Как найти максимальную кинетическую энергию фотоэлектрона

Условие задачи:

Найти максимальную кинетическую энергию фотоэлектронов, вырываемых с поверхности цезия фиолетовым светом с длиной волны 410 нм.

Задача №11.2.13 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(lambda = 410) нм, (E_к-?)

Решение задачи:

Согласно уравнению Эйнштейна для фотоэффекта энергия поглощенного кванта (hnu) идет на совершение работы выхода (A_{вых}) и на сообщение кинетической энергии вылетевшему электрону (E_к). Поэтому:

[hnu = {A_{вых}} + {E_к};;;;(1)]

Работа выхода электрона (A_{вых}) из цезия – это табличная величина, равная 2 эВ.

В этой формуле (h) – это постоянная Планка, равная 6,62·10-34 Дж·с.

Частоту колебаний (nu) можно выразить через скорость света (c), которая равна 3·108 м/с, и длину волны (lambda) по следующей формуле:

[nu = frac{c}{lambda};;;;(2)]

Подставим выражение (2) в формулу (1), тогда:

[frac{{hc}}{lambda } = {A_{вых}} + {E_к}]

Откуда искомая максимальная кинетическая энергия электронов (E_к) равна (приведем под общий знаменатель):

[{E_к} = frac{{hc}}{lambda } – {A_{вых}}]

[{E_к} = frac{{hc – {A_{вых}}lambda }}{lambda }]

Посчитаем численный ответ (напоминаем, что 1 эВ = 1,6·10-19 Дж):

[{E_к} = frac{{6,62 cdot {{10}^{ – 34}} cdot 3 cdot {{10}^8} – 2 cdot 1,6 cdot {{10}^{ – 19}} cdot 410 cdot {{10}^{ – 9}}}}{{410 cdot {{10}^{ – 9}}}} = 1,64 cdot {10^{ – 19}};Дж = 1,03;эВ]

Ответ: 1,03 эВ.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

11.2.12 Определить максимальную кинетическую энергию электронов, вылетающих из калия
11.2.14 Максимальная кинетическая энергия электронов, вырываемых с поверхности цезия
11.2.15 Какой частоты свет следует направить на поверхность калия, чтобы максимальная скорость

Тип 32 № 3244

i

Какова максимальная скорость фотоэлектронов, вылетающих при действии на поверхность цинка ультрафиолетового излучения с длиной волны 150 нм?

Спрятать решение

Решение.

Запишем уравнение Эйнштейна для фотоэффекта  дробь: числитель: hc, знаменатель: lambda конец дроби =A_вых плюс E_kmax. Откуда находим максимальную кинетическую энергию фотоэлектронов:

E_k= дробь: числитель: hc, знаменатель: lambda конец дроби минус A_вых= дробь: числитель: 6,63 умножить на 10 в степени левая круглая скобка минус 34 правая круглая скобка умножить на 3 умножить на 10 в степени 8 , знаменатель: 1,5 умножить на 10 в степени левая круглая скобка минус 7 правая круглая скобка конец дроби минус 4,2 умножить на 1,6 умножить на 10 в степени левая круглая скобка минус 19 правая круглая скобка =6,54 умножить на 10 в степени левая круглая скобка минус 19 правая круглая скобка Дж.

Из формулы кинетической энергии E_k= дробь: числитель: m v в квадрате , знаменатель: 2 конец дроби находим максимальную скорость

 v = корень из: начало аргумента: дробь: числитель: 2E_k конец аргумента , знаменатель: m конец дроби = корень из: начало аргумента: дробь: числитель: 2 умножить на 6,54 умножить на 10 в степени левая круглая скобка минус 19 конец аргумента , знаменатель: 9,1 умножить на 10 в степени левая круглая скобка минус 31 правая круглая скобка конец дроби правая круглая скобка approx 1,2 умножить на 10 в степени 6 м/с =1200 км/с.

Ответ: 1200 км/с.

