи уравнения прямой b . Прямая b перпендикулярна прямой a , а значит нормальный вектор прямой a служит направляющим вектором прямой b . Тогда направляющий вектор прямой b запишем как b → = ( 3 , 1 ) . Запишем и каноническое уравнение прямой b , поскольку нам также заданы координаты точки М 1 , через которую проходит прямая b :

Заключительным шагом определяем координаты точки пересечения прямых a и b . Перейдем от канонических уравнений прямой b к общему ее уравнению:

x — 1 3 = y 1 ⇔ 1 · ( x — 1 ) = 3 · y ⇔ x — 3 y — 1 = 0

Составим систему уравнений из общих уравнений прямых a и b и решим ее:

3 x + y + 7 = 0 x — 3 y — 1 = 0 ⇔ y = — 3 x — 7 x — 3 y — 1 = 0 ⇔ y = — 3 x — 7 x — 3 · ( — 3 x — 7 ) — 1 = 0 ⇔ ⇔ y = — 3 x — 7 x = — 2 ⇔ y = — 3 · ( — 2 ) — 7 x = — 2 ⇔ y = — 1 x = — 2

В конечном итоге мы получили координаты проекции точки М 1 ( 1 , 0 ) на прямую 3 x + y + 7 = 0 : ( — 2 , — 1 ) .

Ответ: ( — 2 , — 1 ) .

Подробнее рассмотрим случай, когда необходимо определить координаты проекции заданной точки на координатные прямые и параллельные им прямые.

Пусть заданы координатные прямые O x и O y , а также точка М 1 ( x 1 , y 1 ) . Понятно, что проекцией заданной точки на координатную прямую O x вида y = 0 будет точка с координатами ( x 1 , 0 ) . Так и проекция заданной точки на координатную прямую O y будет иметь координаты 0 , y 1 .

Любую произвольную прямую, параллельную оси абсцисс, возможно задать неполным общим уравнением B y + C = 0 ⇔ y = — C B , а прямую, параллельную оси ординат — A x + C = 0 ⇔ x = — C A.

Тогда проекциями точки М 1 ( x 1 , y 1 ) на прямые y = — C B и x = — C A станут точки с координатами x 1 , — C B и — C A , y 1 .

Определите координаты проекции точки М 1 ( 7 , — 5 ) на координатную прямую O y , а также на прямую, параллельную прямой O y 2 y — 3 = 0 .

Решение

Запишем координаты проекции заданной точки на прямую O y : ( 0 , — 5 ) .

Запишем уравнение прямой 2 y — 3 = 0 в виде y = 3 2 . Становится видно, что проекция заданной точки на прямую y = 3 2 будет иметь координаты 7 , 3 2 .

Ответ: ( 0 , — 5 ) и 7 , 3 2 .

Пусть в трехмерном пространстве заданы прямоугольная система координат O x y z , точка М 1 ( x 1 , y 1 , z 1 ) и прямая a . Найдем координаты проекции точки М 1 на прямую a .

Построим плоскость α , проходящую через точку М 1 и перпендикулярную прямой a . Проекцией заданной точки на прямую a станет точка пересечения прямой a и плоскости α . Исходя из этого, приведем алгоритм для нахождения координат проекции точки М 1 ( x 1 , y 1 , z 1 ) на прямую a :

— запишем уравнение прямой а (если оно не задано). Для решения этой задачи необходимо ознакомиться со статьей об уравнениях прямой в пространстве;

— составим уравнение плоскости α , проходящей через точку М 1 и перпендикулярной прямой a (см. статью «Уравнение плоскости, проходящей через заданную точку перпендикулярно заданной прямой»);

— найдем искомые координаты проекции точки М 1 ( x 1 , y 1 , z 1 ) на прямую a – это будут координаты точки пересечения прямой α и плоскости α (в помощь – статья «Координаты точки пересечения прямой и плоскости»).

Задана прямоугольная система координат O x y z , и в ней – точка М 1 ( 0 , 1 , — 1 ) и прямая a . Прямой a соответствуют канонические уравнения вида: x + 2 3 = y — 6 — 4 = z + 1 1 . Определите координаты проекции точки М 1 на прямую a .

Решение

Используем указанный выше алгоритм. Уравнения прямой a известны, поэтому первый шаг алгоритма пропускаем. Запишем уравнение плоскости α . Для этого определим координаты нормального вектора плоскости α . Из заданных канонических уравнений прямой a выделим координаты направляющего вектора этой прямой: ( 3 , — 4 , 1 ) , который будет являться нормальным вектором плоскости α , перпендикулярной прямой a . Тогда n → = ( 3 , — 4 , 1 ) – нормальный вектор плоскости α . Таким образом, уравнение плоскости α будет иметь вид:

3 · ( x — 0 ) — 4 · ( y — 1 ) + 1 · ( z — ( — 1 ) ) = 0 ⇔ 3 x — 4 y + z + 5 = 0

Теперь найдем координаты точки пересечения прямой а и плоскости α, для этого используем два способа:

  1. Заданные канонические уравнения позволяют получить уравнения двух пересекающихся плоскостей, определяющих прямую a :

x + 2 3 = y — 6 — 4 = z + 1 1 ⇔ — 4 · ( x + 2 ) = 3 · ( y — 6 ) 1 · ( x + 2 ) = 3 · ( z + 1 ) 1 · ( y — 6 ) = — 4 · ( z + 1 ) ⇔ 4 x + 3 y — 10 = 0 x — 3 z — 1 = 0

Чтобы найти точки пересечения прямой 4 x + 3 y — 10 = 0 x — 3 z — 1 = 0 и плоскости 3 x — 4 y + z + 5 = 0 , решим систему уравнений:

4 x + 3 y — 10 = 0 x — 3 z — 1 = 0 3 x — 4 y + z + 5 = 0 ⇔ 4 x + 3 y = 10 x — 3 z = 1 3 x — 4 y + z = — 5

В данном случае используем метод Крамера, но возможно применить любой удобный:

∆ = 4 3 0 1 0 — 3 3 — 4 1 = — 78 ∆ x = 10 3 0 1 0 — 3 — 5 — 4 1 = — 78 ⇒ x = ∆ x ∆ = — 78 — 78 = 1 ∆ y = 4 10 0 1 1 — 3 3 — 5 1 = — 156 ⇒ y = ∆ y ∆ = — 156 — 78 = 2 ∆ z = 4 3 10 1 0 1 3 — 4 — 5 = 0 ⇒ z = ∆ z ∆ = 0 — 78 = 0

Таким образом, проекцией заданной точки на прямую a является точка c координатами ( 1 , 2 , 0 )

  1. На основе заданных канонических уравнений легко записать параметрические уравнения прямой в пространстве:

x + 2 3 = y — 6 — 4 = z + 1 1 ⇔ x = — 2 + 3 · λ y = 6 — 4 · λ z = — 1 + λ

Подставим в уравнение плоскости, имеющее вид 3 x — 4 y + z + 5 = 0 , вместо x , y и z их выражения через параметр:

3 · ( — 2 + 3 · λ ) — 4 · ( 6 — 4 · λ ) + ( — 1 + λ ) + 5 = 0 ⇔ 26 · λ = 0 ⇔ λ = 1

Вычислим искомые координаты точки пересечения прямой a и плоскости α по параметрическим уравнениям прямой a при λ = 1 :

x = — 2 + 3 · 1 y = 6 — 4 · 1 z = — 1 + 1 ⇔ x = 1 y = 2 z = 0

Таким образом, проекция заданной точки на прямую a имеет координаты ( 1 , 2 , 0 )

Ответ: ( 1 , 2 , 0 )

Напоследок отметим, что проекциями точки М 1 ( x 1 , y 1 , z 1 ) на координатные прямые O x , O y и O z буду являться точки с координатами ( x 1 , 0 , 0 ) , ( 0 , y 1 , 0 ) и ( 0 , 0 , z 1 ) соответственно.

Как найти проекцию точки на плоскость: методика определения и пример решения задачи

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее — ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

Первые три коэффициента — это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Далее в статье будем использовать записанное уравнение. Оно требуется, чтобы найти проекцию точки на плоскость.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x1; y1; z1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x2; y2; z2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

Где λ — действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

Подставим найденный параметр в уравнение прямой и найдем координаты проекции исходной точки на плоскость:

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 — 0 ) 2 + (-3,5 + 2 ) 2 + (4,5 — 3 ) 2 ) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/proektsija-tochki-na-prjamuju-koordinaty-proektsii/

http://fb.ru/article/440688/kak-nayti-proektsiyu-tochki-na-ploskost-metodika-opredeleniya-i-primer-resheniya-zadachi

Очень часто при решения домашней работы возникает вопрос: когда 3 точки лежат на одной прямой, ответ очень прост и он лежит в основе геометрии.

Осуществить проверку того, что три точки лежат на одной прямой можно через составления уравнения, рассматриваемой прямой, которая проходит через две наугад выбранные точки из этих трех. И проверки того, что этому уравнению удовлетворяют координаты оставшейся из этих трех точек.

Есть разные виды уравнения прямой. Воспользуемся одним из простейших способов и рассмотрим его для конкретно заданных точек.

Это сделаем лишь для того, чтобы не решать поставленную задачу в общем виде, а чтобы дать ответ на вопрос лежат ли 3 именно эти точки с этими координатами на одной прямой. Сформулируем задачу: Необходимо проверить лежат ли точки A(-2;1), Б(0;3), В (5;-7) на одной прямой.

