Как найти максимальный кпд тепловой машины

Максимальный кпд тепловых машин (теорема Карно)

Главное значение
полученной Карно формулы (5.12.2) для КПД
идеальной машины состоит в том, что она
определяет максимально возможный КПД
любой тепловой машины.

Карно
доказал, основываясь на втором законе
термодинамики*, следующую теорему: любая
реальная тепловая машина, работающая
с нагревателем температуры
Т1
и
холодильником температуры
Т2,
не может иметь коэффициент полезного
действия, превышающий КПД идеальной
тепловой машины.

* Карно фактически
установил второй закон термодинамики
до Клаузиуса и Кельвина, когда еще первый
закон термодинамики не был сформулирован
строго.

Рассмотрим
вначале тепловую машину, работающую по
обратимому циклу с реальным газом. Цикл
может быть любым, важно лишь, чтобы
температуры нагревателя и холодильника
были Т1
и
Т2.

Допустим,
что КПД другой тепловой машины (не
работающей по циклу Карно) η
>
η.
Машины
работают с общим нагревателем и общим
холодильником. Пусть машина Карно
работает по обратному циклу (как
холодильная машина), а другая машина —
по прямому циклу (рис. 5.18). Тепловая
машина совершает работу, равную согласно
формулам (5.12.3) и (5.12.5):


(5.12.11)

Рис. 5.18

Холодильную
машину всегда можно сконструировать
так, чтобы она брала от холодильника
количество теплоты Q2
= ||

Тогда согласно
формуле (5.12.7) над ней будет совершаться
работа


(5.12.12)

Так
как по условию η’
> η,
то
А’
> А.
Поэтому
тепловая машина может привести в действие
холодильную машину, да еще останется
избыток работы. Эта избыточная работа
совершается за счет теплоты, взятой от
одного источника. Ведь холодильнику
при действии сразу двух машин теплота
не передается. Но это противоречит
второму закону термодинамики.

Если
допустить, что η
> η‘,
то
можно другую машину заставить работать
по обратному циклу, а машину Карно — по
прямому. Мы опять придем к противоречию
со вторым законом термодинамики.
Следовательно, две машины, работающие
по обратимым циклам, имеют одинаковые
КПД: η
=
η.

Иное
дело, если вторая машина работает по
необратимому циклу. Если допустить η
>
η,
то
мы опять придем к противоречию со вторым
законом термодинамики. Однако допущение
т|’ < г| не противоречит второму закону
термодинамики, так как необратимая
тепловая машина не может работать как
холодильная машина. Следовательно, КПД
любой тепловой машины η

η,
или

Это и есть основной
результат:


(5.12.13)

Кпд реальных тепловых машин

Формула
(5.12.13) дает теоретический предел для
максимального значения КПД тепловых
двигателей. Она показывает, что тепловой
двигатель тем эффективнее, чем выше
температура нагревателя и ниже температура
холодильника. Лишь при температуре
холодильника, равной абсолютному нулю,
η
= 1.

Но температура
холодильника практически не может быть
намного ниже температуры окружающего
воздуха. Повышать температуру нагревателя
можно. Однако любой материал (твердое
тело) обладает ограниченной теплостойкостью,
или жаропрочностью. При нагревании он
постепенно утрачивает свои упругие
свойства, а при достаточно высокой
температуре плавится.

Сейчас
основные усилия инженеров направлены
на повышение КПД двигателей за счет
уменьшения трения их частей, потерь
топлива вследствие его неполного
сгорания и т. д. Реальные возможности
для повышения КПД здесь все еще остаются
большими. Так, для паровой турбины
начальные и конечные температуры пара
примерно таковы: Т1
=
800
К и Т2
=
300
К. При этих температурах максимальное
значение коэффициента полезного действия
равно:

Действительное
же значение КПД из-за различного рода
энергетических потерь приблизительно
равно 40%. Максимальный КПД — около 44% —
имеют двигатели внутреннего сгорания.

Коэффициент
полезного действия любого теплового
двигателя не может превышать максимально
возможного значения
,
где
Т
1

абсолютная
температура нагревателя, а Т
2

абсолютная
температура холодильника.

Повышение
КПД тепловых двигателей и приближение
его к максимально возможному

важнейшая
техническая задача.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

subjects:physics:тепловые_машины

Содержание

Физика ( Справочник )

      • Тепловые машины

    • Молекулярная физика в опытах

Тепловые машины. Цикл Карно

В современной технике механическую энергию получают главным образом за счёт внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями.

