Как найти магнитные потери

Данная статья позволяет ознакомиться с пошаговой методикой, позволяющей рассчитать потери в порошковых сердечниках Magnetics в заданных условиях.

При оценке результатов расчетов для всех пяти марок порошковых сердечников Magnetics можно использовать специальное программное обеспечение, которое можно скачать по ссылке на официальном сайте компании. Программа загружается в виде файла Excel и будет интересна инженерам и разработчикам, выполняющим расчеты по зависимостям, представленным в каталоге Magnetics 2017. Применение данного программного обеспечения позволяет оценить такие характеристики сердечников как: зависимость магнитной проницаемости от подмагничивания постоянным током (DC), относительные потери, зависимости проницаемости от частоты и проницаемости от температуры. В файле программы разработчики Magnetics приводят пять сравнительных таблиц для шести марок порошковых материалов: MPP, High Flux, Kool Mμ, XFlux, Kool Mμ MAX и 75 Серия.

Ниже представлено подробное описание методик, используемых при расчете потерь в порошковых сердечниках Magnetics.

Потери в сердечнике формируются в результате изменения потока магнитной индукции в материале, поскольку не существуют такие магнитные материалы, которые бы обладали идеально эффективной магнитной восприимчивостью. Относительные потери (PL) являются функцией бросков тока намагничивания (AC) (½ B=Bpk) и частоты (f).

Данная величина может быть аппроксимирована по диаграммам потерь в сердечнике (Magnetics) или подбором кривых по уравнению (1):

формула 1

где a, b, c — константы, установленные на основе аппроксимации кривых,
а величина Bpk определяется как половина от величины отклонения потока намагничивания (АС) согласно выражению (2):

формула 2

Используемые в методах расчета единицы измерения соответствуют:
(мВт/см³) — для величины PL,
Тесла (Т) — для величины Bpk
и (кГц) — для частоты f.
Задачей при расчете потерь в сердечнике является определение величины Bpk согласно параметрам, заданным разработчиками.

Метод №1 – Определение параметра Bpk по кривым намагничивания (DC) Bpk= f(H)

Магнитная индукция (B) является нелинейной функцией напряженности магнитного поля (H), которая, в свою очередь, зависит от количества витков (N), тока (I) и длины магнитного пути (l e). Значение Bpk
обычно можно определить, сначала вычислив H в каждой точке экстремума, соответствующей величине переменного тока, по формуле (3):

формула 3

Величина Н выражается в единицах измерения A·T/см.

Значения B(AC) max, B(AC) min и Bpk могут быть определены по величинам H(AC) max, H(AC) min
и кривой BH или по уравнению (в форме кривых намагничивания постоянным током, представленных в каталоге по порошковым сердечникам Magnetics стр. 47-51 [1]).

Пример №1 — Вклад переменного тока составляет 10% от постоянного

Для оценки потерь в сердечнике фирмы Magnetics марки KoolMμ (код заказа 77894A7, 60μ, le=6.35 см, Ae=0.654 см², AL=75 нГн/виток²) катушки индуктивности с N=20 витками, рассчитанную на работу при токе (DC) 20 А·с пульсациями переменного тока в 2А (от пика до пика) при 100 кГц.

1) Осуществляют расчет величины H, затем определяют магнитную индукцию B по кривым BH (стр. 47 каталога) или определяют по уравнению кривой (4) (стр. 51 каталога) [1]: формула 42

2) Определяют относительные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]: формула 5

3) Рассчитывают потери в сердечнике: формула 6

Пример №2 — Вклад переменного тока составляет 40% от постоянного тока

Для оценки потерь в сердечнике для такой же катушки индуктивности (количество витков N=20) с характеристиками: I=20 А и пульсациями 8А (от пика до пика) при 100 кГц.

1) Рассчитывают H и определяют B по уравнению кривых BH (стр. 50 каталога) [1]: формула 71
2) Определяют удельные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]: формула 82
3) Рассчитывают потери в сердечнике: формула 91
формула 101
Необходимо обратить внимание на то, что потери в сердечнике являются результатом подмагничивания переменным током. Подмагничивание постоянным током, приложенное к какому-либо сердечнику, не вызывает потерь в данных сердечниках независимо от величины его вклада.

Пример №3 — Вклад составляющей постоянного тока отсутствует, учитывается только переменный ток

При оценке потерь в сердечнике для катушки с такой же индуктивностью (количество витков N=20) и характеристиками: в данном случае I=0 и пульсациями 8А (от пика до пика) при 100 кГц.

1) Рассчитывают H и определяют B по уравнению кривых BH (стр. 50 каталога Magnetics) [1]: формула 111
Необходимо отметить, что уравнения кривых не подходят дли отрицательных значений величины магнитной индукции В. Следует брать в расчет абсолютное значение B, затем учесть знак в результатах расчета величины Н.
2) Определяют удельные потери в сердечнике из диаграммы или вычисляют по уравнению (стр. 46 каталога Magnetics) [1]: формула 122
3) Рассчитывают потери в сердечнике: формула 131
Ниже приведены рабочие диапазоны для каждого из трех примеров.
Сравнивая примеры 3 и 2, необходимо обратить внимание на значительное влияние подмагничивания постоянным током на потери в сердечнике. Более низкая проницаемость приводит к меньшему значению величины Bpk, даже если пульсации тока одинаковы. Этот эффект может быть достигнут при подмагничивании постоянным тока или при выборе материала с более низкой проницаемостью. формула 14

Метод №2 – Для малых значений ▲ аппроксимация Bpk по значениям эффективной проницаемости с подмагничиванием по постоянному току. Bpk= f(H)

Резкий наклон кривой BH определяется как абсолютная проницаемость (μ0 = 4 π x10-7) и проницаемости материала (μ), которая изменяется вдоль кривой BH). Для небольших значений переменного тока этот наклон может быть смоделирован как константа при подмагничивании переменным током с учетом μ, аппроксимирующей эффективную проницаемость при подмагничивании постоянным током (μe): формула 151

Эффективная проницаемость с подмагничиванием постоянным током обычно выражается в % от начальной проницаемости и может быть получена из кривой подмагничивания постоянным током или выражения (стр. каталога 29-34 Magnetics) [1]: формула 16

▲H умножается на 100, потому что le выражается в сантиметрах, а единицы Bpk — в метрах.