Решим поставленную задачу

Как известно, через любые две точки можно провести прямую, причем единственную. Вот и проведем мысленно эту прямую. Допустим, прямую АБ. Значит, решение нашей задачи свелось к тому, что нужно проверить: принадлежит ли точка В прямой АБ. Если окажется, что точка В принадлежит прямой АБ, то все точки из условия будут лежать на одной прямой. Если мы выясним, что точка В не принадлежит прямой АБ, то можно будет утверждать, что точки А, Б и В на одной прямой не лежат. Составим уравнение прямой АБ как уравнение прямой проходящей через две точки:

(х+2)/(0+2)=(y-1)/(3-1)

После преобразования получим:

x-y=-3 — это уравнение прямой АБ

Проверим удовлетворяют ли координаты точки В этому уравнению, для этого достаточно выполнить подстановку координат точки В в место переменных в уравнении прямой АБ. Если получим верное числовое равенство, то точка В — это точка прямой АБ. В противном случае, неверное числовое равенство, будет свидетельствовать о не принадлежности точки В прямой АБ.

Как видим, не получили верное числовое равенство. Значит в этом случае точки А, Б, В не лежат на одной прямой.

Пример, когда 3 точки лежат на одной прямой можно легко подобрать для этой задачи. Всего лишь точка В должна иметь координаты (0;3) или (-7;-4)

Если вам даны две точки
, то вы можете отважно заявить, что они лежат на одной прямой
, потому что через всякие две точки
дозволено провести прямую. Но как же узнать, лежат ли все точки
на прямой
, если точек три, четыре либо огромнее? Подтвердить принадлежность точек одной прямой
дозволено несколькими методами.

Вам понадобится

  • Точки, заданные координатами.

Инструкция

1.
Если вам даны точки
с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), обнаружьте уравнение прямой
, применяя координаты всяких 2-х точек, скажем, первой и 2-й. Для этого подставьте соответствующие значения в уравнение прямой
: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, примитивно приравняйте к нулю числитель.

2.
Обнаружить уравнение прямой
, зная две точки
с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).

3.
Получив уравнение прямой
, проходящей через две точки
, подставьте значения координат третьей точки
в него взамен переменных х и у. Если равенство получилось правильное, значит все три точки
лежат на одной прямой
. Верно так же можете проверять принадлежность этой прямой
других точек.

4.
Проверьте принадлежность всех точек прямой
, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли правильным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой
должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.

5.
Еще один метод проверить принадлежность 3 точек прямой
– посчитайте площадь треугольника, тот, что они образуют. Если все точки
лежат на прямой
, то его площадь будет равна нулю. Подставьте значения координат в формулу: S=1/2((х1-х3)(у2-у3)-(х2-х3)(у1-у3)). Если позже всех вычислений вы получили нуль – значит, три точки
лежат на одной прямой
.

6.
Дабы обнаружить решение задачи графическим методом, постройте координатные плоскости и обнаружьте точки
по указанным координатам. После этого проведите прямую через две из них и продолжите до третьей точки
, посмотрите, пройдет ли она через нее. Учтите, данный метод подходит только для точек, заданных на плоскости с координатами (х, у), если же точка задана в пространстве и имеет координаты (х, у, z), то такой метод неприменим.

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой
: какова бы ни была прямая, есть точки
, принадлежащие и не принадлежащие ей. Следственно абсолютно разумно, что не все точки
будут лежать на одной прямой
линии.

Вам понадобится

  • – карандаш;
  • – линейка;
  • – ручка;
  • – тетрадь;
  • – калькулятор.

Инструкция

1.
Проверить принадлежность точки
той либо другой прямой
достаточно легко. Используйте для этого уравнение прямой
. Выходит, представим, что прямая проходит через точки
А(x1,y1) и В(x2,y2). Дана точка К(x,y): необходимо проверить ее принадлежность прямой
. Уравнение линии по двум точкам имеет дальнейший вид: (x – x1) * (y2 – y1) – (x2 – x1) * (y – y1) = 0.

2.
Подставьте значение координат точки
К в уравнение. Если (x – x1) * (y2 – y1) – (x2 – x1) * (y – y1) окажется огромнее нуля, то точка К расположена правее либо ниже прямой
, проведенной по точкам А и В.

3.
В том случае, если (x – x1) * (y2 – y1) – (x2 – x1) * (y – y1) будет поменьше нуля, точка К располагается выше либо левее линии. Другими словами, только в том случае, если уравнение вида (x – x1) * (y2 – y1) – (x2 – x1) * (y – y1) = 0 объективно, точки
А, В и К будут расположены на одной прямой
.

4.
В остальных случаях лишь две точки
(А и В), которые, по условию задания, лежат на прямой
, будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.

5.
Разглядите 2-й вариант определения принадлежности точки
примой: на данный раз надобно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), тот, что является частью прямой
z.

6.
Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0?p?1. ОВ и ОА являются векторами. Если есть такое число p, которое огромнее либо равно 0, но поменьше либо равно 1, то pOB+(1-p)OА=С, а значит, точка С будет лежать на отрезке АВ. В отвратном случае, данная точка не будет принадлежать этому отрезку.

7.
Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.

8.
Обнаружьте из первого уравнения число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0?p?1, то точка С принадлежит отрезку АВ.

9.
Постройте точки
по заданным координатам и проведите через них прямую. Это дозволит увидеть точки
, лежащие на одной прямой
, и те точки
, что не принадлежат ей.

Обратите внимание!

Удостоверитесь в правильности расчетов!

Полезный совет

Дабы обнаружить k – угловой показатель прямой, надобно (y2 – y1)/(x2 – x1).

Построение прямых — основа технического черчения. Теперь это все почаще делается с поддержкой графических редакторов, которые предоставляют проектировщику крупные вероятности. Впрочем некоторые тезисы построения остаются теми же, что и в классическом черчении – с подмогой карандаша и линейки.

Вам понадобится

  • – лист бумаги;
  • – карандаш;
  • – линейка;
  • – компьютер с программой AutoCAD.

Инструкция

1.
Начните с классического построения. Определите плоскость, в которой вы будете строить прямую. Пускай это будет плоскость листа бумаги. В зависимости от условий задачи расположите точки. Они могут быть произвольными, но не исключено, что задана какая-то система координат. Произвольные точки поставьте там, где вам огромнее понравится. Обозначьте их как А и В. С поддержкой линейки объедините их. Согласно аксиоме, через две точки неизменно дозволено провести прямую, притом только одну.

2.
Начертите систему координат. Пускай вам даны координаты точки А (х1; у1). Дабы их обнаружить, нужно отложить по оси х надобное число и провести через подмеченную точку прямую, параллельную оси у. После этого отложите величину, равную у1, по соответствующей оси. Из подмеченной точки проведите перпендикуляр до его пересечения с первым. Место их пересечения и будет точкой А. Таким же образом обнаружьте точку В, координаты которой дозволено обозначить как (х2; у2). Объедините обе точки прямой.

3.
В программе AutoCAD прямую дозволено возвести несколькими методами. Функция «по двум точкам» обыкновенно установлена по умолчании. Обнаружьте в верхнем меню вкладку «Основная». Вы увидите перед собой панель «Рисование». Обнаружьте кнопку с изображением прямой линии и нажмите на нее.

4.
Прямую по двум точкам в этой программе дозволено возвести двумя методами. Поставьте курсор в надобную точку на экране и щелкните левой кнопкой мыши. После этого определите вторую точку, протяните туда линию и тоже щелкните мышкой.

5.
AutoCAD разрешает также задать координаты обеих точек. Наберите в находящейся внизу командной строке (_xline). Нажмите Enter. Введите координаты первой точки и тоже нажмите на ввод. Верно также определите и вторую точку. Ее дозволено указать и щелчком мыши, поставив курсор в необходимую точку экрана.

6.
В AutoCAD дозволено возвести прямую не только по двум точкам, но и по углу наклона. В контекстном меню «Рисование» выберите прямую, а после этого опцию «Угол». Начальную точку дозволено поставить щелчком мыши либо по координатам, как и в предыдущем методе. После этого задайте размер угла и нажмите на ввод. По умолчании прямая расположится под необходимым углом к горизонтали.

Видео по теме

Совет 4: Как подтвердить, что точка не лежит в плоскости треугольника

Подтвердить, что точка не лежит в плоскости треугольника, дозволено легкой проверкой всех допустимых обстановок, тем больше что их не много. Не следует только забывать, что дозволено придти и к событию противоположному, то есть случаю, когда точка является внутренней для заданного треугольника.

Инструкция

1.
Раньше чем искать решение поставленной задачи, читателю следует самому принять решение о принадлежности сторон треугольника. Считать их точки внешними для треугольника либо нет. На данной стадии считаем, что это область замкнутая, а следственно она включает свои границы. Для простоты разглядите «плоский случай», но не забывайте и о пространственном обобщении. Следственно типовые уравнения для прямых плоскости вида y=kx+b, применять не следует, по весьма мере в начале решения.

2.
Выберите метод задания для сторон треугольника. Судя по постановке задачи, это не имеет твердого значения. Следственно считайте, что даны координаты его вершин A(xa, ya), B(xb, yb), C(xc, yc) (см. рис. 1.). Обнаружьте направляющие векторы сторон треугольника AB={xb-xa, yb-ya}, BC={xc-xb, yc-yb}, AC={xc-xa, yc-ya} и запишите канонические уравнения прямых, содержащих эти стороны. Для AB – (x-xa)/(xb-xa)=(y-ya)/(yb-ya). Для BС – (x-xb)/(xc-xb)=(y-yb)/(yc-ya). Для AС – (x-xa)/(xc-xa)=(y-ya)/(yc-ya). В соответствии с рисунком проведите горизонтальные и вертикальные линии, которые дозволено записать как x=xc, x= xa, x=xb, y=yc, y=ya, y=yb. Это дозволит до минимума сократить число вычислений. Дальше следуйте предложенному алгорифму. На рисунке заданная точка М(xo,yo) помещена в самом «неблагополучном» месте.

