Как найти максимальную энергию магнитного поля катушки


Задание:

Найти максимальную плотность энергии магнитного поля внутри катушки (без сердечника) идеального контура Томсона, если дифференциальное уравнение электромагнитных колебаний в контуре имеет вид q» + 108 q = 0. Конденсатор емкостью С = 10–6 Ф был заряжен до разности потенциалов Δφ0 = 100 В, а начальный ток в контуре был равен нулю. Число витков катушки контура на единицу ее длины n = 103 1/м.

Решение:

Решение: № 7.11

Что такое энергия магнитного поля

Энергия магнитного поля — величина, обозначающая работу, затраченную электрическим током в проводнике или катушке индуктивности на образование этого магнитного поля.

Существует зависимость энергии магнитного поля от индуктивности проводника, вокруг которого это поле образовалось. Для обозначения величины используют букву W. Единицами измерения энергии являются Дж/м3 или МГсЭ (Мега Гаусс Эрстеды). К примеру, максимальное значение энергии магнитного поля неодимовых магнитов равно 278-360 Дж/м3, а ферритовых — составляет до 30 Дж/м3.

Описание явления, закон Фарадея

Магнитное поле обладает энергией. Данный факт можно доказать с помощью практического эксперимента. Опыт заключается в исследовании процесса убывания силы тока в катушке при отключении от нее источника тока. Предположим, что до того момента, когда был разомкнут ключ, в катушке имелся ток I, что способствовало образованию магнитного поля. После размыкания ключа катушка и сопротивление соединяются последовательно. В результате самоиндукции ток в катушке будет постепенно уменьшаться. Процесс сопровождается выделением теплоты на сопротивлении. Источник тока отключен, поэтому необходимо определить источник энергии, которая расходуется на тепло. Так как убывает ток и создаваемое им магнитное поле, допустимо говорить о понятии энергии тока или энергии магнитного поля, которое он создает.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда магнитное поле образовано постоянным током, определить место сосредоточения энергии не представляется возможным, так как ток по своему свойству образует магнитное поле, которое в любом случае сопровождается токами. Можно рассмотреть переменное магнитное поле в электромагнитной волне. Такая волна характеризуется наличием магнитных полей в условиях отсутствия токов. Известно, что электромагнитные волны являются переносчиками энергии, что позволяет сделать вывод о существовании энергии в магнитном поле. Таким образом, электрический ток обладает энергией, локализованной в магнитном поле, то есть в среде, окружающей этот ток. Согласно закона сохранения энергии, на примере эксперимента вся энергия магнитного поля выделяется в виде Джоулева тепла на сопротивлении R.

Определение

Электромагнитная индукция представляет собой явление возникновения электрического тока, поля или электрической поляризации при изменении с течением времени магнитного поля или в процессе движения материальной среды в нем.

С помощью опытов с катушками и магнитом Фарадею удалось обнаружить зависимость между величиной электродвижущей силы и скорости, с которой перемещаются катушки или магнит. Данное наблюдение послужило основанием для выявления закономерности и формулировки закона электромагнитной индукции.

Определение

Закон электромагнитной индукции: электродвижущая сила пропорциональна скорости изменения магнитного потока, проходящего через контур.

Единицами измерения ЭДС являются вольты магнитного потока — веберы. Формула закона Фарадея содержит знак минуса. К данному выражению применено правило Ленца, как пояснение того, что ток, образовавшийся в результате индукции, в любом случае противоположно направлен образующему его магнитному потоку. Магнитное поле индукционного тока всегда препятствует магнитному потоку из внешнего источника. По смыслу правило схоже с законом сохранения энергии.

Потоки энергии электромагнитного поля

Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в русской научной традиции — вектор Умова — Пойнтинга).

В системе СИ вектор Пойнтинга равен векторному произведению напряжённостей электрического и магнитного полей и направлен перпендикулярно векторам E и H. Это естественным образом согласуется со свойством поперечности электромагнитных волн.

Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей и имеет тот же вид. Факт существования потоков энергии в постоянных электрических и магнитных полях может выглядеть странно, но не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.

Индуктивность в системе магнитно-связанных катушек

Рассмотрим частный случай, когда две магнитно-связанные катушки электрически соединены между собой последовательно, в результате чего в обеих катушках ток I один и тот же. Энергия магнитного поля такой системы
Энергия магнитного поля
или
Энергия магнитного поля
где Энергия магнитного поля
— индуктивность системы магнитно-связанных катушек.
При согласном включении
Энергия магнитного поля
при встречном включении
Энергия магнитного поля

Выражение энергии через характеристики магнитного поля

Формулами (11.13) и (11.14) энергия выражена через характеристики контуров с токами.

Можно показать, что в данном случае энергия распределена в магнитном поле, окружающем проводники с токами.

Для примера возьмем поле катушки с кольцевым сердечником. Если диаметр сечения сердечника много меньше диаметра самого сердечника, поле можно считать равномерным:
Энергия магнитного поля
Тогда
Энергия магнитного поля
где Энергия магнитного поля
— объем сердечника.
Энергия магнитного поля в единице объема
Энергия магнитного поля
Здесь энергия выражена через характеристики магнитного поля, что свидетельствует о ее принадлежности магнитному полю.

Задача 11.8.

Определить энергию магнитного поля в системе двух обмоток (задача 8.21) при согласном и встречном их включении, если ток в первой обмотке I1 = 5 А, а во второй I2 = З А.
Решение. Для определения энергии в магнитно-связанной системе двух обмоток воспользуемся формулой (11.14).
Величины индуктивностей катушек и взаимной индуктивности при неферромагнитном сердечнике не зависят от тока в них, поэтому возьмем их по результатам решения задачи 8.21:
Энергия магнитного поля
Энергия магнитного поля
Энергия магнитного поля

При согласном включении обмоток
Энергия магнитного поля
Энергия магнитного поля
При встречном включении
Энергия магнитного поля
Задача 11.9.