Повторный расчет примера 1: 20 А (DC), пульсации 2 А (от пика до пика) формула 18

Повторный расчет примера 2: 20 А (DC), пульсации 8 А (от пика до пика)
Из примера 1: формула 191

Повторный расчет примера 3: 0 А (DC), пульсации 8 А (от пика до пика)
Из примера 2: формула 20

Метод №3 – Для малых значений ▲H, определяют величину Bpk по индуктивности (смещенной током). Bpk=f(L,I)

Индукцию B можно выразить в единицах измерения индуктивности, применив уравнение Фарадея и его влияние на ток катушки индуктивности: формула 212

Где индуктивность L изменяется нелинейно с током I. Для малого вклада переменного тока AC L можно считать постоянной величиной при подмагничивании переменным током (АС). Кроме того, она аппрокисимируется индуктивностью, смещенной током (LDC). формула 22

Также можно использовать другой способ, в частности, переписать отношения между B и L как: формула 23

Далее делают замену (dH/dl) на (N/le) и подставляют Ae вместо A: формула 24

Где L изменяется нелинейно с величиной H. При малых значениях переменного тока (AC) наклон кривой BH считается постоянным при подмагничивании переменным током, а L — индуктивностью, смещенной током (LDC). формула 25

Повторный расчет примера 1: формула 26

Повторный расчет примера 2: формула 27

Повторный расчет примера 3: формула 28

формула 30

Литература
1. Каталог фирмы Magnetics «Powder Cores Catalog-2017»

Магнитные потери,
или, как их чаще называют, потери в стали
ст),
возникают в участках магнитопровода с
переменным магнит­ным потоком: в
статорах асинхронных и синхронных машин
и яко­рях машин постоянного тока. В
роторах синхронных машин, полю­сах и
станине машин постоянного тока поток
постоянный и основные потери в стали
отсутствуют. В роторах асинхронных
машин частота тока и потока в номинальном
режиме небольшая (f2
= sном
f
), поэтому
потерями в стали ротора пренебрегают
[5].

Основные потери
в стали состоят из потерь на гистерезис
и по­терь на вихревые токи. Они зависят
от марки стали, толщины лис­тов
магнитопровода, частоты перемагничивания
и индукции. На них оказывают влияние
также различные технологические факторы.
В процессе штамповки листов магнитопровода
образуется наклеп, который изменяет
структуру стали по кромкам зубцов и
увеличива­ет потери на гистерезис.
Потери на вихревые токи возрастают в
ре­зультате замыканий части листов
магнитопровода между собой, возникающих
из-за заусенцев, которые образуются при
опиловке пазов, при забивке пазовых
клиньев, из-за чрезмерной опрессовки
магнитопровода и ряда других причин.

Точных аналитических
формул для расчета основных потерь в
стали, учитывающих влияние приведенных
выше факторов, не су­ществует. Потери
в стали рассчитывают по формулам,
основанным на результатах многолетних
теоретических и экспериментальных
исследований.

Основные потери
в стали определяют как сумму потерь в
зубцах и в ярме магнитопровода:

(6.4)

где kдi,
— коэффициент, учитывающий увеличение
потерь в стали зуб­цов или ярма
магнитопровода по технологическим
причинам; Р1/50
— удельные потери в стали при частоте
перемагничивания 50 Гц и маг­нитной
индукции 1 Тл, Вт/кг; f
частота перемагничивания, Гц. Для машин
переменного тока
f
равна частоте питающей сети; для расчета
потерь в стали якоря машин постоянного
тока f
= рn/60;
Bi
— индук­ция в зубцах или ярме
магнитопровода, Тл; mi
— масса зубцов или ярма магнитопровода,
кг; β — показатель степени, зависящий
от мар­ки стали и толщины листов
магнитопровода. В большинстве расче­тов
β можно принять равным 1,3.

Значения P1/50
и β приводятся в технических характеристиках
сталей; данные по выбору kд
и расчету массы стали зубцов и ярма
приведены в главах учебника, посвященных
проектированию конк­ретных видов
машин.

6.4. Механические и вентиляционные потери

Механические
потери в электрических машинах состоят
из по­терь на трение в подшипниках,
на трение вращающихся частей ма­шины
о воздух или газ и потерь на трение в
скользящих контактах щетки — коллектор
или щетки — контактные кольца. К
вентиляци­онным потерям относят
затраты мощности на циркуляцию
охлаж­дающего воздуха или газа.

В машинах с
самовентиляцией на вентиляционные
потери расхо­дуется часть подводимой
к машине мощности. В машинах с
прину­дительной вентиляцией или с
жидкостным охлаждением для цирку­ляции
охлаждающего агента — воздуха, газа
или жидкости — устанавливают вентиляторы
или компрессоры с независимым при­водом.
Потребляемая их двигателями мощность
учитывается при расчете КПД основной
машины как потери на вентиляцию.

Расчетные формулы,
позволяющие найти каждую из составляю­щих
этих видов потерь, основаны на
экспериментальных данных и отражают
зависимость потерь от конструкции
машины, ее разме­ров, частоты вращения
и от ряда других факторов. При
проектиро­вании машин, конструкция
которых несущественно отличается от
серийных, в расчете можно использовать
эмпирические формулы, дающие непосредственно
сумму вентиляционных и механических
потерь (за исключением потерь на трение
в скользящих контактах).

Расчет механических
и вентиляционных потерь Рмех
можно вы­полнить лишь после завершения
проектирования и определения размеров
всех деталей машины. Во время учебного
проектирования при разработке конструкции
машины следует иметь в виду
качественную зависимость этого вида
потерь от размерных соотношений машины.
Потери на трение и вентиляцию резко
увеличиваются в машинах с большим
диаметром ротора и большой частотой
враще­ния. Так, в большинстве машин
эти потери пропорциональны
квад­рату частоты вращения и квадрату
наружного диаметра статора.

Так как формулы
для расчета механических потерь выведены
для конкретных типов и конструктивного
исполнения машин, то они приводятся в
соответствующих главах учебника. Там
же приве­дены формулы для расчета
потерь на трение в скользящих контактах.

5. Как определяются магнитные потери в трансформаторе, от чего они зависят?