3.
Следуя по оси 0х, проверьте выполнение неравенства xc?xo?хb. Если оно не исполнено, то точка теснее лежит вне пределов треугольника, потому что «не внутри» – это и есть «снаружи». Если же неравенство исполнено, то дальше проверьте честность xc

4.
Проверьте выполнение неравенства уc?уo?уа. Если оно не объективно, то точка не лежит внутри треугольника. В отвратном случае обнаружьте ординату прямой, содержащей АB. у1=y(xo)=[(yb-ya)(xo-xa)]/(xb-xa)+ya. Также поступите с ординатой прямой для BC. у2=у(хо)=[(yс-yb)(xo-xb)]/(xc-xb)+yc. Составьте неравенство y2?yo?y1. Его выполнение разрешает сделать завершение о том, что заданная точка находится внутри треугольника. Если же это неравенство ложно, то она лежит вне его пределов, в частности в соответствии с рисунком.

Если точки А, B и С лежат на одной прямой, то больший из отрезков AB, ВС и АС равен сумме двух других. По условию больший из данных отрезков (отрезок АС) равен 5 см, а сумма двух других (AB+BC) равна 7 см. Поэтому точки А, B и С не лежат на одной прямой.

Если точки А, В, С лежат на одной прямой, то больший из отрезков АВ, ВС и АС равен сумме двух других. По условию больший из данных отрезков (АС =5 см), а АВ + ВС = 7 см, поэтому точки А, В, С не лежат на одной прямой.

Похожие задачи:

1. Площадь ромба равна S. Найдите площадь четырехугольника, вершинами которого являются середины сторон ромба.

2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС — их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.

3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.

4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.

1) Катеты прямоугольного треугольника равны 15см и 20см. Найдите длину окружности, диаметром которой является высота, проведенная к гипотенузе.

2) Площадь квадрата равна S. Найдите:

а) длину вписанной окружности

б) длину дуги, заключенной между двумя соседними точками касания.

в) площадь части квадрата, лежащей вне вписанной окружности.

1. Две окружности с центрами О и К имеют соответственно радиусы 4 и 8 см. Найдите радиусы окружностей, касающихся одновременно двух данных, если их центры лежат на прямой ОК, и отрезок ОК равен 6 см.

2. Высоты треугольника, пересекаясь в точке Н, образуют шесть углов с вершиной в точке Н. Определите эти углы, если углы данного треугольника равны: 50, 60, 70 градусов.

Если вам даны две точки
, то вы можете смело заявить, что они лежат на одной прямой
, так как через любые две точки
можно провести прямую. Но как же выяснить, лежат ли все точки
на прямой
, если точек три, четыре или больше? Доказать принадлежность точек одной прямой
можно несколькими способами.

Вам понадобится

  • Точки, заданные координатами.

Инструкция

Если вам даны точки
с координатами (х1, у1, z1), (х2, у2, z2), (х3, у3, z3), найдите уравнение прямой
, используя координаты любых двух точек, например, первой и второй. Для этого подставьте соответствующие значения в уравнение прямой
: (х-х1)/(х2-х1)=(у-у1)/(у2-у1)=(z-z1)/(z2-z1). Если один из знаменателей равен нулю, просто приравняйте к нулю числитель.

Найти уравнение прямой
, зная две точки
с координатами (х1, у1), (х2, у2), еще проще. Для этого подставьте значения в формулу (х-х1)/(х2-х1)=(у-у1)/(у2-у1).

Получив уравнение прямой
, проходящей через две точки
, подставьте значения координат третьей точки
в него вместо переменных х и у. Если равенство получилось верное, значит все три точки
лежат на одной прямой
. Точно так же можете проверять принадлежность этой прямой
других точек.

Проверьте принадлежность всех точек прямой
, проверив равенство тангенсов углов наклона соединяющих их отрезков. Для этого проверьте, будет ли верным равенство (х2-х1)/(х3-х1)=(у2-у1)/(у3-у1)=(z2-z1)/(z3-z1). Если один из знаменателей равен нулю, то для принадлежности всех точек одной прямой
должно выполняться условие х2-х1=х3-х1, у2-у1=у3-у1, z2-z1=z3-z1.

Еще один способ проверить принадлежность трех точек прямой
– посчитайте площадь треугольника, который они образуют. Если все точки
лежат на прямой
, то его площадь будет равна нулю. Подставьте значения координат в формулу: S=1/2((х1-х3)(у2-у3)-(х2-х3)(у1-у3)). Если после всех вычислений вы получили ноль — значит, три точки
лежат на одной прямой
.

Чтобы найти решение задачи графическим способом, постройте координатные плоскости и найдите точки
по указанным координатам. Затем проведите прямую через две из них и продолжите до третьей точки
, посмотрите, пройдет ли она через нее. Учтите, этот способ подходит только для точек, заданных на плоскости с координатами (х, у), если же точка задана в пространстве и имеет координаты (х, у, z), то такой способ неприменим.

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой
: какова бы ни была прямая, есть точки
, принадлежащие и не принадлежащие ей. Поэтому вполне логично, что не все точки
будут лежать на одной прямой
линии.

Вам понадобится

  • — карандаш;
  • — линейка;
  • — ручка;
  • — тетрадь;
  • — калькулятор.

Инструкция

Проверить принадлежность точки
той либо иной прямой
довольно просто. Используйте для этого уравнение прямой
. Итак, предположим, что прямая проходит через точки
А(x1,y1) и В(x2,y2). Дана точка К(x,y): нужно проверить ее принадлежность прямой
. Уравнение линии по двум точкам имеет следующий вид: (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) = 0.

Подставьте значение координат точки
К в уравнение. Если (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) окажется больше нуля, то точка К расположена правее или ниже прямой
, проведенной по точкам А и В.

В том случае, если (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) будет меньше нуля, точка К располагается выше или левее линии. Другими словами, только в том случае, если уравнение вида (x — x1) * (y2 — y1) — (x2 — x1) * (y — y1) = 0 справедливо, точки
А, В и К будут расположены на одной прямой
.

Содержание:

Общее уравнение прямой:

Пусть на плоскости дана декартова система координат. Движение точки с произвольными координатами х и у по этой плоскости порождает линию.

Определение: Любое соотношение Прямая линия на плоскости и в пространстве с примерами решения

Определение: Порядок линии определяется по высшему показателю степени переменных х и у или по сумме показателей степени в произведении этих величин.

Пример:

а) 2х + Зу-5 = 0 — линия первого порядка; точка A(l; 1) удовлетворяет этому соотношению, а точка, например, В(1; 0) — ему не удовлетворяет;

б) Прямая линия на плоскости и в пространстве с примерами решения

в) Прямая линия на плоскости и в пространстве с примерами решения — линии второго порядка.

Рассмотрим другое определение линии:

Определение: Геометрическое место точек, координаты которых удовлетворяют уравнению F(x; у)=0, называется линией, а само уравнение F(x; у) = 0 — уравнением линии.

Определение: Общим уравнением прямой называется уравнение первого порядка вида Прямая линия на плоскости и в пространстве с примерами решения

Рассмотрим частные случаи этого уравнения:

а) С = 0; Прямая линия на плоскости и в пространстве с примерами решения — прямая проходит начало системы координат (Рис. 20):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 20. Прямая, проходящая через начало координат.

б) 5 = 0; Ах+С=0 — прямая проходит параллельно оси ординат Оу (Рис. 21):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 21. Прямая, проходящая параллельно оси ординат Оу.

в) А = 0; Ву+С=0 — прямая проходит параллельно оси абсцисс Ох (Рис. 22):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 22. Прямая, проходящая параллельно оси абсцисс Ох.

Виды уравнений прямой

1. Уравнение прямой с угловым коэффициентом. Пусть дано общее уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения в котором коэффициент Прямая линия на плоскости и в пространстве с примерами решения Разрешим общее уравнение прямой относительно переменной Прямая линия на плоскости и в пространстве с примерами решения Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда уравнение примет вид Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой с угловым коэффициентом. Выясним геометрический смысл параметров Прямая линия на плоскости и в пространстве с примерами решения При х = 0, у = b, т.е. параметр b показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета. При Прямая линия на плоскости и в пространстве с примерами решения т.е. прямая отсекает на оси абсцисс отрезок к Прямая линия на плоскости и в пространстве с примерами решения (Рис. 23, для определенности принято, что Прямая линия на плоскости и в пространстве с примерами решения):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 23. Отрезки, отсекаемые прямой на координатных осях.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения т.е. угловой коэффициент k определяет тангенс угла наклона прямой к положительному направлению оси абсцисс Ох.

2. Уравнение прямой в отрезках.

Пусть в общем уравнении прямой параметр Прямая линия на плоскости и в пространстве с примерами решения Выполним следующие преобразования Прямая линия на плоскости и в пространстве с примерами решения

Обозначим через Прямая линия на плоскости и в пространстве с примерами решения тогда последнее равенство перепишется в виде Прямая линия на плоскости и в пространстве с примерами решения. которое называется уравнением прямой в отрезках. Выясним геометрический смысл величин m и n (Рис. 24). При х=0, у=n, т.е. параметр n показывает, какой величины отрезок отсекает прямая на оси ординат, считая от начала отсчета.

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 24. Отрезки, отсекаемые прямой на координатных осях.

При у=о, х=m, т.е. прямая отсекает на оси абсцисс отрезок m. Следовательно, прямая проходит через 2 точки: Прямая линия на плоскости и в пространстве с примерами решения

3. Уравнение прямой, проходящей через две заданные точки. Пусть дано общее уравнение прямой Ах + Ву + С = 0, которая проходит через две известные точки Прямая линия на плоскости и в пространстве с примерами решения Так как точки Прямая линия на плоскости и в пространстве с примерами решения лежат на прямой, то их координаты удовлетворяют общему уравнению прямой, т.е. выполняются равенства Прямая линия на плоскости и в пространстве с примерами решения Вычтем первое из этих равенств из общего уравнения прямой и из второго равенства:

Прямая линия на плоскости и в пространстве с примерами решения

Пусть Прямая линия на плоскости и в пространстве с примерами решения тогда полученные равенства можно преобразовать к виду Прямая линия на плоскости и в пространстве с примерами решения Отсюда находим, что Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения Полученное уравнение называется уравнением прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

4. Уравнение прямой, проходящей через заданную точку Прямая линия на плоскости и в пространстве с примерами решенияпараллельно заданному вектору Прямая линия на плоскости и в пространстве с примерами решения (каноническое уравнение прямой). Пусть прямая проходит через заданную точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Определение: Вектор Прямая линия на плоскости и в пространстве с примерами решения называется направляющим вектором прямой. Возьмем на прямой произвольную точку Прямая линия на плоскости и в пространстве с примерами решения и создадим вектор Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения (Рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 25. Прямая, проходящая через данную точку параллельно направляющему вектору.