Источник: Гельф­гат И. М. Сбор­ник задач по фи­зи­ке для 11 клас­са, Х.: «Гим­на­зия», 2004 (№ 10.19)

Фотоэффект

  • Темы кодификатора ЕГЭ: гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

  • Опыты Столетова

  • Зависимость фототока от напряжения

  • Законы фотоэффекта

  • Трудности классического объяснения фотоэффекта

  • Гипотеза Планка о квантах

  • Уравнение Эйнштейна для фотоэффекта

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

Фотоэффект — это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) — разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

к оглавлению ▴

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1.

Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод K и анод A. На катод и анод подаётся напряжение, величину U которого можно менять с помощью потенциометра и измерять вольтметром V.

Сейчас на катод подан «минус», а на анод — «плюс», но можно сделать и наоборот (и эта перемена знака — существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение U часто называют анодным напряжением). В данном случае, например, напряжение U положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны e, которые разгоняются напряжением U и летят на анод. Включённый в цепь миллиамперметр mA регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

к оглавлению ▴

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2.

Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим v.

Если напряжение U отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает — электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} < eU.

Здесь m = 9,1 cdot 10^{-31}  кг — масса электрона, e = -1,6 cdot 10^{-19}  Кл — его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси U из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения U_3, которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} < eU_3. (1)

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины I_H, называемой током насыщения, и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода — в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет — ресурс, так сказать, исчерпан.

к оглавлению ▴

Законы фотоэффекта

Величина I_H тока насыщения — это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения nu при фиксированной интенсивности. Получается такой график (рис. 3):

Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота nu_0, называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если nu < nu_0, то фотоэффекта нет.

Если же nu > nu_0, то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом nu < nu_0, то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при nu > nu_0: максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта — наименьшая частота света nu_0, при которой фотоэффект ещё возможен. При nu < nu_0 фотоэффект не наблюдается ни при какой интенсивности света.

к оглавлению ▴

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию A, называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества — когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно — в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт — единственный критерий истины в физике! — этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

к оглавлению ▴

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями — квантами. Энергия кванта пропорциональна частоте излучения:

E = h nu. (2)

Cоотношение (2) называется формулой Планка, а коэффициент пропорциональности hпостоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

h = 6,63 cdot 10^{-34} Дж·с. (3)

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

к оглавлению ▴

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией E = h nu.

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью c.

Каждый фотон монохроматического света, имеющего частоту nu, несёт энергию h nu.

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона h? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода A по извлечению электрона из вещества и на придание электрону кинетической энергии mv^2/2:

h nu = A + frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}}. (4)

Слагаемое mv^2/2 оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию — на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} = h nu - A.

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку (A/h,0). Этим полностью объясняется ход графика на рис. 3.

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: h nu geqslant A. Наименьшая частота nu_0, определяемая равенством

h nu_0 = A,

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта nu_0 = A/h определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если nu < nu_0, то фотоэффекта не будет — сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное — хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение h, в точности совпадающее с (3). Такое совпадение результатов двух независимых экспериментов — на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта — означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике — теории микромира, построение которой продолжается и сегодня.

Это была необходимая теория. Разберем задачи ЕГЭ по теме «Фотоэффект».

Задача 1. Поток фотонов с энергией 10 эВ выбивает из металла электроны. Какова максимальная кинетическая энергия электронов, если работа выхода электронов с поверхности данного металла равна 6 эВ?

Решение:

Eф = Авых + Ек.

Eк = Eф — Авых = 10 – 6 = 4 эВ.

Ответ: 4.

Задача 2. Когда на металлическую пластину падает электромагнитное излучение с длиной волны lambda, максимальная кинетическая энергия фотоэлектронов равна 4,5 эВ. Если длина волны падающего излучения равна 2lambda,то максимальная кинетическая энергия фотоэлектронов равна 1 эВ. Чему равна работа выхода электронов из металла?

Решение:

Запишем уравнение фотоэффекта для двух случаев:

Домножим второе уравнение на 2 и вычтем из первого уравнения второе:


_________________________________

Ответ: 2,5.

Задача 3. Красная граница фотоэффекта исследуемого металла соответствует длине волны lambda _{kp}=600 нм. Какова длина волны света, выбивающего из него фотоэлектроны, максимальная кинетическая энергия которых в 2 раза меньше работы выхода?

Решение:

По условию задачи,

Подставим это в уравнение фотоэффекта:

Ответ: 400.