Для определения магнитных потерь в трансформаторе проводится опыт ХХ, при котором ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от Iном. Т.к. при проведении этого опыта электроприемник отключен, то вся мощность, измеренная ваттметром, включенным в цепь первичной обмотки трансформатора, является мощностью электрических и магнитных потерь. Магнитные потери пропорциональны напряжению, подводимому к первичной обмотке. Т.к. при проведении опыта ХХ к первичной обмотке подводится Uном, то и магнитные потери будут такими же, как и в номинальном режиме. Электрические потери зависят от токов в обмотках, а т.к. ток во вторичной обмотке равен нулю, а в первичной обмотке ток не превышает 10% от номинального то и электрические потери незначительны. Т.о., пренебрегая незначительными электрическими потерями, считаем, что вся мощность, измеренная при проведении опыта ХХ, является мощностью магнитных потерь.

6. Как определяются электрические потери в трансформаторе, от чего они зависят?

Для определения электрических потерь в трансформаторе проводится опыт КЗ. Для этого необходимо снизить напряжение на вторичной обмотке до нуля, замкнуть вторичные зажимы между собой и повышать напряжение до тех пор, пока в обмотках установятся номинальные токи. Напряжение, при котором в обмотках устанавливаются номинальные токи, называют напряжением КЗ. Как правило, напряжение КЗ незначительно и не превышает 10% от номинального.

Т.к. при проведении опыта КЗ в обмотках трансформатора устанавливаются номинальные токи, то и электрические потери в них будут такими же как и в номинальном режиме. Магнитные потери пропорциональны напряжению на первичной обмотке, а т.к. в опыте КЗ к первичной обмотке подводится незначительное напряжение, то и магнитные потери незначительны. Т.о., пренебрегая незначительными магнитными потерями, можно считать, что вся мощность измеренная в опыте КЗ является мощностью электрических потерь.

7. Как определяется кпд трансформатора, от чего он зависит

Потери энергии в трансформаторе в целом относительно невелики. В зави­симости от мощности трансформатора КПД имеет величину от η=0,96 (при Sном=5кВА) до 0,995 (Sном-десятки тысяч кВА).

Величина КПД трансформатора зависит от его нагрузки. И она тем больше, чем выше коэффициент мощности потребителя cosφ2. Наибольший КПД трансформатор имеет при нагрузке, составляющей 50-70% от номинальной, что соответствует средней эксплуатационной нагрузке транс­форматора.

Источник

Как рассчитать потери в трансформаторе тока

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Потери мощности в трансформаторе

КПД трансформатора никогда не достигает 100 %, поскольку в нём всегда присутствуют потери электроэнергии. Потери в трансформаторах принято разделять на два вида: потери в меди (медные витки обмоток) и потери в стали (материал сердечника).
Потери в меди возникают из-за собственного сопротивления медного проводника. Ток, протекая по обмотке, обуславливает некоторое падение напряжения, которое и является потерей мощности. При этом электрическая энергия преобразуется в тепловую, которая разогревает обмотку.

Потери в стали в свою очередь состоят из потерь, вызванных вихревыми токами, и обусловленых циклическим перемагничиванием (гистерезис).


Вихревые токи возникают в проводнике, который находится в переменном магнитном поле. Этим условиям удовлетворяет стальной сердечник, на который намотаны медные витки. В нем постоянно возникают вихревые токи, величина которых может достигать достаточно больших значений, из-за которых в свою очередь происходит нагрев сердечника.

Величина потерь, вызванных необходимостью циклического перемагничивания определяется в первую очередь качеством стали, из которой сделан сердечник. В сердечнике как бы находится большое количество диполей, которые под действием переменного магнитного поля периодически изменяют своё направление (поворачиваются с периодичностью изменения магнитного поля). В ходе пространственного изменения положения диполей возникают механические силы трения между ними, что вызывает дополнительный нагрев сердечника. Таким образом происходит преобразование магнитной энергии в тепловую (потери мощности на гистерезис).

Чтобы снизить эти потери, применяется ряд мер. Потери, вызванные циклическим перемагничиванием, могут быть уменьшены, если использовать специальный структурированный особым образом магнитомягкий материал для изготовления сердечника (электротехническая сталь). Такой материал обладает большой магнитной проницаемостью, но при этом малой коэрцитивной силой.

Для снижения потерь в меди применяется увеличение сечения проводников обоих обмоток, при этом электросопротивление их уменьшается. С другой стороны, это вызывает увеличение стоимости и веса трансформатора, поэтому достаточным считается такое сечение, при котором не возникает заметного нагрева обмоток.

Чтобы уменьшить вихревые токи, сердечник выполняется не в виде единого монолитного блока, а собирается из множества электроизолированных пластин. Толщина каждой из них может равняться всего нескольким десятым долям миллиметра. Также электрическую проводимость сильно снижает специально вводимый в сталь легирующий элемент — кремний.

Комплексное использование мер по снижению потерь мощности позволяет довести КПД трансформаторов до 85-90%.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Пример_расчета_потерь_в_трансформаторе

7. Расчёт потерь мощности в трансформаторе

Потери мощности в трансформаторах состоят из потерь активной и реактивной мощности.

Потери активной мощности состоят из двух составляющих: потерь, идущих на нагрев обмоток трансформатора, зависящих от тока нагрузки и потерь, идущих на нагревание стали, зависящих от тока нагрузки.

Потери реактивной мощности состоят из двух составляющих: потерь, вызванных рассеянием магнитного потока в трансформаторе, зависящих от квадрата тока нагрузки и потерь, идущих на намагничивание трансформатора, независящих от тока нагрузки, которые определяются током холостого хода.

Расчёт потерь мощности в трансформаторе необходим для более точного выбора сетей высокого напряжения, а также для определения стоимости электроэнергии.

Определяем потери активной мощности в трансформаторе ΔP, кВт, по формуле

где Pкз – потери активной мощности в трансформаторе при проведении опыта короткого замыкания

Рхх – потери активной мощности в трансформаторе при проведении опыта холостого хода, кВт.

Рассчитываем потери реактивной мощности в трансформаторе ΔQ, кВар

где Uк.з. – напряжение при опыте короткого замыкания в процентах от номинального

Iх.х. – ток при опыте холостого хода в процентах от номинального

ΔQ = 0,01 · (5,5 · 0,6 2 +3) · 630 = 31,4 кВар.