В силу того, что вектора Прямая линия на плоскости и в пространстве с примерами решения коллинеарны, то воспользуемся первым условием коллинеарности: отношения соответствующих проекций равны между собой Прямая линия на плоскости и в пространстве с примерами решения

Определение: Полученное уравнение называется либо уравнением, проходящим через заданную точку параллельно направляющему вектору, либо каноническим уравнением прямой.

5. Параметрическое уравнение прямой. Если каждую дробь в каноническом уравнении прямой приравнять некоторому параметру t, то получим параметрическое уравнение прямой Прямая линия на плоскости и в пространстве с примерами решения

Основные задачи о прямой на плоскости

1. Координаты точки пересечения двух прямых. Пусть две прямые заданы общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения Требуется найти координаты точки пересечения этих прямых. Для того чтобы вычислить координаты точки пересечения М(х; у), необходимо решить вышеприведенную систему линейных алгебраических уравнений, так как координаты точки М(х; у) должны одновременно удовлетворять уравнениям прямых Прямая линия на плоскости и в пространстве с примерами решения

2. Угол между двумя пересекающимися прямыми. Пусть даны две пересекающиеся прямые, заданные уравнениями с угловыми коэффициентами

Прямая линия на плоскости и в пространстве с примерами решения

Требуется найти угол между этими прямыми (Рис. 26):

Прямая линия на плоскости и в пространстве с примерами решения

Рис. 26. Угол между двумя прямыми.

Из рисунка видно, что Прямая линия на плоскости и в пространстве с примерами решения ВычислимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Наименьший угол между пересекающимися прямыми определим формулой Прямая линия на плоскости и в пространстве с примерами решения Из полученной формулы видно:

Отсюда следует условие перпендикулярности прямых: угловые коэффициенты прямых связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения

Решение:

В силу того, что Прямая линия на плоскости и в пространстве с примерами решения что прямые параллельны, следовательно, Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Выяснить взаимное расположение прямых Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как угловые коэффициенты Прямая линия на плоскости и в пространстве с примерами решения и связаны между собой соотношением Прямая линия на плоскости и в пространстве с примерами решения то прямые взаимно перпендикулярны.

3. Расстояние от точки до прямой. Расстояние от точки до прямой определятся вдоль перпендикуляра, опущенного из точки Прямая линия на плоскости и в пространстве с примерами решения на прямую Прямая линия на плоскости и в пространстве с примерами решения Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана общим уравнением, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Если прямая Прямая линия на плоскости и в пространстве с примерами решения задана уравнением прямой с угловым коэффициентом, то расстояние от точки до прямой определяется формулой: Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве. Системы координат на плоскости

Рассмотрим произвольную прямую. Выберем на этой прямой начальную точку, обозначаемую буквой О, определим положительное направление, выберем некоторый отрезок в качестве линейной единицы, благодаря чему прямая станет осью. После этого условимся называть координатой любой точки М на этой оси величину отрезка Прямая линия на плоскости и в пространстве с примерами решения. Точку О будем называть началом координат; ее собственная координата равна нулю. Так вводятся координаты на прямой.

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке, т.е. указано, какая из них считается первой, а какая — второй. Точка пересечения осей называется началом координат и обозначается через О, а сами оси — координатными осями, причем первую из них называют также осью абсцисс и обозначают через Ох, а вторую — осью ординат, обозначаемую Оу.

Пусть М- произвольная точка плоскости. Спроектируем точку M на координатные оси, т.е., проведем через М перпендикуляры к осям Ох и Оу; основания этих перпендикуляров обозначим соответственно Прямая линия на плоскости и в пространстве с примерами решения.

Координатами точки М в заданной системе называются числа Прямая линия на плоскости и в пространстве с примерами решения, обозначающие величину отрезка Прямая линия на плоскости и в пространстве с примерами решенияоси абсцисс и величину отрезка Прямая линия на плоскости и в пространстве с примерами решения оси ординат, где х — первая координата, а у- вторая координата точки М (рис.7.1). Символически это записывается в виде М(х, у). Прямая линия на плоскости и в пространстве с примерами решения

Если задана декартова прямоугольная система координат, то каждая точка М плоскости в этой системе имеет одну вполне определенную пару координат х, у — М(х, у). И обратно, для любых х и у на плоскости найдется одна вполне определенная точка с абсциссой х и ординатой у.

На рис. 7.2 положение точки Р полностью определяется ее координатами (2;3). Прямая линия на плоскости и в пространстве с примерами решения

Две координатные оси разделяют всю плоскость на четыре части, называемыми координатными плоскостями, определяемыми соответственно:

Декартова прямоугольная система координат является наиболее употребительной. Однако, в отдельных случаях могут оказаться более удобными или косоугольная декартова или полярная системы координат.

Косоугольная система координат от прямоугольной декартовой системы координат отличается только произвольным углом между осями координат.

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча OA, называемого полярной осью, масштаба для измерения длин и направления- вращения в плоскости, считаемого положительным (рис. 7.3). Прямая линия на плоскости и в пространстве с примерами решения

Каждая точка М в полярной системе координат задается парой координат Прямая линия на плоскости и в пространстве с примерами решения.

Декартова прямоугольная система координат связана с полярной системой формулами: Прямая линия на плоскости и в пространстве с примерами решения

Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точкамиПрямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения. Числа Прямая линия на плоскости и в пространстве с примерами решениямогут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 7.4 все числа выбраны положительными. Проведем через точку Прямая линия на плоскости и в пространстве с примерами решения горизонтальную прямую, а через точку Прямая линия на плоскости и в пространстве с примерами решения — вертикальную. Пусть R -точка их пересечения. Тогда по теореме Пифагора

Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения (7.1.1)

Это и есть формула для вычисления расстояния между двумя точками. Прямая линия на плоскости и в пространстве с примерами решения

Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки Прямая линия на плоскости и в пространстве с примерами решения. Например, если точка Прямая линия на плоскости и в пространстве с примерами решения расположена ниже точки Прямая линия на плоскости и в пространстве с примерами решенияи справа от нес, как на рис. 7.5, то отрезок Прямая линия на плоскости и в пространстве с примерами решения можно считать равныму Прямая линия на плоскости и в пространстве с примерами решения.

Расстояние между точками, вычисляемое по формуле (7.1.1), от этого не изменится, так как Прямая линия на плоскости и в пространстве с примерами решения. Заметим, что, так как величина Прямая линия на плоскости и в пространстве с примерами решения в этом случае отрицательна, то разность Прямая линия на плоскости и в пространстве с примерами решения больше, чемПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если обозначить через Прямая линия на плоскости и в пространстве с примерами решения угол, образованный положительным направлением оси абсцисс и отрезком Прямая линия на плоскости и в пространстве с примерами решения , то формулы

Прямая линия на плоскости и в пространстве с примерами решения

выражают проекции произвольного отрезка на координатные оси через его длину и полярный угол. Из формул (7.1.2) получаем формулы:

Прямая линия на плоскости и в пространстве с примерами решения

позволяющие определить полярный угол отрезка по координатам его конца и начала. Кроме того, если u — произвольная ось, аПрямая линия на плоскости и в пространстве с примерами решения — угол наклона отрезкаПрямая линия на плоскости и в пространстве с примерами решения к этой оси, то проекция отрезка на ось равна его длине, умноженной на косинус угла наклона к этой оси:

Прямая линия на плоскости и в пространстве с примерами решения.

Пусть на плоскости даны две произвольные точки, из которых одна считается первой, другая — второй. Обозначим их в заданном порядке через Прямая линия на плоскости и в пространстве с примерами решения. Проведем через данные точки ось u. Пусть М- еще одна точка оси и, расположенная на ней как угодно, но не совпадает с точкой Прямая линия на плоскости и в пространстве с примерами решения.

Определение 7.1.1. Число Прямая линия на плоскости и в пространстве с примерами решенияопределяемое равенствомПрямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения— величины направленных отрезков Прямая линия на плоскости и в пространстве с примерами решения оси u, называется отношением, в котором точка М делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения .

Число Прямая линия на плоскости и в пространстве с примерами решения не зависит от направления оси и от масштаба, т.к. при изменении этих параметров будут одновременно меняться величины Прямая линия на плоскости и в пространстве с примерами решения . Кроме того, Прямая линия на плоскости и в пространстве с примерами решения будет положительно, если Мнаходится между точками Прямая линия на плоскости и в пространстве с примерами решения если же М вне отрезка Прямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения -отрицательное.

Задача о делении отрезка в данном отношении формулируется следующим образом:

Считая известными координаты двух точек Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения и отношение Прямая линия на плоскости и в пространстве с примерами решения в котором некоторая неизвестная точка М делит отрезок Прямая линия на плоскости и в пространстве с примерами решения, найти координаты точки М.

Решение задачи определяется следующей теоремой.