Примеры тепловых двигателей

Двигатель внутреннего сгорания

Двигатель Стирлинга

☆Принцип работы дизельного двигателя☆

Бензиновый, или дизельный — что лучше? Сравнение двух типов двигателей

Принцип работы турбореактивного двигателя

КПД тепловой машины

Работа, совершаемая тепловой машиной, не может быть больше: $A = Q_{1} — |Q_{2}|$, т.к. рабочее тело, получая некоторое количество теплоты ($Q_{1}$) от нагревателя, часть этого количества теплоты (по модулю равную $|Q_{2}|$) отдаёт холодильнику. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия $eta$ тепловой машины.

Коэффициент полезного действия любой тепловой машины считается по формуле:
$$eta = frac{A}{Q_{1}}=frac{Q_{1}-|Q_{2}|}{Q_{1}} = 1 — frac{|Q_{2}|}{Q_{1}}$$

Для увеличения КПД, при расширении или сжатии газа должны быть использованы процессы, позволяющие исключить уменьшение энергии горячего тела, которое происходило бы без совершения работы. Такие процессы существуют — это изотермический и адиабатный процесс.

Цикл Карно

Сади Карно искал пути решения актуальной для его времени задачи — установить причину несовершенства тепловых машин, найти пути наиболее эффективного их использования. Именно он, впервые предложил наиболее совершенный технический процесс, состоящий из изотерм и адиабат.

Схема цикла Карно

Схема цикла Карно

Прямой цикл Карно. Исходным состоянием рабочего тела двигателя является состояние точки 4. На участке 4—1 цикла рабочее тело сжимается адиабатически, т. е. без потерь теплоты. В точке 1 к нему начинают изотермически подводить теплоту $Q_{1}$ от высокотемпературного источника, в результате чего рабочее тело расширяется по линии 1—2. На участке 2—3 расширение рабочего тела продолжается уже без подвода теплоты, т. е. адиабатически. На участке 3—4 от рабочего тела с помощью источника низкой температуры отбирается теплота $Q_{2}$. В двигателях, работающих по разомкнутому циклу, когда теплоноситель в каждом цикле работы обновляется, процесс охлаждения заменяется процессом обновления теплоносителя.

Линия Состояние Описание
1-2 Изотерма
$T=T_{1}$
$dQ_{1}$
(нагревание)
$VUparrow$
От нагревателя поступает теплота $dQ_{1}$ (или $Q_{H}$), газ под поршнем изотермически расширяется. В начале процесса рабочее тело (газ) имеет температуру температуру нагревателя ($T_{H}$ или $T_{1}$). Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты $Q_{H}$ (или $Q_{1}$).
При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.
2-3 Адиабата

$dQ=0$
$VUparrow$

Газ изолирован от нагревателя и холодильника и адиабатически расширяется. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой.
При этом температура тела уменьшается до температуры холодильника ($T_{X}$ или $T_{2}$), тело совершает механическую работу, а энтропия остаётся постоянной.
3-4 Изотерма
$T=T_{2}$
$dQ_{2}$
(охлаждение)
$VDownarrow$
Газ изотермически (при $T = T_{2}$) сжимается и отдает теплоту $dQ_{2}$ холодильнику. Рабочее тело, имеющее температуру холодильника ($T_{X}$ или $T_{2}$), приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты $Q_{X}$ (или $Q_{2}$).
Над телом совершается работа, его энтропия уменьшается.
4-1 Адиабата

$dQ=0$
$VDownarrow$

Газ изолирован и адиабатически сжимается. Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой.
При этом его температура увеличивается до температуры нагревателя ($T_{H}$ или $T_{1}$), над телом совершается работа, его энтропия остаётся постоянной.

Иллюстрации цикла Карно

Цикл Карно

Максимальный КПД тепловой машины

Коэффициент полезного действия идеального цикла, как показал С.Карно, может быть выражен через температуру нагревателя ($T_{1}$) и холодильника ($T_{2}$). В реальных двигателях не удаётся осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД их цикла всегда меньше, чем КПД цикла Карно (при прочих равных условиях).
$$eta_{real}<eta_{ideal}=frac{T_{1}-T_{2}}{T_{1}}=1-frac{T_{2}}{T_{1}}$$

Из формулы видно, что КПД двигателей растёт с увеличением температуры нагревателя и с уменьшением температуры холодильника.

Если бы температура холодильника была равна абсолютному нулю, то КПД был бы равен 100%.
В современных двигателях обычно КПД увеличивают за счёт повышения температуры нагревателя.

Реальный КПД тепловых машин порядка 30-40%, в то время как теоретически можно получить 60-80%, при тех же условиях.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно.
При этом рабочим телом являются пары легкокипящих жидкостей – фенол, аммиак и т.п. Процесс перекачки теплоты от тел, помещенных в холодильную камеру, в окружающую среду происходит за счет затрат электроэнергии.