Общая индуктивность двух последовательно соединенных катушек (см. рис. 8.22) при согласном включении равна 1,52 мГн, при встречном — 0,88 мГн. Определить взаимную индуктивность катушек.
Решение. Найдем взаимоиндуктивность катушек, решив совместно уравнения (11.15) и (11.16):
Энергия магнитного поля
Вычтем второе уравнение из первого:

Энергия магнитного поля
.
В данном случае Энергия магнитного поля
Энергия магнитного поля
Энергия магнитного поля

От чего зависит величина

Существует ряд некоторых ограничений в применении формулы для расчета энергии магнитного поля. При записи выражения выполнялось несколько условий:

  • индуктивность контура, а также магнитная проницаемость вещества стабильны;
  • вся энергия источника тока трансформируется в энергию магнитного поля.

Перечисленные условия справедливы лишь в случае вакуума, то есть при (mu)=1. Если контур с током поместить в вещество, то необходимо принимать во внимание следующие параметры:

  • намагничивание вещества, что способствует его нагреву;
  • объем и плотность вещества в магнитном поле могут изменяться даже при стабильной температуре.

Таким образом, магнитная проницаемость вещества (mu), изменяющаяся при перепадах температуры и плотности среды, не может оставаться постоянной в процессе намагничивания. Также работа источника ЭДС не полностью трансформируется в энергию магнитного поля. В том случае, когда объем вещества изменяется в малой степени, сохраняется стабильной температура среды, внешняя работа затрачивается на увеличение энергии магнитного поля и на теплоотдачу Q, чтобы поддерживать постоянную температуру.

Работа внешних сил, в нашем случае источника тока, совершаемая над телом при квазистатическом изотермическом процессе, соответствует увеличению свободной энергии тела. Таким образом, формула определяет часть свободной энергии намагниченного вещества, которая обладает связью с магнитным полем:

Выражение применимо при рассмотрении ситуаций в условиях вакуума для парамагнетиков и диамагнетиков. Но при опытах с ферромагнетиками магнитная индукция и напряженность магнитного поля связаны нелинейно, даже при T=const.

Энергия электромагнитного поля: формула, обозначение, в чём измеряется

При проведении опытов с катушкой и лампочкой накаливания в электрической цепи можно заметить интересное явление. После отключения индукции от источника электропитания, подключенная к ней параллельно лампа накаливания даёт кратковременную вспышку. В сети возникает ток благодаря воздействию электродвижущей силы самоиндукции. В качестве источника энергии для явления задействуется магнитное поле соленоида.

Для простоты расчёта предположим, что сила тока в цепи снижается линейно.

ЭДС самоиндукции при этом вычисляется по формуле:

ε= -LΔIΔt=LIt,
где t – время, за которое ток падает до нуля.

За этот временной интервал в цепи «пробегает» заряд:

q= I2t.

Проделанная магнитным полем работа равняется:

A=qε= It2* LIt= LI22.

Это максимальная энергия магнитного поля катушки, вычисляется по формуле (обозначается Wm или W):

Wm= LI22. 

Читается как: сила магнитного поля катушки равняется половине произведения квадрата силы протекающего по ней тока I на индуктивность L.

Для конденсатора вычисляется иначе: Wm=CU22
, C-ёмкость конденсатора.

Многие не знают, в чем измеряется энергия магнитного поля тока катушки. В системе единиц СИ это джоуль (Дж), названный в честь британского физика.

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:

В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:

Wм=ΦI2=LI22=Φ22L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, получим запись:

Wм=μ0·μ·n2·I22V=B22μ0·μV

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Определение 4

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.

Задача

Определить силу тока в соленоиде с индуктивностью 20 мГн, необходимую для генерирования энергии магнитного поля, равной 5 Дж.

Воспользуемся известной формулой: Wm= LI22
, отсюда I2 = 2WL
.

I = 2WL
. Подставим значения, зная, что 20 мГн = 0,02 Гн.

I = 2*50,02= 100,02= 500≈22,36 А.

Ответ: 22,36 А.

Ограничения в применении формулы для вычисления плотности энергии магнитного поля

При получении формулы (9) считалось, что:

  1. индуктивность контура, следовательно, магнитная проницаемость вещества не изменяются,
  2. вся энергия источника тока переходит в энергию магнитного поля.

Эти условия справедливы точно, только для вакуума. При помещении контура с током в вещество, следует учитывать:

  • Намагничивание вещества, что ведет к увеличению ее температуры.
  • Объем и плотность вещества в магнитном поле способны меняться даже при неизменной температуре.

Данные нюансы указывают на то, что магнитная проницаемость вещества ($mu$), которая изменяется при изменении температуры и плотности среды не может быть неизменной при намагничивании.

Кроме того, работа источника ЭДС не целиком переходит в энергию магнитного поля.

Выше сказанное дает основание полагать, что в общем случае формула (2) не выражает в точности работу при намагничивании и выражение (9) не дает объемную плотность энергии магнитного поля в веществе.

Допустим, что изменение объема вещества мало. Температура среды постоянна. Внешняя работа расходуется на рост энергии магнитного поля E и на теплоотдачу Q, для поддержания постоянной температуры. Работа внешних сил, в нашем случае источника тока, которая совершается над телом при квазистатическом изотермическом процессе, будет равна приращению свободной энергии тела. Получается, что формула (9) отражает часть свободной энергии намагниченного вещества, которая связана с магнитным полем.

Если количества теплоты Q в сравнении с энергией поля E мало, тогда выполняется равенство (2).

Условие неизменности магнитной проницаемости вещества, означает, что справедлива линейная зависимость (10). Даная зависимость выполняется для вакуума. Ее можно применять для парамагнетиков и диамагнетиков. Но для ферромагнетиков связь между магнитной индукцией и напряженностью магнитного поля является сильно нелинейной даже при T=const, поэтому выражение (9) для этих веществ не применяется.