Теорема 7.1.1. Если точка М(х, у) делит направленный отрезок Прямая линия на плоскости и в пространстве с примерами решения в отношении Прямая линия на плоскости и в пространстве с примерами решения то координаты этой точки выражаются формулами:

Прямая линия на плоскости и в пространстве с примерами решения

Доказательство:

Спроектируем точки Прямая линия на плоскости и в пространстве с примерами решения на ось Ох и обозначим их проекции соответственно через Прямая линия на плоскости и в пространстве с примерами решения (рис. 7.6). На основании теоремы о пропорциональности отрезков прямых, заключенных между параллельными прямыми (Если две прямые пересечь тремя параллельными прямыми, то отношение двух отрезков, получившихся на одной прямой, равно отношению двух соответствующих отрезков другой прямой), имеем:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в (7.1.4) величины отрезков Прямая линия на плоскости и в пространстве с примерами решенияи

Прямая линия на плоскости и в пространстве с примерами решения, получимПрямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Разрешая это уравнение относительно х, находим: Прямая линия на плоскости и в пространстве с примерами решения

Вторая формула (7.1.3) получается аналогично. Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения — две произвольные точки и М(х,y) —

середина отрезкаПрямая линия на плоскости и в пространстве с примерами решения , то Прямая линия на плоскости и в пространстве с примерами решения. Эти формулы

получаются из (7.1.3) при Прямая линия на плоскости и в пространстве с примерами решения.

Основная теорема о прямой линии на плоскости

Предположим, что в данной плоскости задана прямоугольная система координат и некоторая прямая l.

Всякий ненулевой вектор, коллинеарный данной прямой, называется её направляющим вектором. Всякие два направляющих вектора Прямая линия на плоскости и в пространстве с примерами решения одной и той же прямой коллинеарны между собой, т.е.

Прямая линия на плоскости и в пространстве с примерами решения, .

Для всех направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения данной прямой, не параллельной оси ординат, отношение Прямая линия на плоскости и в пространстве с примерами решения ординаты вектора к его абсциссе имеет одно и то же постоянное значение k, называемое угловым коэффициентом данной прямой.

Действительно, если Прямая линия на плоскости и в пространстве с примерами решения — два направляющих вектора данной прямой /, то векторы коллинеарны, т.е.

Прямая линия на плоскости и в пространстве с примерами решения их координаты пропорциональны: Прямая линия на плоскости и в пространстве с примерами решенияа значит Прямая линия на плоскости и в пространстве с примерами решения

Угловой коэффициент прямой можно определить и по-другому: как тангенс угла, образованного положительным направлением оси абсцисс и заданной прямой.

Справедлива следующая теорема.

Теорема 7.3,1. Всякая прямая на плоскости определяется уравнением первой степени с двумя переменными х и у; и обратно, всякое уравнение первой степени с двумя переменными х и у определяет некоторую прямую на плоскости.

Доказательство: Пусть В = (О,b}- точка пересечения прямой L с осью у, а Р = (х,у) — любая другая точка на этой прямой. Проведем через точку В прямую, параллельную оси х, а через точку Р — прямую, параллельную оси у; проведем также прямую х = 1. Пусть k -угловой коэффициент прямой L (см. рис. 7.7). Случай к =0 не исключается.

Прямая линия на плоскости и в пространстве с примерами решения

Так как треугольники BSQ и BRP подобны, то Прямая линия на плоскости и в пространстве с примерами решения или после упрощения

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, если точка Р принадлежит прямой L, то ее координаты удовлетворяют уравнению (7.2.1). Обратно, нетрудно показать, что если х и у связаны уравнением (7.2.1), то точка Р принадлежит прямой L, проходящей через точку (0;b) и имеющей угловой коэффициент k.

Таким образом, уравнение любой прямой можно записать в виде:

Прямая линия на плоскости и в пространстве с примерами решения (не вертикальная прямая) Прямая линия на плоскости и в пространстве с примерами решения, (7.2.2), х = а (вертикальная прямая) (7.2.3).

В обоих случаях мы получаем уравнение первой степени. Кроме того, каждое уравнение первой степени ио х и у можно привести к виду (7.2.2) либо (7.2.3).

Докажем обратное утверждение. Предположим, что задано произвольное уравнение первой степени:

Ах+Ву+С=0. (7.2.4)

Если Прямая линия на плоскости и в пространстве с примерами решения, мы можем записать уравнение (7.2.4) в виде

Прямая линия на плоскости и в пространстве с примерами решения

т.е. в виде (7.2.2). При В = 0 уравнение (7.2.3) сводится к уравнению

А х = —С,

или Прямая линия на плоскости и в пространстве с примерами решения, т.е. к уравнению вида (7.2.3).

Таким образом, любая прямая описывается уравнением первой степени с неизвестными х и у, и обратно, каждое уравнение первой степени с неизвестными х и v определяет некоторую прямую. Прямая линия на плоскости и в пространстве с примерами решения

Уравнение (7.2.4) называется общим уравнением прямой. Так

как Прямая линия на плоскости и в пространстве с примерами решения, то вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором прямой (7.2.4). Вектор Прямая линия на плоскости и в пространстве с примерами решения перпендикулярен прямой (7.2.4) и называется нормальным вектором. Возможны частные случаи:

1. Прямая линия на плоскости и в пространстве с примерами решения или у =b, где Прямая линия на плоскости и в пространстве с примерами решения, -это уравнсние прямой, параллельной оси Ох.

2. Прямая линия на плоскости и в пространстве с примерами решения или х = а, где Прямая линия на плоскости и в пространстве с примерами решения, — это уравнение прямой, параллельной оси Оу.

3. Прямая линия на плоскости и в пространстве с примерами решения— это уравнение прямой, проходящей через начало координат.

4. А=0; С=0; Ву-0 или у = 0 — это уравнение оси абсцисс Ох.

5. В=0;С=0; Ах=0 или х = 0 — это уравнение оси ординат Оу.

Различные виды уравнений прямой на плоскости

Положение прямой на плоскости относительно системы координат можно задать различными способами. Например, прямая однозначно определяется: двумя различными точками; точкой и направляющим вектором; отрезками, отсекаемыми прямой на осях координат и др. Однако, обязательно, должна быть точка, лежащая на этой прямой.

Пусть в уравнении (7.2.4) ни один из коэффициентов А, В, С не равен нулю. Перенесем свободные члены вправо и разделим на (-С). Получим уравнение прямой в отрезках:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения-длины отрезков, отсекаемых прямой l на осях координат, взятые с соответствующими знаками (в зависимости от того, положительные или отрицательные полуоси координат пересекает прямая l).

Рассмотрим прямую l на плоскости и выберем на этой прямой какие-нибудь точки Прямая линия на плоскости и в пространстве с примерами решения. Тогда вектор Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором этой прямой l.

Геометрическое место концов всевозможных векторов вида Прямая линия на плоскости и в пространстве с примерами решения где Прямая линия на плоскости и в пространстве с примерами решения пробегает все вещественные числовые значения, определяет прямую l. Уравнение (7.3.2) называется уравнением прямой в векторной форме (векторным уравнением прямой). Записав векторное уравнение (7.3.2) в координатной форме Прямая линия на плоскости и в пространстве с примерами решения и воспользовавшись определением равенства векторов, получим параметрические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения— координаты направляющего вектора.

Система (7.3.3) равносильна уравнению

Прямая линия на плоскости и в пространстве с примерами решения

называемым каноническим уравнением прямой на плоскости. Из системы (7.3.3) можно получить уравнение

Прямая линия на плоскости и в пространстве с примерами решения которое называется уравнением прямой, проходящей через две данные точки Прямая линия на плоскости и в пространстве с примерами решения

Если абсциссы точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е.Прямая линия на плоскости и в пространстве с примерами решения то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси ординат и ее уравнение имеет вид: х=а.

Если ординаты точек Прямая линия на плоскости и в пространстве с примерами решения одинаковы, т. е. Прямая линия на плоскости и в пространстве с примерами решения, то прямая Прямая линия на плоскости и в пространстве с примерами решения параллельна оси абсцисс и ее уравнение имеет вид: у=b. Уравнение (7.3.5) можно преобразовать к виду:

Прямая линия на плоскости и в пространстве с примерами решения

или

Прямая линия на плоскости и в пространстве с примерами решения

где

Прямая линия на плоскости и в пространстве с примерами решения

угловой коэффициент прямой.

Уравнение (7.3.6) называется уравнением прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения и имеющей угловой коэффициент k.

Пример:

Составить уравнение прямой, проходящей через две точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

I способ. Воспользуемся уравнением (7.3.5). Подставив известные координаты точек Прямая линия на плоскости и в пространстве с примерами решения, получим искомое уравнение прямой:

Прямая линия на плоскости и в пространстве с примерами решения

II способ. Зная координаты точек Прямая линия на плоскости и в пространстве с примерами решения по формуле (7.3.7) можно найти угловой коэффициент искомой прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Тогда, воспользовавшись уравнением (7.3.6), найдём искомое уравнение прямой: Прямая линия на плоскости и в пространстве с примерами решения.

Заметим, что составленное уравнение можно записать как уравнение прямой в отрезках, разделив все члены уравнения

Прямая линия на плоскости и в пространстве с примерами решения.

Взаимное расположение двух прямых на плоскости

Пусть на плоскости заданы две прямые общими уравнениями Прямая линия на плоскости и в пространстве с примерами решения. Угол между ними можно вычислить как угол между направляющими векторами

Прямая линия на плоскости и в пространстве с примерами решения этих прямых:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямые параллельныПрямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решенияколлинеарны, а это значит, что их соответствующих координаты пропорциональны:

Прямая линия на плоскости и в пространстве с примерами решения

И обратно, если координаты при неизвестных х и у пропорциональны, то прямые параллельны. Следовательно, можно сформулировать следующую теорему:

Теорема 7.4.1. Две прямыеПрямая линия на плоскости и в пространстве с примерами решения параллельны тогда и только тогда, когда в их уравнениях коэффициенты при соответствующих переменных х и у пропорциональны.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения параллельны,

т. к.Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые перпендикулярны Прямая линия на плоскости и в пространстве с примерами решения, то их нормальные векторы Прямая линия на плоскости и в пространстве с примерами решения тоже перпендикулярны, а это значит, что скалярное произведение этих векторов равно нулю: Прямая линия на плоскости и в пространстве с примерами решения , или в координатной форме

Прямая линия на плоскости и в пространстве с примерами решения

Справедливо и обратное утверждение: если скалярное произведение нормальных векторов равно нулю, то прямые /, и /2 перпендикулярны.