Определяем потери полной мощности в трансформаторе ΔS, кВА

Все полученные данные сводим в таблицу 4.

Таблица 4 – Потери мощности в трансформаторе

Итак, потери мощности в трансформаторе будут зависеть от коэффициента загрузки трансформатора, от его конструктивного исполнения и полной номинальной мощности. Для уменьшения потерь необходимо правильно выбрать трансформатор и оптимально загрузить его.

8. Расчёт и выбор сетей напряжением выше 1 кВ

Критерием для выбора сечения кабельных линий является минимум приведённых затрат. В практике проектирования линий массового строительства выбор сечения производится не по сопоставительным технико-экономическим расчётам в каждом конкретном случае, а по нормируемым обобщённым показателям.

Т.к. сети напряжением выше 1 кВ не входят в перечень [4, пункта 1.3.28], то выбор сетей до цеховой трансформаторной подстанции осуществляем по экономической плотности тока jэк, .Рассчитываем максимальную активную мощность, проходящую по высоковольтному кабелю, Рm(10), кВт с учётом потерь мощности в трансформаторе

Определяем максимальную реактивную мощность, проходящую по кабелю U=10 кВ с учётом потерь мощности в трансформаторе Qm(10), кВар, по формуле

Определяем полную мощность в сетях высокого напряжения Sm(10), кВА

Рассчитываем коэффициенты активной (cosφ(6)) и реактивной (tgφ(6)) мощности высоковольтной линии

Рассчитываем силу тока, проходящую по линии напряжением U=10 кВ Im(10), A

По справочнику [4, таблица 1.3.36] определяем экономическую плотность тока, учитывая, что число часов использования максимума нагрузки в год Тm=3000-5000 тысяч час/год и прокладываемый кабель марки ААШв

Определяем экономически целесообразное сечение кабеля Fэк, мм 2

Принимаем к прокладке кабель ближайшего стандартного сечения 16 мм 2 , т.е. ААШв 3х16 с допустимым током Iд, А, определяемым по каталогу [4, таблица 1.3.16]

Определяем допустимую величину тока с учётом поправочных коэффициентов

где Kп – поправочный коэффициент на параллельную прокладку двух кабелей

в траншее, принимаемый по каталогу по [4, таблица 1.3.26], Kп=0,9;

Kт – поправочный коэффициент на температуру земли, принимаемый по каталогу [4, таблица 1.3.3], Kт=1, т.к. принята температура t=15 ºC.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Одноэлементный расчет потерь электроэнергии

Пример Расчета технологических потерь электроэнергии при ее передаче из сетей Сетевой организации в сети Потребителя:

Наименование организации Потребителя: ОАО «***» Адрес объекта:________ ТП №453 (счетчик №797198)

Расчет потерь в силовом трансформаторе и кабельной линии

1. Потери электроэнергии в трансформаторе рассчитываются по формуле:

∆Wт = ∆Wхх + (∆Wн1 х Wт/100) , кВт*час, где∆Wxx = ∆Рxx х То х (Ui /Uном)2 — потери холостого хода силового трансформатора, кВт*час; ∆Wн1 = (∆Wн / Wт) х 100% — относительные нагрузочные потери силового трансформатора, %;∆Wн = Кк х ∆Рср х Тр х Кф2 — нагрузочные потери силового тр-ра, кВт*час; Кф2 = (1+2Кз)/3Кз ― квадрат коэффициента формы графика за расчетный период, у.е.; Кз = [Wт / (Sн х Тр х cosφ)] х 10-3 — коэффициент загрузки тр-ра ( заполнения графика), у.е.; ∆Рср = 3 х I2ср х R х 10-3 — потери мощности в силовом тр-ре, кВт; Iср=Wт /(√3 х Uср х Тр х cos φ) – средняя нагрузка за расчетный период, А; R = (∆Ркз х U2ном /S2ном) х 10-3 — активное сопротивление силового тр-ра, Ом; Кк ― коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки (справочная величина, принимается равным 0,99), у.е.

ТМ 630/6/0,4 Тип трансформатора
Sнт номинальная мощность трансформатора, МВА; 0,63
Uном номинальное напряжение, кВ; 6
потребленная активная электроэнергия за месяц, кВт*час; 37108
∆Рхх потери мощности холостого хода трансформатора, кВт; 1,31
∆Ркз потери мощности короткого замыкания, кВт; 7,6
Тр число часов работы трансформатора под нагрузкой за расчетный период, час; 720
То время присоединения трансформатора за расчетный период к сети, час; 720
Кк коэффициент различия конфигураций; 0,99
cosφ среднезвешенный коэффициент мощности для трансформатора. 0,9

Расчет потерь в трансформаторе: ∆Wхх =1001 кВт*ч; Кф2 =4,3338; Кз = 0,0909; R =0,6893 Ом; ∆Wн = 182,2 кВт*час; Iср=5,3407; ∆Рср = 0,0590; %потерь ∆Wн1 =0,49 Итого: ∆Wт = 1001 кВт*час +0,491%

2. Потери электроэнергии в линии электропередачи (Тип силового кабеля — 6кВ АСБ 3*240мм2) рассчитываются по формуле:

Wкл =1,1*n*p*I2*L/g*0,001*T , гдеn — число фаз линии = 3p — удельное сопротивление материала, Ом*мм2/м = 0,0271I — среднеквадратичный ток линии, А =5,3407L — длина линии, м =50g — сечение провода, мм2 = 240T — время работы за расчетный период, час-=7201,1 — коэфф. учитывающий сопрот конт.,скрутку жил и способ прокладки линийСправочно удельные сопративления меди, алюминия и стали:

р Cu 0,0189 Ом*мм2/м
р Al 0,0271 Ом*мм2/м
р Сталь 0,14 Ом*мм2/м

Потери ∆Wкл =0,38 кВт*ч; %потерь ∆Wкл =0,001

ИТОГО: общий % потерь=0,492; ВСЕГО ∆W = 1001 кВт*час +0,492%

Произвести расчет можно с помощью удобного калькулятора, выполненного в формате Exel-таблицы

Произвести более сложный расчет с большим количеством объектов электросетевого хозяйства, можно осуществить с помощью специализированного программного комплекса (РТП-3, либо Програсс++), оставив заявку в форме обратной связи с приложением необходимых первичных документов.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Источник

Для преобразования электроэнергии, поступающей от источника питания к приемнику (потребителю), используют силовые электромагнитные установки, работа которых сопровождается потерями трансформатора. Затраты активной мощности вызваны явлением гистерезиса (цикличного перемагничивания), вихревыми и циркулирующими токами, рассеиванием магнитного поля в толще магнитопровода и сопротивлением самого проводника.