Предыдущая

РазноеЭлектропроводка в частном доме своими руками

Следующая

Разное4 группа по электробезопасности: проверка знаний, требования для допуска

Если
в контуре с индуктивностью L
течёт ток I,
то в момент размыкания цепи возникает
индукционный ток и им совершается
работа. Эта работа совершается за счёт
энергии исчезнувшего при размыкании
цепи магнитного поля. На основании
закона сохранения и превращения энергию
магнитного поля превращается главным
образом в энергию электрического поля,
за счёт которой происходит нагревание
проводников. Работа может быть определена
из соотношения

dA=εсмIdt

Так
как
,
то

dA=-LIdI

Уменьшение
энергии магнитного поля равно работе
тока, поэтому

(16.18)

Формула
справедлива для любого контура и
показывает, что энергия магнитного поля
зависит от индуктивности контура и силы
тока, протекающего по нему.

Рассчитаем
энергию однородного магнитного поля
длинного соленоида, индуктивность
которого определяется по формуле L
= μμ0n2V.
B
этом случае формула энергии примет вид

Учитывая,
что напряжённость поля внутри бесконечно
длинного соленоида Н=In,
получаем

(16.19)

Выразим
энергию через индукцию магнитного поля
B=
μμ0H:

(16.20)

Или

(16.21)

Вследствие
того, что магнитное поле соленоида
однородно и локализовано внутри
соленоида, энергия распределена по
объёму соленоида с постоянной плотностью

(16.22)

Учитывая
последние три формулы, получаем



Учитывая
правило Ленца, можно заметить, что
явление самоиндукции аналогично
проявлению инертности тел в механике.
Так, вследствие инертности тело не
мгновенно приобретает определённую
скорость, а постепенно. Так же постепенно
происходит и его торможение. То же самое,
как мы видели, происходит и с силой тока
при самоиндукции. Эту аналогию можно
провести и дальше.


и

эти
уравнения эквивалентны.

т.е.
m
~L
, υ~I

Эквивалентны
и формулы

Примеры решения задач

Пример.
В магнитном поле, изменяющемся по закону
B=B0cosωt
(B0=5мТл,

ω=5с-1),
помещён круговой проволочный виток
радиусом r=30см,
причём нормаль к витку образует с
направлением поля угол α=30º. Определите
ЭДС индукции, возникающую в витке в
момент времени t=10с.

Дано:
B=B0cosωt;
B0=5мТл=5∙10-3
Тл;
ω=5с-1;
r=30см=0,3
м;
α=30º; t=10 с.

Найти:
εi.

Решение:
Согласно
закону Фарадея,

,
(1)

Где
магнитный поток, сцепленный с витком
при произвольном его расположении
относительно магнитного поля.

Ф=BScosα.

По
условию задачи B=B0cosωt,
а площадь кольца S=πr2,
поэтому

Ф=πr2
B0cosωt∙cosα.
(2)

Подставив
выражение (2) в формулу (1) и продифференцировав,
получаем искомую ЭДС индукции в заданный
момент времени:

Ответ:
εi=4,69
мВ.

Пример
В
соленоиде длиной ℓ=50см и диаметром
d=6см
сила тока равномерно увеличивается на
0,3А за одну секунду. Определите число
витков соленоида, если сила индукционного
тока в кольце радиусом 3,1 см из медной
проволоки (ρ=17нОм∙м), надетом на катушку,
Iк=0,3
А.

Дано:
ℓ=50см=0,5
м; d=6см=0,06м;
;rк=3,1см=3.1∙10-2м;
ρ=17нОм∙м=17∙10-9
Ом∙м; Iк=0,3
А.

Найти:
N.

Решение.
При изменении силы тока в соленоиде
возникает ЭДС самоиндукции

(1)

где

индуктивность соленоида. Подставив это
выражение в (1)

с
учётом

.

ЭДС
индукции, возникающая в одном кольце,
в N
раз меньше, чем найденное значение ЭДС
самоиндукции в соленоиде, состоящем из
N
витков, т.е.

.
(2)

Согласно
закону Ома, сила индукционного тока в
кольце

,
(3)

где

сопротивление кольца. Поскольку ℓк=πd,
а Sк=πrк2,
выражение (3) примет вид

Подставив
в эту формулу выражение (2), найдём искомое
число витков соленоид

.

Ответ:
N=150

Пример
В
однородном магнитном поле подвижная
сторона (её длина ℓ=20см) прямоугольной
рамки (см. рисунок) перемещается
перпендикулярно линиям магнитной
индукции со скоростью υ=5 м/с. Определите
индукцию В магнитного поля, если
возникающая в рамке ЭДС индукции εi=0,2
В.

Дано:
ℓ=20см=0,2
м; υ=5 м/с; εi=0,2
В.

Найти:
B.

Решение.
При движении в магнитном поле подвижной
стороны рамки поток Ф вектора магнитной
индукции сквозь рамку возрастает, что,
согласно закону Фарадея,

,
(1)

приводит
к возникновению ЭДС индукции.

Поток
вектора магнитной индукции, сцепленный
с рамкой,

Ф=Bℓx.
(2)

Подставив
выражение (2) в формулу (1) и учитывая, что
B
и ℓ — величины постоянные, получаем

откуда
искомая индукция магнитного поля

Ответ:
В=0,2 Тл.

Пример
В
однородном магнитном поле с индукцией
В=0,2 Тл равномерно вращается катушка,
содержащая N=600
витков, с частотой n=6
с-1.
Площадь
S
поперечного сечения катушка 100см2.
Ось вращения перпендикулярна оси катушки
и направлению магнитного поля. Определите
максимальную ЭДС индукции вращающейся
катушки.