Теорема 7.4.2. Две прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны тогда и только тогда, когда коэффициенты при переменных х и у удовлетворяют равенству Прямая линия на плоскости и в пространстве с примерами решения.

Например, прямые Прямая линия на плоскости и в пространстве с примерами решения перпендикулярны, так как

Прямая линия на плоскости и в пространстве с примерами решения.

Если прямые заданы уравнениями вида Прямая линия на плоскости и в пространстве с примерами решенияи Прямая линия на плоскости и в пространстве с примерами решения, то угол между ними находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Для того чтобы прямые были параллельны, необходимо и достаточно, чтобы выполнялось равенство

Прямая линия на плоскости и в пространстве с примерами решения (7.4.5)

а для их перпендикулярности необходимо и достаточно, чтобы

Прямая линия на плоскости и в пространстве с примерами решения (7.4.6)

Пример:

Найти проекцию точки Р (2, 3) на прямую, проходящую через точки А (4, 3) и В (6, 5).

Решение:

Проекция точки Р на прямую АВ — это точка пересечения перпендикуляра, проведенного к этой прямой из точки Р.

Вначале составим уравнение прямой АВ. Воспользовавшись уравнением (7.3.5), последовательно получаем:

Прямая линия на плоскости и в пространстве с примерами решения

Для того, чтобы составить уравнение перпендикуляра, проведенного из точки Р на прямую АВ, воспользуемся уравнением (7.3.6). Угловой коэффициент k определим из условия перпендикулярности двух прямых, т. е. из формулы (7.4.6). Поскольку Прямая линия на плоскости и в пространстве с примерами решения,то из равенства Прямая линия на плоскости и в пространстве с примерами решения находим угловой коэффициент перпендикуляра Прямая линия на плоскости и в пространстве с примерами решения. Подставляя найденное значение углового коэффициента Прямая линия на плоскости и в пространстве с примерами решения и координаты точки Р (2, 3) в уравнение (7.3.6), получаем:

Прямая линия на плоскости и в пространстве с примерами решения.

Решая систему уравнений, составленную из уравнений прямой АВ и перпендикуляра

Прямая линия на плоскости и в пространстве с примерами решения

найдём координаты проекции точки Р на прямую АВ: х=3 у=2, т.е.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Издержки на производство шести автомобилей составляют 1000 млн. ден. ед., а на производство двадцати автомобилей- 15000 млн. ден. ед. Определить издержки на производство 22 автомобилей при условии, что функция К(х) издержек производства линейна, т.е. имеет вид у = ах + b .

Решение:

Обозначим через х количество автомобилей, а через y- издержки производства. Тогда из условия задачи следует, что заданы координаты двух точек- А(6; 1000) и В(20; 15000), принадлежащих линейной функции у = ах +b. Воспользовавшись уравнением (7.3.6 ), найдём искомое уравнение:

Прямая линия на плоскости и в пространстве с примерами решения

Подставив в найденную функцию х = 22, определим издержки на производство 22 автомобилей:

Прямая линия на плоскости и в пространстве с примерами решения (млн. дсн. ед)

Пример:

Фирма продаёт свои изделия по 10 ден. ед. за единицу. Затраты на изготовление одного изделия составляют 6 ден. ед. Непроизводственные расходы фирмы равны 300 ден. ед. в год. Определить годовой выпуск продукции, необходимой для того, чтобы фирма работала с прибылью.

Решение:

Обозначим через х объём произведенной продукции. Тогда доход фирмы равен D = 10x. Затраты на производство определяются уравнением: Прямая линия на плоскости и в пространстве с примерами решения. Найдём точку безубыточности. т.е. значение x, при котором доход фирмы равен затратам: D=K, т.е. 10x = 6x + 300. Решив это уравнение, получим значение объёма производства, при котором фирма работает без убытка: х=75. Следовательно, если объём производства Прямая линия на плоскости и в пространстве с примерами решения то фирма будет работать с прибылью.

Прямая линия в пространстве

Системы координат в пространстве

В трехмерном пространстве система координат определяется тремя взаимно перпендикулярными осями, проходящими через начало координат О. Снабдив каждую ось единицей измерения длин, можно задать тремя упорядоченными числами (называемыми координатами) положение точки в пространстве. Например, точка Р задается упорядоченной тройкой чисел Р( 1,2,3).

Прямая линия на плоскости и в пространстве с примерами решения

Пусть задано пространствоПрямая линия на плоскости и в пространстве с примерами решения. Важнейшим понятием пространственной аналитической геометрии является понятие уравнения поверхности. Всякая же линия рассматривается как пересечение двух поверхностей. Мы остановимся на изучении поверхности первого порядка — плоскости и прямой линии.

Положение прямой в пространстве вполне определяется заданием какой-либо сё фиксированной точки Прямая линия на плоскости и в пространстве с примерами решения и вектора Прямая линия на плоскости и в пространстве с примерами решенияпараллельного этой прямой.

Вектор Прямая линия на плоскости и в пространстве с примерами решения, параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая L проходит через точку Прямая линия на плоскости и в пространстве с примерами решения, лежащую на прямой, параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения(см. рис. 7.9).

Рассмотрим произвольную точку M(x,y,z) на этой прямой. Из рисунка видно, что вектор Прямая линия на плоскости и в пространстве с примерами решения параллельный (коллинеарный) вектору Прямая линия на плоскости и в пространстве с примерами решения. Поскольку векторыПрямая линия на плоскости и в пространстве с примерами решения коллинеарны, то найдётся такое число t, что Прямая линия на плоскости и в пространстве с примерами решения , где множитель t может принимать любое числовое значение в зависимости от положения точки М на прямой.

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение Прямая линия на плоскости и в пространстве с примерами решения (7.5.1) называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки M, лежащей на прямой. Это уравнение можно записать в виде: Прямая линия на плоскости и в пространстве с примерами решения (см. рис. 7.9). Запишем это уравнение в координатной форме. Подставив координаты векторов Прямая линия на плоскости и в пространстве с примерами решения в уравнение (7.5.1) и воспользовавшись определением алгебраических операций над векторами и равенством векторов, получим уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты х, у и z и точка М перемещается по прямой.

Разрешив уравнения (7.5.2) относительно t

Прямая линия на плоскости и в пространстве с примерами решения

и приравняв найденные значенияt получим канонические уравнения прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Если прямая L в пространстве задается двумя своими точками Прямая линия на плоскости и в пространстве с примерами решения,то вектор

Прямая линия на плоскости и в пространстве с примерами решения

можно взять в качестве направляющего вектора и тогда уравнения (7.5.3) преобразуются в уравнения

Прямая линия на плоскости и в пространстве с примерами решения

где Прямая линия на плоскости и в пространстве с примерами решения. (7.5.4)- это уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить параметрические уравнения прямой, проходящей через точкуПрямая линия на плоскости и в пространстве с примерами решения, перпендикулярно плоскости Oxz.

Решение:

В качестве направляющего вектораПрямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения • Подставив значения координат точкиПрямая линия на плоскости и в пространстве с примерами решения и значения координат направляющего вектора в уравнения (7.5.2), получаем: Прямая линия на плоскости и в пространстве с примерами решения.

Пример:

Записать уравнения прямой Прямая линия на плоскости и в пространстве с примерами решения в параметрическом виде.

ОбозначимПрямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения,

Прямая линия на плоскости и в пространстве с примерами решения, откуда следует, что Прямая линия на плоскости и в пространстве с примерами решения.

Замечание. Пусть прямая перпендикулярна одной из координатных осей, например, оси Ох. Тогда направляющий вектор Прямая линия на плоскости и в пространстве с примерами решения

прямой перпендикулярный оси Ох, имеет координаты (о; n; р) и параметрические уравнения прямой примут вид Прямая линия на плоскости и в пространстве с примерами решения

Исключая из уравнений параметр t, получим уравнения прямой в виде

Прямая линия на плоскости и в пространстве с примерами решения

Однако и в этом случае формально можно записывать канонические уравнения прямой в виде Прямая линия на плоскости и в пространстве с примерами решения. Таким образом, если в знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, канонические уравнения

Прямая линия на плоскости и в пространстве с примерами решения определяют прямую перпендикулярную осям О х и О у или параллельную оси О z.

Пример:

Составить канонические и параметрические уравнения прямой, проходящей через точку Прямая линия на плоскости и в пространстве с примерами решения параллельно вектору Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точки Прямая линия на плоскости и в пространстве с примерами решения, и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.2) и (7.5.3), находим искомые канонические уравнения:

.Прямая линия на плоскости и в пространстве с примерами решенияи параметрические уравнения:

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить канонические уравнения прямой, проходящей через точку М(2, -1,4) параллельно

а) прямой Прямая линия на плоскости и в пространстве с примерами решения;

б) оси Ох;

в) оси Оу;

г) оси Oz.

Решение:

а) Поскольку направляющий вектор заданной прямой

Прямая линия на плоскости и в пространстве с примерами решения является направляющим вектором искомой прямой, то

подставив координаты точки М(2; -1; 4) и вектора Прямая линия на плоскости и в пространстве с примерами решения в (7.5.3) получим уравнение искомой прямой: Прямая линия на плоскости и в пространстве с примерами решения

б) Поскольку единичный вектор оси О х: Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой, то подставив в уравнение

(7.5.3) координаты точки М(2; -1; 4 ) и вектора Прямая линия на плоскости и в пространстве с примерами решения, получаем:

Прямая линия на плоскости и в пространстве с примерами решения

в) В качестве направляющего вектора Прямая линия на плоскости и в пространстве с примерами решения искомой прямой можно взять единичный вектор оси Оу: Прямая линия на плоскости и в пространстве с примерами решения. В соответствии с уравнением (7.5.3), получаем Прямая линия на плоскости и в пространстве с примерами решения или Прямая линия на плоскости и в пространстве с примерами решения.