Содержание

  1. Устройство и принцип действия
  2. Особенности
  3. Что такое потери
  4. Магнитные
  5. Описание
  6. Электрические
  7. Дополнительные
  8. Мощности
  9. КПД
  10. Нагрузочные
  11. Как рассчитать
  12. Для двухобмоточных
  13. Формулы
  14. Для трехобмоточных
  15. Примеры расчета
  16. Измерение полезного действия
  17. Способ вычисления
  18. Калькулятор

Устройство и принцип действия

В статическом оборудовании, которое предназначено для преобразования частоты и напряжения тока, а также количества фаз, отсутствуют движущиеся элементы конструкции, что исключает возникновение потерь механического характера. Но в процессе передачи нагрузки с первичного контура на вторичный не вся мощность доходит до приемника энергии, выступающего конечным потребителем.

Электромагнитное статическое оборудование без вращающихся деталей преобразует энергию и работает от электросети. Силовой агрегат представляет собой прибор, основными элементами которого служат стальной магнитопровод стержневого или броневого исполнения и катушки – несвязанные электрически изолированные провода.

Трансформаторное оборудование бывает однофазного и многофазного типа, соответственно, состоящего из двух или более контуров. По типу исполнения различают приборы с броневым, стержневым или бронестержневым магнитопроводом. Принцип действия оборудования на примере простого однофазного прибора:

  • К источнику переменного тока подключена первая катушка, а вторичный контур соединен с приемником электроэнергии (конечным потребителем).
  • Переменный ток проходит по виткам первичной обмотки, и его величина соответствует значению нагрузки I1.
  • Магнитный поток Ф пронизывает оба контура и индуцирует в проводниках электродвижущую силу.
  • При подключении второго контура к источнику электроэнергии в цепи под действием ЭДС возникает ток нагрузки I2.
  • Трансформаторный узел работает на холостом ходе, если на вторичную обмотку прибора не подается нагрузка.

Устройство трансформатора

Особенности

Величина показателя электродвижущей силы тесно связана с числом витков провода на катушках. Соотношение ЭДС в обмотках, называемое коэффициентом трансформации, соответствует числу витков медных катушек. Изменяя количество витков в контурах, можно регулировать напряжение в приемнике электроэнергии.

Обмотки связаны между собой магнитными линиями, а на степень их взаимосвязи влияет близость/дальность расположения катушек. Из-за изменения силы тока в первой обмотке, обе цепи пронизывает магнитный поток, постоянно меняющий свою величину и направленность. Соединение концов вторичной обмотки с приемником передает ему ток, а средством передачи энергии выступает переменный магнитный поток – катушки не связаны друг с другом гальваническим способом.

Стоит также учесть, что нельзя размыкать вторичную обмотку трансформатора.

На заметку! По описанному принципу функционируют многофазные трансформаторные узлы, составленные из нескольких повышающих и понижающих обмоток и стального сердечника. Фазы катушек преимущественно соединяют по схеме «звезда» или «треугольник».

Трансформатор

Что такое потери

Когда трансформатор функционирует на холостом ходу или под нагрузкой, в магнитопроводе прибора, электроизолированных обмотках и прочих элементах конструкции устройства часть активной мощности агрегата убывает. Потери представляют собой переменную величину, поэтому КПД приборов неодинаковый и никогда не достигает 100%-ного значения. На витках медной обмотки катушек энергия рассеивается из-за сопротивления проводника. У тока, проходящего по контуру, падает напряжение, вызывая, уменьшение мощности.

Непродуктивные потери при эксплуатации силовых установок возникают на холостом ходе, когда одна обмотка трансформатора находится на выделенном питании, а остальные контуры разомкнуты. Неизбежно возникают утечки и утрата мощностных характеристик работы агрегатов. Диэлектрические потери (в изоляционном слое) для трансформаторов, работающих на средней частоте в 50 Гц, являются несущественными. Незначительно влияют на показатель КПД утечки в первичной обмотке. Наиболее значительные энергозатраты вызывают магнитные явления в трансформаторах.

Магнитные

При работе трансформаторного узла без нагрузки ток, который подается на первичную обмотку, расходуется на намагничивание стального сердечника. Потери магнитопровода провоцируют такие магнитные явления, как гистерезис (циклическое перемагничивание) и вихревые токи.

Снижение активной мощности происходит из-за ее рассеивания в системе после поступления на первичный контур обмотки. Несмотря на увеличение энергии реактивного типа, номинальная нагрузка уменьшается. Разница между мощностями, поступающими на первый и второй контуры устройства, определяет суммарное снижение мощности. При работе не нагруженного трансформаторного оборудования потребляемая прибором активная мощность затрачивается на уравновешивание затрат тока холостого хода в магнитном сердечнике и катушке первичного контура.

Для записи процесса используют выражение I20r1. Возникают магнитные потери магнитопровода РМ. При номинальном первичном напряжении и частоте тока суммарные некомпенсируемые затраты мощности относят к холостым потерям Р0. Для вычислений используют формулу:

Р0 = РМ + I20 * r1,

в которой активным сопротивлением первой катушки выступает величина r1.

Значение Р0 никаким образом не меняется при регулировании нагрузки электромагнитного силового узла и является постоянным. Величина магнитного потока Ф0 остается неизменной при любых параметрах нагрузочных токов I1 и I2, поэтому значение IНАМ также не изменяется.

Магнитные потери трансформатора

Описание

Магнитные потери прямо пропорциональны массе стального сердечника и значению магнитной индукции. В ферромагнетиках есть зоны самопроизвольного намагничивания, называемые доменами. Для магнитных моментов диполей характерна беспорядочная направленность, поэтому вне воздействия внешнего поля намагничивания итоговый магнитный момент ферромагнетика приближается к нулю.