Дано:
В=0,2
Тл; N=600;
n=6
с-1;
S=100см2=10-2
м2.

Найти:
i)max.

Решение.
Согласно закону Фарадея,

где
Ф – полный магнитный поток, сцеплённый
со всеми витками катушки. При произвольном
расположении катушки относительно
магнитного поля

Ф=NBScosωt,
(1)

где
круговая частота ω=2πn.
Подставив ω в (1), получим

Ф=NBScos2πnt.

Тогда

εi=-NBS2πn(-sin2πnt)=2πnNBSsin2πnt,

εi=(
εi)max
при
sin2πnt=1, поэтому

i)max=2πnNBS

Ответ:
i)max=45,2
В.

Пример
Однослойная
длинная катушка содержит N=300
витков, плотно прилегающих друг к другу.
Определите индуктивность катушки, если
диаметр проволоки d=0,7
мм (изоляция ничтожной толщины) и она
намотана на картонный цилиндр радиусом
r=1
см. .

Дано:
N=300;
d=0,7
мм=7∙10-4
м; r=1
см=10-2
м.

Найти:
L.

Решение.
Индуктивность катушки

(1)

где
Ф – полный магнитный поток, сцепленный
со всеми витками катушки; I
— сила тока в катушке.

Учитывая,
что полный магнитный поток

Ф=NBS

(N-число
витков катушки; В – магнитная индукция;
S
– площадь поперечного сечения катушки);
магнитная индукция в катушке без
сердечника

0
– магнитная постоянная; ℓ- длина
катушки), длина катушки

ℓ=Nd

(d-диаметр
проволоки; витки вплотную прилегают
друг к другу), площадь поперечного
сечения катушки

S=πr2,

Получим
осле подстановки записанных выражений
в формулу (1) искомую индуктивность
катушки:

Ответ:
L=1,69
мГн.

Пример
Первичная
обмотка понижающего трансформатора с
коэффициентом трансформации k=0,1
включена в сеть с источником переменного
напряжения с ЭДС ε1=220
В. Пренебрегая потерями энергии в
первичной обмотке, определите напряжение
U2
на зажимах вторичной обмотки, если её
сопротивление R2=5
Ом и сила тока в ней I2=2А.

Дано:
k=0,1;
ε1=220
В; R2=5
Ом; I2=2А.

Найти:
U2.

Решение.
В первичной обмотке под действием
переменной ЭДС ε1
возникает переменный ток I1,
создающий в сердечнике трансформатора
переменногый магнитный поток Ф, который
пронизывает вторичную обмотку. Согласно
закону Ома, для первичной обмотки

где
R1
– сопротивление первичной обмотки.
Падение напряжения I1R1
при быстропеременных полях мало по
сравнению с ε1
и ε2.
Тогда можем записать:

(1)

ЭДС
взаимной индукции, возникающая во
вторичной обмотке,

(2)

Из
выражений (1) и (2) получаем

,

где

коэффициент трансформации, а знак «-»
показывает, что ЭДС в первичной и
вторичной обмотках противоположны по
фазе. Следовательно, ЭДС во вторичной
обмотке

ε2=k
ε2.

Напряжение
на зажимах вторичной обмотки

U2=
ε2-I2R2=
1-I2R2.

Ответ:
U2=12
В.

Пример
Соленоид
без сердечника с однослойной обмоткой
из проволоки диаметром d=0,4
мм имеет длину ℓ=0.5 м и поперечное сечение
S=60см2.
За какое время при напряжении U=10
В и силе тока I=1,5
А в обмотке выделится количество теплоты,
равное энергии поля внутри соленоида?
Поле считать однородным.

Дано:
d=0,4
мм=0,4∙10-4
м; ℓ=0,5 м; S=60см2=6∙10-3
м2;
I=1,5А;
U=10В;
Q=W.

Найти:
t.

Решение.
При прохождении тока I
при напряжении U
в обмотке за время t
выделяется теплота

Q=IUt.
(1)

Энергия
поля внутри соленоида

(2)

где
(N
– общее число витков соленоида). Если
витки вплотную прилегают друг к другу,
то ℓ=Nd,
откуда
.
Подставив выражение для В иN
в
(2), получаем

.
(3)

Согласно
условию задачи, Q=W.
Приравняв выражение (1) и (3),найдём искомое
время:

Ответ:
t
=1,77 мс.

Пример
Катушка
без сердечника длиной ℓ=50 см содержит
N=200
витков. По катушке течёт ток I=1А.
Определите объёмную плотность энергии
магнитного поля внутри катушки..

Дано:
ℓ=50
см=0,5
м;
N=200; I=1 А.

Найти:
ω.

Решение.
Объёмная плотность энергии магнитного
поля (энергия единицы объёма)

,
(1)

где

энергия магнитного поля (L
— индуктивность катушки); V=Sℓ-
объём катушки (S
— площадь катушки; ℓ- длина катушки).

Магнитная
индукция поля внутри соленоида с
сердечником с магнитной проницаемостью
μ равна

.

Полный
магнитный поток, сцепленный со всеми
витками соленоида,

.

Учитывая,
что Ф=LI,
получаем формулу для индуктивности
соленоида:

(2)

Подставив
выражение (2) в формулу (1) с учётом того,
что
,
найдём искомую объёмную плотность
энергии магнитного поля внутри катушки:

Ответ:
ω=0,1
Дж/м3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Полная энергия электромагнитных колебаний в колебательном контуре

Теорема физики (формула) и словесная формулировка математической записи: полная энергия Е электромагнитных колебаний колебательного контура в каждый момент времени равна сумме энергии электрического поля в конденсаторе и энергии магнитного поля катушки индуктивности в этот момент времени. Полная энергия равна максимальной энергии электрического поля ECmax (в момент, когда энергия магнитного поля катушки равна нулю) и максимальной энергии магнитного поля катушки ELmax (в момент, когда энергия электрического поля равна нулю).

(% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacaWGfbGaeyypa0Jaamyra8aadaWgaaWcbaGaamitaiGac2gacaGG% HbGaaiiEaaqabaGcpeGaaiilaiaadweapaWaaSbaaSqaa8qacaWGmb% aapaqabaGcdaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaOWd% biabg2da98aadaWcaaqaaiaadYeacaWGXbWaa0baaSqaaiaaicdaae% aacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOm% aaaapeGaaiilaiaacckacaWGfbGaeyypa0Jaamyra8aadaWgaaWcba% Gaai4qaiGac2gacaGGHbGaaiiEaaqabaGcpeGaaiilaiaadweapaWa% aSbaaSqaaiaadoeaaeqaaOWaaSbaaSqaa8qacaWGTbGaamyyaiaadI% haa8aabeaak8qacqGH9aqppaWaaSaaaeaacaWGXbWaa0baaSqaaiaa% icdaaeaacaaIYaaaaaGcbaGaaGOmaiaadoeaaaaaaa!5E23!E = {E_{Lmax }},{E_L}_{max} = frac{{Lq_0^2{omega ^2}}}{2},E = {E_{Cmax }},{E_C}_{max} = frac{{q_0^2}}{{2C}})

Здесь L – индуктивность катушки, q0 – максимальный заряд конденсатора, ω – круговая частота электромагнитных колебаний контура, С – емкость конденсатора.

Доказательство теоремы (вывод формулы): значение электрической энергии колебательного контура, в котором совершаются гармонические колебания, в любой момент времени t равно

EС(t)=(frac{{q_0^2{{cos }^2}(omega t + {phi _0})}}{{2C}})

Магнитная энергия контура, совершающего гармонические колебания, в любой момент времени t равна 

EL(t)=(% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGmbGaamyCamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabeM8a3naa% CaaaleqabaGaaGOmaaaakiGacohacaGGPbGaaiOBamaaCaaaleqaba% GaaGOmaaaakiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqy1dy2aaSba% aSqaaiaaicdaaeqaaOGaaiykaaqaaiaaikdaaaaaaa!487A!frac{{Lq_0^2{omega ^2}{{sin }^2}(omega t + {phi _0})}}{2})

В области гармонических колебаний, когда омическое сопротивление пренебрежимо мало (R=0), энергетических потерь нет, и заряд на обкладках восстанавливается через каждый период полностью. Магнитная энергия переходит в электрическую, и наоборот, электрическая в магнитную. По закону сохранения энергии полная энергия контура не изменяется и в любой момент времени равна сумме электрической и магнитной энергий. Найдем эту сумму:

Е=EС+EL=(frac{{q_0^2{{cos }^2}(omega t + {phi _0})}}{{2C}} + frac{{Lq_0^2{omega ^2}{{sin }^2}(omega t + {phi _0})}}{2})

Заменяя величину ({omega ^2})на ее значение во втором слагаемом ({omega ^2} = frac{1}{{LC}}), получим 

Е=(frac{{q_0^2{{cos }^2}(omega t + {phi _0})}}{{2C}} + frac{{q_0^2{{sin }^2}(omega t + {phi _0})}}{{2C}} = frac{{q_0^2}}{{2C}}({cos ^2}(omega t + {phi _0}) + {sin ^2}(omega t + {phi _0}))) 

Выражение в скобках равно единице, поэтому (% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2% da9maalaaabaGaamyCamaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqa% aiaaikdacaWGdbaaaaaa!3BFD!E = frac{{q_0^2}}{{2C}})

Максимального значения электрическая энергия достигает в те моменты времени, когда косинус фазы принимает значения, равные единице, поэтому EСмах =(% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGXbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaGcbaGaaGOmaiaadoea% aaaaaa!3A2D!frac{{q_0^2}}{{2C}})

Магнитная энергия достигает максимального значения в те моменты времени, когда синус фазы принимает значения, равные единице, поэтому ELмах=(% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGmbGaamyCamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabeM8a3naa% CaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaaaa!3CF6!frac{{Lq_0^2{omega ^2}}}{2}), но (% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaW% baaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamit% aiaadoeaaaaaaa!3C20!{omega ^2} = frac{1}{{LC}}) и ELмах=(% MathType!MTEF!2!1!+-% feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGXbWaa0baaSqaaiaaicdaaeaacaaIYaaaaaGcbaGaaGOmaiaadoea% aaaaaa!3A2D!frac{{q_0^2}}{{2C}})

Максимальная электрическая энергия электромагнитного колебания равна максимальной магнитной энергии. Сравнивая полученные значения с выражением для полной энергии, как и положено по закону сохранения энергии, имеем равенство полной энергии в любой момент времени максимальным значениям кинетической и потенциальной энергий. В те моменты времени, когда кинетическая энергия максимальна, потенциальная минимальна и наоборот, так один вид энергии периодически полностью без потерь переходит в другой.

Теорема доказана.

Условия выполнения: выполняется в области упругих растяжений пружины для случая, когда массой пружины пренебрегают по сравнению с массой подвеса. Кроме того, пренебрегают процессами затухания колебаний.

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 33. Явление самоиндукции. Индуктивность. Энергия магнитного поля катушки с током
Напечатано:: Гость
Дата: Пятница, 26 Май 2023, 18:08

Оглавление

  • Самоиндукция
  • Наблюдение самоиндукции
  • Энергия магнитного поля
  • Примеры решения задач
  • Упражнение 24

Фарадей опытным путём установил, что электромагнитная индукция проявляется во всех случаях изменения магнитного потока через поверхность, ограниченную контуром. Современник Фарадея американский физик Джозеф Генри (1797–1878) независимо от своего английского коллеги открыл некоторые из электромагнитных эффектов. В 1829 г. Генри обнаружил, что ЭДС индукции возникает в неподвижном контуре и в отсутствие изменения внешнего магнитного поля. Каков механизм возникновения ЭДС индукции в этом случае?