г) Единичный вектор оси Oz : Прямая линия на плоскости и в пространстве с примерами решения будет направляющим вектором искомой прямой. В соответствии с уравнением (7.5.3), получаем

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Составить уравнение прямой, проходящей через две заданные точки Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Подставив координаты точек Прямая линия на плоскости и в пространстве с примерами решенияв уравнение

(7.5.4), получим:Прямая линия на плоскости и в пространстве с примерами решения

Взаимное расположение двух прямых в пространстве

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведенными через произвольную точку параллельно данным. Пусть в пространстве заданы две прямые:

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, что за угол Прямая линия на плоскости и в пространстве с примерами решения между прямыми можно принять угол между их направляющими векторами Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения, косинус которого находится по формуле:

Прямая линия на плоскости и в пространстве с примерами решения

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторовПрямая линия на плоскости и в пространстве с примерами решения:

Две прямые параллельны тогда и только тогда, когда пропорциональны соответствующие координаты направляющих векторов:

Прямая линия на плоскости и в пространстве с примерами решения

т.е. Прямая линия на плоскости и в пространстве с примерами решения параллельна Прямая линия на плоскости и в пространстве с примерами решения тогда и только тогда, когда Прямая линия на плоскости и в пространстве с примерами решения параллелен

Прямая линия на плоскости и в пространстве с примерами решения.

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих координат направляющих векторов равна нулю: Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Найти угол между прямыми Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Воспользуемся формулой (7.6.1), в которую подставим координаты направляющих векторов Прямая линия на плоскости и в пространстве с примерами решения и

Прямая линия на плоскости и в пространстве с примерами решения. Тогда Прямая линия на плоскости и в пространстве с примерами решения, откуда Прямая линия на плоскости и в пространстве с примерами решения илиПрямая линия на плоскости и в пространстве с примерами решения.

Вычисление уравнения прямой

Пусть PQ — некоторая прямая на плоскости Оху (рис. 22). Через произвольную точку М0 (х0, у0) этой прямой (условно называемую «начальной точкой») проведем прямую М0х параллельную оси Ох и имеющую с ней одинаковое направление. Тогда наименьший неотрицательный угол Прямая линия на плоскости и в пространстве с примерами решения, образованный полупрямой M0Q, лежащей выше оси М0х’ или совпадающей с ней, называется углом между данной прямой и осью Ох.

Прямая линия на плоскости и в пространстве с примерами решения

Очевидно, этот угол не зависит от выбора точки М0. Если прямая PQ пересекает ось Ох в некоторой точке А (а, 0), то ф есть обычный угол между направленными прямыми. Если PQ || Ох, то, очевидно, Ф = 0. Начальная точка М0 прямой и угол ф («направление прямой») однозначно определяют положение этой прямой на плоскости.

1) Пусть сначала Прямая линия на плоскости и в пространстве с примерами решения. Тогда прямая PQ пересекает ось Оу в некоторой точке В (0, b), которую можно принять за начальную.

Ордината у = NM текущей точки М (х, у) прямой (рис. 23) состоит из двух частей:

Прямая линия на плоскости и в пространстве с примерами решения

из них первая постоянна, а вторая переменна. Введя угловой коэффициент tg ф = k9 из рис. 23 будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом,

Прямая линия на плоскости и в пространстве с примерами решения

при х > 0.

Нетрудно проверить, что формула (3) остается справедливой также и при х < 0.

Мы доказали, что координаты любой точки М (х, у) прямой PQ удовлетворяют уравнению (3). Легко убедиться в обратном: если координаты какой-нибудь точки Ml Прямая линия на плоскости и в пространстве с примерами решения удовлетворяют уравнению (3), то точка Мх обязательно лежит на прямой PQ. Следовательно, уравнение (3) представляет собой уравнение прямой линии PQ (так называемое уравнение прямой с угловым коэффициентом). Постоянные величины Прямая линия на плоскости и в пространстве с примерами решения (параметры) имеют следующие значения: b = ОБ — начальный отрезок (точнее, начальная ордината), k = tg ф — угловой коэффициент. Заметим, что если точка В расположена выше оси Ох, то Прямая линия на плоскости и в пространстве с примерами решения, а если ниже, то b < 0. При 6 = 0 прямая проходит через начало координат и уравнение такой прямой есть

Прямая линия на плоскости и в пространстве с примерами решения

При k = 0 получаем уравнение прямой, параллельной оси Ох:

Прямая линия на плоскости и в пространстве с примерами решения

2) Если Прямая линия на плоскости и в пространстве с примерами решения, то с помощью аналогичных рассуждений мы также приходим к уравнению (3).

3) Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая АВ перпендикулярна оси Ох, то ее уравнение есть

Прямая линия на плоскости и в пространстве с примерами решения

где а — абсцисса следа этой прямой на оси Ох (т. е. ее точки пересечения с осью Ох).

Замечание. Как частные случаи получаем уравнения осей координат:

Прямая линия на плоскости и в пространстве с примерами решения

Прямую легко построить по ее уравнению.

Пример:

Построить прямую, заданную уравнением

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Известно, что две точки вполне определяют положение прямой. Поэтому достаточно найти две точки, через которые проходит наша прямая. В данном уравнении b = -4. Следовательно, прямая проходит через точку В (0, -4). С другой стороны, координаты х и у любой точки, лежащей на нашей прямой, связаны заданным уравнением. Поэтому, задав абсциссу некоторой точки, лежащей на прямой, мы из уравнения прямой найдем ее ординату. Положим, например, х = 2; из уравнения прямой получим у = -1. Таким образом, наша прямая проходит через точки А (2, -1) и В (0, -4). Построив эти точки по их координатам и проведя через них прямую (рис. 24), мы получим искомую прямую.

Прямая линия на плоскости и в пространстве с примерами решения

Из предыдущего видно, что для произвольной прямой на плоскости можно составить ее уравнение; обратно, зная уравнение некоторой прямой, можно построить эту прямую. Таким образом, уравнение прямой полностью характеризует положение ее на плоскости.

Из формул (3) и (5) видно, что уравнение прямой есть уравнение первой степени относительно текущих координат х и у. Справедливо и обратное утверждение.

Теорема: Всякое невырожденное уравнение первой степени

Прямая линия на плоскости и в пространстве с примерами решения

представляет собой уравнение некоторой прямой линии на плоскости Оху (общее уравнение прямой линии).

Доказательство: 1) Пусть сначала В ^ 0. Тогда уравнение (7) можно представить в виде

Прямая линия на плоскости и в пространстве с примерами решения Сравнивая с (3), мы получим, что это есть уравнение прямой с угловым коэффициентом k = -А/В и начальной ординатой Прямая линия на плоскости и в пространстве с примерами решения

2) Пусть теперь В = 0; тогда А Прямая линия на плоскости и в пространстве с примерами решения 0. Имеем Ах + С = 0 и

х = -С/А.

Уравнение (9) представляет собой уравнение прямой, параллельной оси Оу и отсекающей на оси Ох отрезок a = -С/А.

Так как все возможные случаи исчерпаны, то теорема доказана.

  • Заказать решение задач по высшей математике

Угол между двумя прямыми

Рассмотрим две прямые (не параллельные оси Оу)у заданные их уравнениями с угловыми коэффициентами (рис. 25):

Прямая линия на плоскости и в пространстве с примерами решения

Требуется определить угол 9 между ними. Точнее, под углом 0 мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой (0 < 0 < я). Этот угол 9 (рис. 25) равен углу АСВ треугольника ABC. Далее, из элементарной геометрии известно, что внешний угол треугольника равен сумме внутренних, с ним не смежных. Поэтому ф’ = ф + 0, или

0 = ф’ — ф;

отсюда на основании известной формулы тригонометрии получаем

Прямая линия на плоскости и в пространстве с примерами решения

Заменяя tg ф и tg ф’ соответственно на к и k окончательно будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Формула (3) дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.

Прямая линия на плоскости и в пространстве с примерами решения

Выведем теперь условия параллельности и перпендикулярности двух прямых.

Если прямые (1) и (2) параллельны, то ф’ = ф и, следовательно,

k’ = к. (4)

Обратно, если выполнено условие (4), то, учитывая, что ф’ и ф заключаются в пределах от 0 до я, получаем

Ф’ — ф, (5)

и, следовательно, рассматриваемые прямые или параллельны, или сливаются (параллельность в широком смысле).

Правило 1. Прямые на плоскости параллельны (в широком смысле) тогда и только тогдау когда их угловые коэффициенты равны между собой.

Если прямые перпендикулярны, то Прямая линия на плоскости и в пространстве с примерами решения и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

отсюда 1 + kk’ = 0 и

k’ = -l/k.

Справедливо также и обратное утверждение.

Правило 2. Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.

Пусть теперь уравнения прямых заданы в общем виде:

Ах + By + С = 0 (7)

и

А’х + В’у + С’ = 0. (8)

Отсюда, предполагая, что Прямая линия на плоскости и в пространстве с примерами решения, получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно, угловые коэффициенты этих прямых есть

Прямая линия на плоскости и в пространстве с примерами решения

Из формулы (3), производя несложные выкладки, находим тангенс угла между этими прямыми:

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда получаем:

1) условие параллельности прямых (0 = 0)

Прямая линия на плоскости и в пространстве с примерами решения

2) условие перпендикулярности прямых Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Отметим, в частности, что прямые

Прямая линия на плоскости и в пространстве с примерами решения взаимно перпендикулярны.