Посредством помещения металлической детали в магнитное поле переменного действия, сгенерированное переменным током, происходит циклическое перемагничивание ферромагнитного сердечника с частотой этого тока. Одновременно из-за внутреннего трения изменяют свое направление магнитные моменты доменов. В зависимости от величины индукции магнитного поля, действующего извне, ферромагнетик приобретает большую степень намагничивания. Когда значение индукции достигает определенной величины, происходит переориентирование доменов вдоль вектора направления поля.

Петля гистерезиса выражает взаимосвязь между магнитным потоком и переменным током. Она оказывает определенное влияние на возникновение потерь трансформаторных установок, функционирующих на холостом режиме. При каждом цикле перемагничивания затрачивается некоторая работа, величина которой пропорциональна площади петли гистерезиса. Работа способствует тепловому нагреванию сердечника и вызывает дополнительные энергозатраты. Чтобы снизить потери прибора на гистерезис, магнитопроводы выполняют из специальной трансформаторной стали категории электротехническая.

Потери магнитные трансформатора

В проводниках, помещенных в область воздействия переменных магнитных полей, в стальном сердечнике преобразователя электроэнергии создаются вихревые токи (Фуко), которые замыкаются в металлическом магнитопроводе (стержне или броне), нагревают деталь и способствуют убыли энергии. Чтобы компенсировать силу действия вихревых токов, возникающих в плоскостях, перпендикулярных магнитному потоку, для изготовления трансформаторных сердечников используют изолированные пластины стали, набранные определенным способом.

Процессы, связанные с рассеиванием энергии в сердечнике агрегата, образуются областью магнитного потока, которая замыкается через воздух вблизи витков обмотки. Побочные потери силового устройства вызывает активное сопротивление катушек, возникающее в результате нагрева проводника под действием токов. Поэтому для сокращения энергопотерь трансформаторные обмотки выполняют из меди.

Важно! Чтобы снизить затраты мощности в сердечнике, используют магнитомягкий материал с высокой магнитопроницаемостью и низкой коэрцитивной силой. Потери в меди сокращают увеличением сечения проводников катушек. Для компенсации действия вихревых токов магнитопровод набирают из электроизолированных пластин, а сталь специально легируют кремнием.

Сердечники трансформатора

Электрические

Нагрев катушек трансформатора током вызывает снижение мощности. Такие затраты в среднем на электросеть составляют 5% от общего количества потребляемой энергии. Величина электрических потерь зависит от следующих факторов:

  • нагрузки энергосистемы;
  • конфигурации, длины, размера сечения внутренних сетей;
  • текущего режима работы узла;
  • коэффициента мощности системы в средневзвешенном значении;
  • схемы расположения компенсирующих устройств.

На переменную величину потерь мощности электроэнергии влияет показатель квадрата тока в контурах обмотки. При подаче нагрузки на трансформатор электромагнитная мощность из первичной обмотки поступает на вторичную катушку. По второму контуру проходит ток I2, вместе с ним в первом контуре образуется ток I1, значение которого находится в прямой зависимости от силы нагрузки I2. Происходит убыль электрической мощности, величина которой определяется пропорционально квадратам токов обоих катушек и рассчитывается по формуле:

РНАГР = I21 * r1 + I22 * r2, где

I1 и I2 – нагрузочные токи цепи;

r1 и r2 – сопротивления проводников обмоток.

Электрический трансформатор

Закономерной представляется зависимость потерь РНАГР от требуемой конечному потребителю величины мощности энергии. Имеют место колебания нагрузочных затрат в конкретном временном интервале, поэтому электрические потери в обмотках различны в пределах суток, являются величинами непостоянными и «привязаны» к режимам нагрузки.

Дополнительные

Добавочные затраты мощности электроэнергии возникают не только в катушках и магнитопроводе, но и в других элементах конструкции трансформатора – в стенках охлаждающего бака для отведения теплопотерь, ярмовых балках, не содержащих витков обмотки, прессующих кольцах.

Охлаждающие баки в трансформаторе

Мощности

Токи, замыкающиеся внутри отдельных проводов, не выходящие за пределы обмотки, называют вихревыми. Если токи из-за рассеивания образуются между параллельно расположенными витками или электроизолированными стальными пластинами в сердечнике, их называют циркулирующими. Они сцепляются не со всей областью обмотки, а только с некоторыми витками. Преимущественно возникают в среде, не обладающей свойствами намагничивания, – масло, воздух. Направление побочных потоков проходит перпендикулярно основному току в катушках и магнитопроводе, приводит к добавочному снижению эффективности работы трансформатора.

Для реальных токов характерно неравномерное распределение в системе, поэтому их величины определяются как суммарное значение трех токов:

  • нагрузочного – ток равномерно распределяется по сечению проводника и между его витками;
  • циркулирующего – ток замыкается внутри контура параллельных витков;
  • вихревого – ток замыкается в пределах каждого из проводов.

лектроизолированные стальные пластины в сердечнике трансформатора

Суммирование значений этих токов позволяет рассчитать реальные затраты энергии в обмотках трансформатора:

ƩР = Р0 + РНАГР + РДОБ

На основании потерь холостого хода, нагрузочных и дополнительных затрат, определяют общие энергопотери трансформаторного узла.

КПД

Убыль энергии в силовом агрегате складывается из магнитных потерь, возникающих в магнитопроводе, и электрических, образующихся в обмотках трансформатора. КПД вычисляют как соотношение затрат энергии и полезной мощности. Для расчетов используют значения:

  • активной мощности Р1, получаемой от источника питания;
  • активной мощности Р2, передаваемой конечному потребителю;
  • электрических потерь ΔPЭЛ, возникающих в обмотках трансформатора;
  • магнитных потерь ΔРМ, которые образуются в сердечнике;
  • побочных затрат энергии ΔРДОП, возникающих в других элементах конструкции и составляющих в среднем до 10% всех потерь.

Для расчета ΔPЭЛ применяют формулу:

ΔPЭЛ = ΔPЭЛ.НОМ * β2,

а значение ΔРМ вычисляют по выражению:

ΔРМ = ΔРГ + ΔРВТ,

где ΔРГ – затраты на гистерезис;

ΔРВТ – потери в результате действия вихревых токов.