Самоиндукция. Если электрический ток, проходящий в замкнутом проводящем контуре, по каким-либо причинам изменяется, то изменяется и магнитное поле, создаваемое этим током. Это влечёт за собой изменение магнитного потока через поверхность, ограниченную контуром. Поскольку магнитный поток Ф пропорционален модулю магнитной индукции В поля, который, в свою очередь, пропорционален силе тока I в контуре, то

straight Ф tilde I.

Коэффициенту пропорциональности между магнитным потоком Ф и силой тока I Томсон (лорд Кельвин) в 1853 г. предложил название «коэффициент самоиндукции»:

Коэффициент самоиндукции L часто называют индуктивностью контура. В СИ индуктивность измеряют в генри (Гн). Индуктивность контура равна 1 Гн, если при силе тока в контуре 1 А магнитный поток через поверхность, ограниченную этим контуром, равен 1 Вб. Индуктивность зависит от размеров и формы контура, а также от магнитных свойств среды, в которой находится этот контур.

Если электрический ток, проходящий в контуре, изменяется, то он создаёт изменяющийся магнитный поток, что приводит к появлению ЭДС индукции. Это явление назвали самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой же цепи.

Возникающую в этом случае ЭДС назвали электродвижущей силой самоиндукции. Согласно закону электромагнитной индукции,

calligraphic E subscript straight с equals negative fraction numerator increment straight Ф over denominator increment t end fraction equals negative fraction numerator increment open parentheses L I close parentheses over denominator increment t end fraction.

Если индуктивность контура не изменяется во времени, т. е. L = const, то

calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction. 

Поскольку контур замкнут, ЭДС самоиндукции создаёт в нём ток самоиндукции. Силу тока самоиндукции можно определить по закону Ома I subscript straight с equals calligraphic E subscript straight с over R где R — сопротивление контура. Согласно правилу Ленца, ток самоиндукции всегда направлен так, чтобы противодействовать изменению тока, создаваемого источником. При возрастании силы тока ток самоиндукции направлен против тока источника, а при уменьшении — направления тока источника и тока самоиндукции совпадают.

От теории к практике

Какой должна быть скорость изменения силы тока, чтобы в катушке с индуктивностью L = 0,20 Гн возникла ЭДС самоиндукции calligraphic E subscript straight с = 4,0 В?

Рис.
Рис. 185

Отсылка к просмотру видеоролика

Наблюдение самоиндукции. Для наблюдения явления самоиндукции соберём электрическую цепь, состоящую из катушки с большой индуктивностью, резистора с электрическим сопротивлением, равным сопротивлению обмотки катушки, двух одинаковых лампочек, ключа и источника постоянного тока. Схема цепи представлена на рисунке 185. При замыкании ключа лампочка Л2 начинает светиться практически сразу, а лампочка Л1 — с заметным запаздыванием. При возрастании силы тока I1, созданного источником на участке, образованном катушкой и лампочкой Л1, ЭДС самоиндукции в катушке имеет такую полярность, что создаваемый ею ток самоиндукции Iс направлен навстречу току источника. В результате рост силы тока I1 источника замедляется, и сила тока I1 — |Iс| не сразу достигает своего максимального значения.

Материал повышенного уровня

Рис.
Рис. 185.1

Явление самоиндукции можно наблюдать и при размыкании электрической цепи. Соберём цепь, состоящую из катушки с большим количеством витков 1, намотанных на железный сердечник 2, к зажимам которой подключена лампочка с большим электрическим сопротивлением по сравнению с сопротивлением обмотки катушки (рис. 185.1). В качестве источника тока возьмём источник, ЭДС которого 2 В. Лампочка подключена параллельно катушке. При размыкании ключа сохраняется замкнутой часть цепи, состоящая из уже последовательно соединённых катушки и лампочки.

Пока ключ замкнут, лампочка будет тускло светиться, так как отношение сил токов, проходящих через лампочку и катушку, обратно отношению их сопротивлений I subscript straight л over I subscript straight к equals R subscript straight к over R subscript straight л. Однако при размыкании ключа можно увидеть, что лампочка ярко вспыхивает. Почему это происходит? При размыкании цепи сила тока в катушке убывает, что приводит к возникновению ЭДС самоиндукции. Возникающий в цепи ток самоиндукции, согласно правилу Ленца, совпадает по направлению с током катушки, не позволяя ему резко уменьшать силу тока. Это и обеспечивает вспышку лампочки. Заметим, что явление самоиндукции имеет место в любых случаях изменения силы тока в цепи, содержащей индуктивность, или изменения самой индуктивности.

Материал повышенного уровня

Энергия магнитного поля. Откуда берётся энергия, обеспечивающая вспышку лампочки? Это не энергия источника тока, так как он уже отсоединён. Вспышка лампочки происходит одновременно с уменьшением силы тока в катушке и создаваемого током магнитного поля. Можно предположить, что запасённая в катушке в процессе самоиндукции энергия магнитного поля превращается во внутреннюю энергию спирали лампочки и энергию её излучения.

При замыкании цепи, состоящей из источника тока с ЭДС calligraphic E subscript 0, катушки с индуктивностью L и резистора, сопротивление которого R, сила тока в цепи начнёт возрастать и появится ЭДС самоиндукции calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction.

Тогда в соответствии с законом Ома сила тока в цепи I equals fraction numerator calligraphic E subscript 0 plus calligraphic E subscript straight с over denominator R end fraction.

Значит, calligraphic E subscript 0 equals I R plus L fraction numerator increment I over denominator increment t end fraction.