Для прямых, параллельных осям Ох и Оу, условно полагают Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Определить угол между прямыми у = х и у = 1,001Прямая линия на плоскости и в пространстве с примерами решения + 10. Здесь угловые коэффициенты прямых есть k = 1 и k’ = 1,001.

Решение:

По формуле (3) получаем

Прямая линия на плоскости и в пространстве с примерами решения

Так как для малых углов 0 справедливо приближенное равенство Прямая линия на плоскости и в пространстве с примерами решения, то

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая РМ образует угол ф с положительным направлением оси Ох (рис. 26) и проходит через заданную точку Р Прямая линия на плоскости и в пространстве с примерами решения. Выведем уравнение этой прямой, предполагая сначала, что прямая не параллельна оси Оу.

В этом случае, как мы видели, уравнение прямой имеет вид

у = kx + b, (1)

где k = tg ф — угловой коэффициент прямой, а Ь — длина отрезка, отсекаемого нашей прямой на оси Оу. Так как точка Р Прямая линия на плоскости и в пространстве с примерами решения лежит на прямой РМ, то ее координаты хг и ух должны удовлетворять уравнению (1), т. е.

ух = kxt+ b. (2)

Вычитая из равенства (1) равенство (2), получим

Прямая линия на плоскости и в пространстве с примерами решения

Это и есть уравнение искомой прямой.

Если прямая, проходящая через точку Р Прямая линия на плоскости и в пространстве с примерами решения параллельна оси Оу, то ее уравнение, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Прямая линия на плоскости и в пространстве с примерами решения

Если k — заданное число, то уравнение (3) представляет вполне определенную прямую. Если же k — переменный параметр, то это уравнение определит пучок прямых у проходящих через точку Р Прямая линия на плоскости и в пространстве с примерами решения (рис. 27); при этом k называется параметром пучка.

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (3, 2) и параллельной прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая параллельна данной прямой, то ее угловой коэффициент k = 4/3. Следовательно, на основании формулы (3) уравнение этой прямой имеет вид Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точку Р (4, 5) и перпендикулярной к прямой:

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Так как искомая прямая перпендикулярна прямой с угловым коэффициентом k = -2/3, то ее угловой коэффициент k’ = -l/k = 3/2. Следовательно, на основании формулы (3) уравнение этой прямой таково:

Прямая линия на плоскости и в пространстве с примерами решения, или окончательно

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой, проходящей через две данные точки

Известно, что через две не совпадающие между собой точки можно провести прямую, и притом только одну. Отыщем уравнение прямой, проходящей через точки Прямая линия на плоскости и в пространстве с примерами решения

Предположим сначала, что Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая PQ не параллельна оси Оу, Поскольку прямая PQ проходит через точку Прямая линия на плоскости и в пространстве с примерами решения то ее уравнение имеет вид 

Прямая линия на плоскости и в пространстве с примерами решения

где k — неизвестный нам угловой коэффициент этой прямой. Однако так как наша прямая проходит также через точку Q Прямая линия на плоскости и в пространстве с примерами решения, то координаты Прямая линия на плоскости и в пространстве с примерами решения этой последней точки должны удовлетворять уравнению (1). Отсюда

Прямая линия на плоскости и в пространстве с примерами решения=Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно, при Прямая линия на плоскости и в пространстве с примерами решения имеем

Прямая линия на плоскости и в пространстве с примерами решения

Подставляя выражение (2) для углового коэффициента k в уравнение (1), получим уравнение прямой PQ:

Прямая линия на плоскости и в пространстве с примерами решения

Это уравнение при Прямая линия на плоскости и в пространстве с примерами решения можно записать также в виде пропорции:

Прямая линия на плоскости и в пространстве с примерами решения

Если Прямая линия на плоскости и в пространстве с примерами решения, т. е. прямая, проходящая через точки Прямая линия на плоскости и в пространстве с примерами решения и Прямая линия на плоскости и в пространстве с примерами решения, параллельна оси Оу, то уравнение этой прямой, очевидно, будет

Прямая линия на плоскости и в пространстве с примерами решения

Пример:

Написать уравнение прямой, проходящей через точки Р(4, -2) и Q(3, -1).

Решение:

На основании уравнения (3) имеем

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение прямой в «отрезках»

Выведем теперь уравнение прямой, положение которой на плоскости задано ненулевыми отрезками, отсекаемыми ею на осях координат. Предположим, например, что прямая АВ отсекает на оси Ох отрезок OA = а, а на оси Оу — отрезок О В = b (рис. 28), причем ясно, что тем самым положение прямой вполне определено.

Для вывода уравнения прямой АВ заметим, что эта прямая проходит через точки А (а, 0) и Б Прямая линия на плоскости и в пространстве с примерами решения поэтому уравнение ее легко получается из уравнения (3′), если положить в нем Прямая линия на плоскости и в пространстве с примерами решения. Имеем

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда

Прямая линия на плоскости и в пространстве с примерами решения

и окончательно

Прямая линия на плоскости и в пространстве с примерами решенияПрямая линия на плоскости и в пространстве с примерами решения

Это и есть так называемое уравнение прямой в «отрезках». Здесь х и у, как обычно, — координаты произвольной точки М (х, у), лежащей на прямой АВ (рис. 28).

Пример:

Написать уравнение прямой АВ, отсекающей на оси Ох отрезок OA = 5, а на оси Оу отрезок ОВ = -4.

Полагая в уравнении (1) а = 5 и b = -4, получим Прямая линия на плоскости и в пространстве с примерами решения, или

Прямая линия на плоскости и в пространстве с примерами решения

Примечание. Уравнение прямой, проходящей через начало координат или параллельной одной из осей координат, не может быть записано как уравнение прямой в «отрезках».

Точка пересечения двух прямых

Пусть имеем две прямые

Прямая линия на плоскости и в пространстве с примерами решения

Точка пересечения этих прямых лежит как на первой прямой, так и на второй. Поэтому координаты точки пересечения должны удовлетворять как уравнению первой, так и уравнению второй прямой. Следовательно, для того чтобы найти координаты точки пересечения двух данных прямых, достаточно решить совместно систему уравнений этих прямых.

Последовательно исключая из уравнений (1) и (2) неизвестные у и х, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда если Прямая линия на плоскости и в пространстве с примерами решения, то для координат точки пересечения прямых получаем такие выражения: Прямая линия на плоскости и в пространстве с примерами решения или, введя определители второго порядка, имеемПрямая линия на плоскости и в пространстве с примерами решения

Для прямых (1) и (2) возможны следующие три случая.

Прямая линия на плоскости и в пространстве с примерами решения

На основании  прямые не параллельны. Координаты их единственной точки пересечения определяются из формул (6).

Прямая линия на плоскости и в пространстве с примерами решения

Прямые параллельны и точки пересечения нет. Аналитически это видно из того, что по меньшей мере одно из уравнений (3) или (4) противоречиво и, значит, система (1) и (2) несовместна.

Прямая линия на плоскости и в пространстве с примерами решения

Прямые (1) и (2) сливаются, и, таким образом, существует бесчисленное множество точек пересечения. В этом случае левые части уравнений (1) и (2) отличаются только на постоянный множитель и, следовательно, система этих уравнений допускает бесконечно много решений.

Пример:

Решая совместно систему уравнений прямых

Прямая линия на плоскости и в пространстве с примерами решения

получаем х = 2 и у = 1. Следовательно, эти прямые пересекаются в точке N(2,1).

Расстояние от точки до прямой

Рассмотрим прямую KL, заданную общим уравнением

Прямая линия на плоскости и в пространстве с примерами решения

и некоторую точку МПрямая линия на плоскости и в пространстве с примерами решения. Под расстоянием от точки М до прямой KL понимается длина перпендикуляра d = Прямая линия на плоскости и в пространстве с примерами решения Прямая линия на плоскости и в пространстве с примерами решения, опущенного из точки М на прямую KL (рис. 29).

Прямая линия на плоскости и в пространстве с примерами решения

Уравнение перпендикуляра MN можно записать в виде

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда для основания перпендикуляра N(x2, у2) будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

и, следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

где t — коэффициент пропорциональности. Поэтому

Прямая линия на плоскости и в пространстве с примерами решения

С другой стороны, учитывая, что точка N(*2, i/2) лежит на прямой KL, причем из (4) имеем Прямая линия на плоскости и в пространстве с примерами решения получаем

Прямая линия на плоскости и в пространстве с примерами решения

Следовательно,

Прямая линия на плоскости и в пространстве с примерами решения

Таким образом, в силу формулы (5) имеем

Прямая линия на плоскости и в пространстве с примерами решения

В частности, полагая Прямая линия на плоскости и в пространстве с примерами решения, получаем расстояние от начала координат до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Замечание. Разделив обе части уравнения прямой (1) на Прямая линия на плоскости и в пространстве с примерами решения, получим уравнение

Прямая линия на плоскости и в пространстве с примерами решения

свободный член которого Прямая линия на плоскости и в пространстве с примерами решения численно равен расстоянию от

начала координат до прямой. Такое уравнение прямой будем называть нормированным.

Из формулы (7) получаем правило:

чтобы определить расстояние от точки до прямой, нужно в левую часть нормированного уравнения этой прямой подставить координаты данной точки и взять модуль полученного результата.

Пример:

Определить расстояние от точки М (-2, 7) до прямой

Прямая линия на плоскости и в пространстве с примерами решения

Решение:

Нормируя уравнение этой прямой, будем иметь

Прямая линия на плоскости и в пространстве с примерами решения

Отсюда искомое расстояние есть

Прямая линия на плоскости и в пространстве с примерами решения

  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Приложения производной функции одной переменной
  • Обратная матрица — определение и нахождение
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса — определение и вычисление

Понравилась статья? Поделить с друзьями:
  • Как найти своего фотографа советы
  • Как составить комплекс упражнений для утренней гимнастики
  • Как найти групповая обработка документов
  • Как найти ариадну на болотах
  • Как найти свой логин в гугле