КПД вычисляют по формуле:

ƞ = Р2 / Р1 = Р2 / (Р2 + ΔРМ + ΔPЭЛ),

где ƞ принимается равным 0 при холостом режиме работы трансформатора, а его мощность тратится на компенсацию магнитных потерь.

При расчете КПД учитываются побочные энергозатраты, возникающие не в магнитопроводе и обмотке, а в остальных элементах силового агрегата.

Внимание! Косвенный метод вычисления КПД путем раздельной оценки потерь подходит для промышленного применения.

Способ непосредственных измерений экономически нецелесообразный, поэтому используется для маломощных трансформаторов.

КПД трансформатора

Нагрузочные

Дополнительные потери активной мощности статического электромагнитного оборудования также возникают в результате несимметрии токов, что вызвано включением в системы электроснабжения потребителей, искажающих качество электроэнергии. Даже при изменении ее качества в допустимых нормативных диапазонах, наблюдается снижение эффективности работы электрооборудования. Поэтому требуется количественная оценка ущерба, причиненного отклонением показателей качества энергии.

В многофазных трансформаторах на характер протекающих процессов не влияет порядок чередования фаз, но несимметричные нагрузки приводят к убыли активной мощности. Несимметрия входных напряжений вызывает несимметрию выходных напряжений, что обусловлено протеканием токов обратной последовательности. Побочные потери определяются по формуле:

ΔРДОП = К22U (ΔРХХ  + ΔРКЗ / U2КЗ), где

ΔРХХ и ΔРКЗ – соответственно потери на холостом ходе и при замыкании накоротко;

UКЗ – напряжение короткого замыкания.

Выражение используют при известных номинальных значениях, указанных в паспортных данных оборудования. В противном случае пользуются формулой расчета:

ΔРДОП = kТР * К22U * SНОМ, где

kТР – коэффициент, рассчитываемый из значения мощности и назначения силового агрегата, принимается равным 2,67 для устройств 6-10 кВ и 0,5 для оборудования на 35-220 кВ;

SНОМ – соответствует полной номинальной мощности прибора.

Нагрузочный трансформатор

Согласно ГОСТу, максимальные значение коэффициента несимметрии нагрузки K2U по обратной последовательности не должны превышать 2% на протяжении 95% недельного временного интервала или быть выше 4% в течение 100% времени, ограниченного сроком в одну неделю.

При проведении вычислений по обеим формулам разница полученных значений ΔРДОП может достигать 50%. Поэтому в каждом конкретном случае расчет дополнительных потерь проводят на основании данных о трансформаторах и величине искажения режима работы – несимметричности нагрузки.

Как рассчитать

На практике используют два основных способа вычисления потерь электромагнитного оборудования, для которых применяют технические характеристики трансформаторов. Министерством энергетики РФ рекомендовано в отчетном периоде рассчитывать потери нагрузки на основе схемы энергосети:

ΔWHj= KК *ΔРСР * ТJ * K2Ф, где

ΔРСР – средние потери мощности, кВт;

K2Ф – коэффициент формы графика;

KК – уточняющий параметр (0,99);

ТJ – длительность расчетного периода.

Если графика нагрузки нет, K2Ф = (1+2КЗ) / 3КЗ), а при отсутствии информации о коэффициенте заполнения графика, КЗ = 0,5.

Схема энергосети

Для двухобмоточных

Чтобы выполнить вычисления, нужно пользоваться техническими (каталожными) параметрами трансформатора, к которым относится:

  • номинальная мощность;
  • потери холостого хода;
  • затраты при замыкании накоротко.

Также для вычислений нужны расчетные данные:

  • фактически потребленная энергия в период времени;
  • число отработанных часов (в месяц/квартал);
  • время эксплуатации трансформатора при номинальной нагрузке сети.

Схема двухобмоточного трансформатора

После получения перечисленных данных проводят измерение угла cos φ, выступающего средневзвешенным коэффициентом мощности, отталкиваясь от значения tg φ – коэффициента компенсации узла диэлектрических потерь:

Если в энергосистему не включен счетчик реактивных мощностей, используют выражение:

Формулы

Для расчетов используют формулу:

К = ЭА / РНОМ * ТОЧ * cos φ, где

ЭА – активная электроэнергия;

cos φ = r / Z – угол сдвига фаз (r – активное и Z – полное сопротивление цепи).

Или такая запись:

Соответственно потери трансформатора в рабочем режиме (при нагрузке, а не во время холостого хода) вычисляют так:

Р = РХХ * ТОЧ * РКЗ * К2 * ТНЧ

или такая запись:

формула для трансформаторов

Описанную методику используют при проведении вычислений потерь в двухконтурных трансформаторах.

двухобмоточный трансформатор

Для трехобмоточных

Чтобы посчитать убыль электроэнергии в трехобмоточных силовых узлах в формулу расчета дополнительно включают технические характеристики оборудования, указанные производителем в паспорте. Расчетная формула:

Э = ЭСН + ЭНН,

где Э – фактически потребленная энергия;

ЭСН и ЭНН соответственно электроэнергия в контурах среднего и низкого напряжения или по формуле, где коэффициенты находят так:

Формулы нахождения коэффициента

В формуле используют номинальную мощность каждого контура обмотки и потери, которые возникают при замыкании накоротко.

Примеры расчета

Для более четкого понимания методики вычислений удобно рассматривать порядок расчета на конкретном примере. В работе задействован силовой агрегат номинальной мощностью 400 кВа и номинального напряжения 10 кВ. Задача усложнена необходимостью вычислить постоянные и переменные потери трансформатора по активной и реактивной энергии.

Таблица 1. Исходные данные

Показатель Выражение Значение
Мощность номинальная, kVA Snom 400
Напряжение номинальное, исходя из параметров сети 10/0.4, kV Unom 10
Переданная активная электроэнергия, kWh Wa 53954
Реактивная электроэнергия, kWh Wr 39062
Потери при замыкании накоротко, kW РКЗ 5,9
Затраты в режиме холостого хода, kW РХХ 0,95
Отработанные под нагрузкой часы, h ТОЧ 696
Время максимальной нагрузки, h ТМ 333
Время наибольших потерь, h t 200
Коэффициент мощности cos φ 0,81

Прибор отработал 696 часов в рабочем режиме, причем часть времени трансформатор функционировал по максимальной нагрузке, а часть времени преобразовывал электроэнергию с наибольшими потерями. Для расчета этих значений нужно учесть нижеприведенное правило.