Задача 4. Фотоны с энергией 2,1 эВ вызывают фотоэффект с поверхности цезия, для которого работа выхода равна 1,9 эВ. На сколько нужно уменьшить энергию фотона, чтобы максимальная кинетическая энергия фотоэлектронов уменьшилась в 2 раза?

Решение:

Запишем два уравнения фотоэффекта для двух случаев и учтём, что по условию задачи

Тогда получаем:

Из первого уравнения получаем, что

Тогда из второго уравнения получаем, что

Значит энергию падающих фотонов нужно уменьшить на

Ответ: 0,1.

Задача 5. Работа выхода электронов из металла равна 1,6cdot 10^{-19} Дж. Задерживающая разность потенциалов для фотоэлектронов, вылетевших с поверхности этого металла под действием излучения с некоторой длиной волны lambda, равна 3 В. Чему будет равна задерживающая разность потенциалов для фотоэлектронов в случае длины волны излучения 2lambda?

Решение:

Переведём работу выхода в электронвольты:

Теперь из уравнения фотоэффекта найдём энергию фотонов в первом случае:

Если длину волны увеличить в 2 раза, то энергия фотона уменьшится тоже в 2 раза, так как энергия фотона обратно пропорциональна длине волны. Тогда во втором случае энергия фотона будет равна:

Тогда:

Ответ: 1.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Фотоэффект» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Физик-теоретик Альберт Эйнштейн был удостоен Нобелевской премии за раскрытие тайны кинетической энергии фотоэлектронов. Его объяснение перевернуло физику с ног на голову. Он обнаружил, что энергия, переносимая светом, не зависит от его интенсивности или яркости — по крайней мере, не так, как понимали физики того времени. Созданное им уравнение простое. Вы можете продублировать работу Эйнштейна всего за несколько шагов.

    Определите длину волны падающего света. Фотоэлектроны выбрасываются из материала, когда свет падает на поверхность. Различные длины волн приводят к разной максимальной кинетической энергии.

    Например, вы можете выбрать длину волны 415 нанометров (нанометр равен одной миллиардной части метра).

    Рассчитайте частоту света. Частота волны равна ее скорости, деленной на длину волны. Для света скорость составляет 300 миллионов метров в секунду, или 3 x 10 ^ 8 метров в секунду.

    Для примера задачи скорость, деленная на длину волны, составляет 3 x 10 ^ 8/415 x 10 ^ -9 = 7, 23 x 10 ^ 14 Гц.

    ••• Комсток / Комсток / Getty Images

    Рассчитайте энергию света. Большой прорыв Эйнштейна заключался в том, что свет пришел в виде крошечных энергетических пакетов; энергия этих пакетов была пропорциональна частоте. Константа пропорциональности — это число, называемое постоянной Планка, которая составляет 4, 136 x 10 ^ -15 эВ-секунд. Таким образом, энергия светового пакета равна постоянной Планка х частоте.

    Энергия световых квантов для примера задачи составляет (4, 136 х 10 ^ -15) х (7, 23 х 10 ^ 14) = 2, 99 эВ.

    Посмотрите на работу функции материала. Работа выхода — это количество энергии, необходимое для отрыва электрона от поверхности материала.

    Например, выберите натрий, у которого рабочая функция составляет 2, 75 эВ.

    Рассчитайте избыточную энергию, переносимую светом. Эта величина является максимально возможной кинетической энергией фотоэлектрона. Уравнение, которое определил Эйнштейн, говорит (максимальная кинетическая энергия электрона) = (энергия падающего пакета энергии света) минус (работа выхода).

    Например, максимальная кинетическая энергия электрона составляет: 2, 99 эВ — 2, 75 эВ = 0, 24 эВ.

    подсказки

    • Работа выхода для большинства материалов достаточно велика, чтобы свет, необходимый для генерации фотоэлектронов, находился в ультрафиолетовой области электромагнитного спектра.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,662
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,985
  • разное
    16,906

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Понравилась статья? Поделить с друзьями:
  • Как найти место для икон
  • Как составить жалобу на номер телефона
  • Как составить копию протокола
  • Как составить письмо в таможню
  • Как найти сайт знакомств в краснодаре