Умножив полученное равенство на IΔt, где Δt — достаточно малый промежуток времени, в течение которого сила тока I остаётся практически постоянной, найдём элементарную работу, совершаемую сторонними силами в источнике тока: calligraphic E subscript 0 I increment t equals I squared R increment t plus L I increment I.

Рис.
Рис. 185.2

В процессе установления тока, когда сила тока I и магнитный поток Ф = LI возрастают, работа, совершаемая сторонними силами в источнике тока, превышает выделяющееся в резисторе количество теплоты. Элементарная дополнительная работа, совершаемая сторонними силами за промежуток времени Δt при преодолении ЭДС самоиндукции в процессе установления тока (рис. 185.2):

δAдоп = ФΔI.

Полная дополнительная работа Адоп, равная сумме элементарных дополнительных работ δAдоп в процессе установления тока, равна сумме площадей всех аналогичных столбиков, т. е. площади фигуры под графиком зависимости Ф = Ф(I) (см. рис. 185.2).

A subscript доп equals fraction numerator straight Ф subscript уст I subscript уст over denominator 2 end fraction equals fraction numerator L I subscript уст superscript 2 over denominator 2 end fraction.

Эта работа превращается в энергию магнитного поля катушки, поэтому:

W subscript straight м equals fraction numerator L I squared over denominator 2 end fraction comma 

где L — индуктивность контура; I — сила тока.

От теории к практике

Какова индуктивность катушки, если при силе тока I = 2,0 А энергия магнитного поля катушки Wм = 1,2 Дж?

img

img

1. Что называют самоиндукцией?

2. В каких опытах можно наблюдать явление самоиндукции?

3. От чего зависит ЭДС самоиндукции?

4. Что называют индуктивностью? В каких единицах в СИ её измеряют?

5. Как вычислить энергию магнитного поля катушки с током?

Материал повышенного уровня

6. Почему для создания электрического тока в цепи с катушкой индуктивности источник тока должен затратить энергию?

Примеры решения задач

Пример 1. На рисунке 186 представлен график зависимости силы тока, проходящего по соленоиду, от времени. Определите максимальное значение модуля ЭДС самоиндукции в соленоиде, если его индуктивность L = 40 мГн.

Рис.

Рис. 186

Дано:
L = 40 мГн = 4,0 · 10–2 Гн

open vertical bar calligraphic E subscript straight с close vertical bar subscript max — ?

Решение: ЭДС самоиндукции calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction. Анализируя график (рис. 186), можно сделать вывод, что сила тока, проходящего по соленоиду, изменяется на трёх участках:

1) от момента времени t1 = 0,0 с до момента времени t2 = 2,0 с сила тока изменяется на ΔI1 = 10 А за промежуток времени Δt1 = 2,0 с;

2) от момента времени t3 = 4,0 с до момента времени t4 = 6,0 с сила тока изменяется на ΔI2 = –20 А за промежуток времени Δt2 = 2,0 с;

3) от момента времени t5 = 8,0 с до момента времени t6 = 10,0 с сила тока изменяется на ΔI3 =10 А за промежуток времени Δt3 = 2,0 с.

Поскольку промежутки времени Δt1 = Δ t2 = Δ t3 = 2,0 с, то очевидно, что максимальное значение модуля скорости изменения силы тока, а следовательно, и максимальное значение модуля ЭДС самоиндукции, создаваемой в соленоиде, соответствует промежутку времени Δt2 = 2,0 с (от t3 = 4,0 с до t4 = 6,0 с):

open vertical bar calligraphic E subscript straight с close vertical bar subscript max equals L open vertical bar fraction numerator increment I subscript 2 over denominator increment t subscript 2 end fraction close vertical bar.

Таким образом,

open vertical bar calligraphic E subscript straight с close vertical bar subscript max equals 4 comma 0 times 10 to the power of negative 2 end exponent space Гн times fraction numerator open vertical bar negative 20 space straight А close vertical bar over denominator 2 comma 0 space straight с end fraction equals 0 comma 40 space straight В.

Ответopen vertical bar calligraphic E subscript straight с close vertical bar subscript max = 0,40 В.

Пример 2. На рисунке 187 представлен график зависимости ЭДС самоиндукции, возникающей в катушке с индуктивностью L = 2,0 мГн, от времени. Определите изменения силы тока на участках I, II и III графика. Чему равна энергия магнитного поля в момент времени t = 4,0 с, если в начальный момент времени сила тока в катушке I = 0?

Рис.

Рис. 187

Дано:
L = 2,0 мГн = 2,0 · 10–3 Гн
t = 4,0 с

ΔII — ? ΔIII — ?
ΔIIII — ? Wм — ?

Решение: Анализируя график, можно сделать вывод, что на участке I ЭДС самоиндукции calligraphic E subscript сI = –3,0 мВ, на участке III — calligraphic E subscript сIII = 6,0 мВ. Изменение силы тока на этих участках графика можно определить, воспользовавшись законом электромагнитной индукции для явления самоиндукции:

calligraphic E subscript с equals negative L fraction numerator increment I over denominator increment t end fractionincrement I equals negative fraction numerator calligraphic E subscript с increment t over denominator L end fraction.

increment I subscript straight I equals negative fraction numerator negative 3 comma 0 times 10 to the power of negative 3 end exponent space straight В times 4 comma 0 space straight с over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн end fraction equals 6 comma 0 space straight Аincrement I subscript III equals negative fraction numerator 6 comma 0 times 10 to the power of negative 3 end exponent space straight В times 2 comma 0 space straight с over denominator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн end fraction equals negative 6 comma 0 space straight А.

На участке II графика calligraphic E subscript с II end subscript = 0, следовательно, сила тока не изменялась: ΔIII = 0.

В момент времени t = 4,0 с энергия магнитного поля катушки W subscript straight м equals fraction numerator L I squared over denominator 2 end fraction.