Таблица

Соответственно, время использования максимальной нагрузки ТМ составляет 333 ч, а время наибольших потерь t составит 200 ч.

Коэффициент мощности находят по формуле:

Формула коэффициента мощности

Постоянные потери энергии зависят от затрат холостого хода и составляют

∆W0,а = ∆P0 * TОЧ = 0,95 * 696 = 661,2 kWh

∆W0,r = ∆Q0 x TОЧ = 8,346 x 696 = 5808,816 kvarh, где

Формула

Для расчета переменных потерь активной энергии в расчетном периоде применяется формула:

∆Ws = РКЗ * t * ((W2а + W2r) / (Т2М * S2nom)) = 5,9 * 200 * ((539542 + 390622) / (3332 * 4002)) = 295,057 kWh;

реактивной энергии:

∆Ws,r = ΔQsc * t * ((W2а + W2r) / (Т2М * S2nom)) = 17,005 * 200 * ((539542 + 390622) / (3332 * 4002)) = 850,502 kWh, где

Формула

Общие потери энергии в расчетном периоде составляют:

∆Wa = ∆W0 + ∆Ws = 661,2 + 295,087 = 956 kWh,

∆Wr = ∆W0,r + ∆Ws,r = 5808,816 + 850,502 = 6659 kvarh.

Результат примера: 956 и 6659.

Измерение полезного действия

Эксплуатация оборудования при разомкнутом контуре вторичной цепи называется холостым ходом, а с подключением нагрузочного тока – рабочим режимом. В первом контуре цепи поток Ф0 создает ЭДС самоиндукции, и при разомкнутом вторичном контуре она уравновешивает часть напряжения. Передавая вторичной обмотке нагрузку, можно вызвать образование тока I2, который возбуждает собственный поток Ф2. Суммарный магнитный поток уменьшается, снижая величину ЭДС Е1, а некоторая часть U1 остается несбалансированной.

Одновременно I1 увеличивается и возрастает до прекращения размагничивающего действия тока нагрузки. Это способствует восстановлению Ф0 приблизительно до исходного значения.

Проводник вторичной обмотки закономерно обладает активным сопротивлением. Если оно растет, I2 и Ф2 уменьшаются, обуславливая увеличение Ф0 и возрастание ЭДС Е1. В результате баланс U1 и ЭДС Е2 нарушается – разница между ними уменьшается, снижая I2 до такого значения, при котором суммарный магнитный поток вернется к первоначальной величине.

Способ вычисления

Данный процесс способствует практически полному постоянству величин магнитных потоков при эксплуатации трансформатора на холостом ходе и в рабочем режиме. Такое свойство преобразователя энергии называют саморегулирующей способностью, благодаря которой значение нагрузочного тока I1 автоматически корректируется при колебаниях тока нагрузки I2.

Процесс преобразования электроэнергии в трансформаторных узлах сопровождается потерями и отражается на величине КПД, который является отношением отдаваемой активной мощности к потребляемой. Показатель полезного действия отражает соотношение активной мощности на входе и выходе для замкнутой цепи. Его вычисляют по простой формуле:

КПД = (М1 / М2) * 100% или

ƞ = (Р2 / Р1) * 100%, где активную мощность в обмотках входного и исходящего контуров определяют путем измерения.

Упростить процесс замеров можно при включении во вторичную обмотку активного тока нагрузки. Для определяя значение М2 используют амперметр, соединенный с вторичной цепью. Поток рассеивания будет незначительным, что позволяет приблизительно приравнять cos φ в квадрате к единице.

Данный способ вычисление КПД – это метод непосредственных измерений. Такая теория вычислений приводит к погрешностям в расчетах, поскольку КПД высокомощных трансформаторов очень большой и составляет 0,98-0,99%. Несмотря на то, что величины М1 и М2 различаются несущественно, в промышленном оборудовании незначительная разница показаний вызывает существенное искажение значения КПД.

Чтобы избежать ошибок, на практике при измерении КПД трансформаторов используют два способа: опыт холостого хода и опыт короткого замыкания.

Смысл первого метода заключается в подаче номинального напряжения на первичный контур при разомкнутой вторичной цепи. Энергия тратится на потери в стали, мощность которых можно замерять ваттметром, соединенным с контуром первичной обмотки.

Другой способ состоит в замыкании вторичного контура накоротко и одновременной подаче напряжения на первичную цепь. Включение ваттметра в первую цепь позволяет измерить мощность, отражающую потери медного проводника обмотки.

Калькулятор

Для упрощения вычислений удобно пользоваться онлайн-калькулятором. Алгоритм программы позволяет вычислить энергопотери трансформатора без сложных формул. Но полученные результаты следует рассматривать как ориентировочные. Для ввода используют следующие данные:

  • из техпаспорта прибора берут величину Sном (кВА);
  • вводят значение Ркз – справочный (паспортный) параметр (кВт);
  • выбирают Pхх в технической документации прибора (кВт);
  • указывают нагрузочный ток Iхх в процентном выражении (%);
  • обозначают напряжение Uкз – справочная информация (%);
  • вводят коэффициент загрузки K в относительных единицах;
  • указывают время эксплуатации прибора с максимальной загрузкой Тм (час);
  • из фактического режима эксплуатации оборудования берут годовое число часов работы агрегата Тг (час);
  • средний тариф Со на активную электроэнергию в расчетном периоде (руб/кВт*час).

После введения данных программа рассчитывает необходимые значения.

Поскольку энергопотери приводят к увеличению расхода материалов и средств, они вызывают удорожание электроэнергии. Сведение убыли непродуктивных энергозатрат силовых агрегатов к минимуму позволяет конструировать устройства с максимальным коэффициентом полезного действия. Применяя на практике методы расчета потерь активной мощности трансформаторных узлов, можно определить экономичность функционирования оборудования и необходимость установки в замкнутых цепях компенсирующей аппаратуры.

Понравилась статья? Поделить с друзьями:
  • Как найти нужный фильм для просмотра
  • Как составить доверенность на машину от руки образец
  • Как найти площадь прямоугольника через одну сторону
  • Как найти перстень по фото
  • Как найти портал в майнкрафте в аду