Следовательно,

W subscript straight м equals fraction numerator 2 comma 0 times 10 to the power of negative 3 end exponent space Гн times open parentheses 6 comma 0 space straight А close parentheses squared over denominator 2 end fraction equals 36 times 10 to the power of negative 3 end exponent space Дж equals 36 space мДж.

Ответ: ΔII = 6,0 А; ΔIII = 0; ΔIIII = –6,0 А; Wм = 36 мДж.

Материал повышенного уровня

Пример 3. За промежуток времени Δt = 9,50 мс сила тока в катушке индуктивности равномерно возросла от I1 = 1,60 А до I2 = 2,40 А. При этом в катушке возникала ЭДС самоиндукции calligraphic E subscript straight с = ‒14,0 В. Определите собственный магнитный поток в конце процесса нарастания тока и приращение энергии магнитного поля катушки.

Дано:
Δt = 9,50 мс = 9,50 · 10-3 с
I1 = 1,60 А
I2 = 2,40 А
calligraphic E subscript straight с = ‒14,0 В

Фс — ?
ΔWм — ?

Решение: При изменении в катушке силы тока от I1 до I2 возникает собственный магнитный поток Фс = LI2. Индуктивность L катушки можно определить из закона электромагнитной индукции для явления самоиндукции: calligraphic E subscript straight с equals negative L fraction numerator increment I over denominator increment t end fraction equals negative L fraction numerator I subscript 2 minus I subscript 1 over denominator increment t end fraction. Следовательно,

L equals negative fraction numerator calligraphic E subscript straight с increment t over denominator I subscript 2 minus I subscript 1 end fraction equals fraction numerator calligraphic E subscript straight с increment t over denominator I subscript 1 minus I subscript 2 end fraction. Тогда straight Ф subscript straight с equals fraction numerator calligraphic E subscript straight с increment t I subscript 2 over denominator I subscript 1 minus I subscript 2 end fraction.

straight Ф subscript straight с equals fraction numerator negative 14 comma 0 space straight В times 9 comma 50 times 10 to the power of negative 3 end exponent space straight с times 2 comma 40 space straight А over denominator 1 comma 60 space straight А minus 2 comma 40 space straight А end fraction equals 0 comma 399 space Вб equals 399 space мВб.

Приращение энергии магнитного поля катушки

increment W subscript straight м equals W subscript straight м 2 end subscript minus W subscript straight м 1 end subscript equals fraction numerator L I subscript 2 superscript 2 over denominator 2 end fraction minus fraction numerator L I subscript 1 superscript 2 over denominator 2 end fraction equals L over 2 open parentheses I subscript 2 superscript 2 minus I subscript 1 superscript 2 close parentheses equals fraction numerator negative calligraphic E subscript straight с increment t open parentheses I subscript 2 superscript 2 minus I subscript 1 superscript 2 close parentheses over denominator 2 open parentheses I subscript 2 minus I subscript 1 close parentheses end fraction equals fraction numerator negative calligraphic E subscript straight с increment t open parentheses I subscript 2 plus I subscript 1 close parentheses over denominator 2 end fraction.

increment W subscript straight м equals fraction numerator negative open parentheses negative 14 comma 0 space straight В close parentheses times 9 comma 50 times 10 to the power of negative 3 end exponent space straight с times left parenthesis 2 comma 40 space straight А plus 1 comma 60 straight А right parenthesis over denominator 2 end fraction equals 0 comma 266 space Дж space equals space 266 space мДж.

Ответ: Фс = 399 мВб, ΔWм = 266 мДж.

Упражнение 24

1. Сила тока, проходящего по замкнутому проводящему контуру, I = 1,2 А. Магнитное поле этого тока создаёт магнитный поток Ф = 3,0 мВб через поверхность, ограниченную контуром. Определите индуктивность контура.

2. При равномерном изменении силы тока в катушке на ΔI = –4,0 А за промежуток времени Δt = 0,10 с в ней возникает ЭДС самоиндукции calligraphic E subscript straight с = 20 В. Определите индуктивность катушки.

3. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 1,2 Гн, при равномерном изменении силы тока от I1 = 2,0 А до I2 = 6,0 А за промежуток времени Δt = 0,60 с. Определите приращение энергии магнитного поля при заданном изменении силы тока.

Рис.
Рис. 188

4. На рисунке 188 представлен график зависимости силы тока в катушке, индуктивность которой L = 10 мГн, от времени. Определите ЭДС самоиндукции через промежутки времени t1 = 10 с и t2 = 20 с от момента начала отсчёта времени.

5. Сила тока в катушке равномерно уменьшилась от I1 = 10 А до I2 = 5,0 А. При этом энергия магнитного поля изменилась на ΔWм = –3,0 Дж. Определите индуктивность катушки и первоначальное значение энергии магнитного поля.

6. Определите ЭДС самоиндукции, возникающую в катушке, индуктивность которой L = 0,12 Гн, при равномерном уменьшении силы тока от I1 = 8,0 А, если за промежуток времени t1 = 0,20 с энергия магнитного поля уменьшилась в α = 2,0 раза.

Материал повышенного уровня

7. Энергия магнитного поля катушки с индуктивностью L1 = 0,5 Гн больше энергии магнитного поля катушки с индуктивностью L2 в α = 1,5 раза. Определите индуктивность второй катушки, если отношение собственного магнитного потока через поверхности, ограниченные витками второй катушки, к собственному магнитному потоку через поверхности, ограниченные витками первой катушки, straight Ф subscript 2 over straight Ф subscript 1 equals 2.

Переход на повышенный уровень

Понравилась статья? Поделить с друзьями:
  • У меня жена пропала как ее найти
  • Как найти словарик дома
  • Как составить должностной профиль
  • Беляши не прожарились внутри как исправить
  • Как найти мой mac адрес