Обратный цикл Карно. В обратном цикле Карно те же процессы происходят в обратной последовательности. Исходное состояние рабочего тела теперь — точка 3. Адиабатически сжатое компрессором по линии 3—2 рабочее тело охлаждается изотермически по линии 2—1 и далее продолжает расширяться адиабатически по линии 1—4. На изотерме 4—3 к рабочему телу подводится теплота камеры охлаждения и оно возвращается к исходному состоянию точки 3.

При этом чем меньше разность температур между холодильной камерой и окружающей средой, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент.

Анализ обратного цикла Карно показывает, что передача теплоты от тела менее нагретого телу более нагретому возможна, но этот процесс требует соответствующей энергетической компенсации в системе, в виде затраченной работы или теплоты более высокого потенциала, способного совершить работу при переходе на более низкий потенциал.

Энтропия — часть внутренней энергии замкнутой системы или энергетической совокупности Вселенной, которая не может быть использована, в частности не может перейти или быть преобразована в механическую работу. Существует мнение, что мы можем смотреть на энтропию и как на меру беспорядка в системе.

Полезно

Задачи и опыты

Задачи

☆Решение задач общего вида. Формулы☆

КПД тепловой машины


subjects/physics/тепловые_машины.txt

· Последние изменения: 2023/02/02 16:55 —

КПД теплового двигателя


КПД теплового двигателя

4.2

Средняя оценка: 4.2

Всего получено оценок: 410.

4.2

Средняя оценка: 4.2

Всего получено оценок: 410.

Тепловой двигатель (машина) — это устройство, преобразующее внутреннюю энергию топлива в механическую работу, обмениваясь теплотой с окружающими телами. Большинство современных автомобильных, самолетных, судовых и ракетных двигателей сконструированы на принципах работы теплового двигателя. Работа производится за счет изменения объема рабочего вещества, а для характеристики эффективности работы любого типа двигателя используется величина, которая называется коэффициентом полезного действия (КПД).

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Структурная схема работы теплового двигателя:

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

  • Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1. В большинстве тепловых машин нагревание получается при сгорании топливной смеси (топливо-кислород);
  • Рабочее тело (пар или газ) двигателя совершает полезную работу А, например, перемещают поршень или вращают турбину;
  • Холодильник поглощает часть энергии от рабочего тела. Температура холодильника Т2 < Т1. То есть, на совершение работы идет только часть теплоты Q1.

Тепловая машина (двигатель) должен работать непрерывно, поэтому рабочее тело должно вернуться в исходное состояние, чтобы его температура стала равна T1. Для непрерывности процесса работа машины должна происходить циклически, периодически повторяясь. Чтобы создать механизм цикличности — вернуть рабочее тело (газ) в исходное состояние — нужен холодильник, чтобы охладить газ в процессе сжатия. Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или холодная вода (для паровых турбин).

Чему равен КПД теплового двигателя

Для определения эффективности тепловых двигателей французский инженер-механик Сади Карно в 1824г. ввел понятие КПД теплового двигателя. Для обозначения КПД используется греческая буква η. Величина η вычисляется с помощью формулы КПД теплового двигателя:

$$η={Аover Q1}$$

Поскольку $ А =Q1 – Q2$, тогда

$η ={1 – Q2over Q1}$

Поскольку у всех двигателей часть тепла отдается холодильнику, то всегда η < 1 (меньше 100 процентов).

Максимально возможный КПД идеального теплового двигателя

В качестве идеальной тепловой машины Сади Карно предложил машину с идеальным газом в качестве рабочего тела. Идеальная модель Карно работает по циклу (цикл Карно), состоящему из двух изотерм и двух адиабат.

Цикл Карно:

Рис. 2. Цикл Карно:.

Напомним:

  • Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0);
  • Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q = A).

Сади Карно доказал, что максимально возможный КПД, который может быть достигнут идеальным тепловым двигателем, определяется с помощью следующей формулы:

$$ηmax=1-{T2over T1}$$

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

КПД реальных тепловых двигателей:

Рис. 3. КПД реальных тепловых двигателей:.

Заключение

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Диана Руслановна

    6/10

  • Каспанов Александр

    7/10

  • Алекс Свояков

    8/10

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 410.


А какая ваша оценка?

В тепловых двигателях используется энергия сгорающего топлива. Однако, не вся энергия сгорающего топлива затрачивается на полезную работу, часть энергии безвозвратно рассеивается в окружающую среду.

Чем меньше эта утерянная часть теплоты, тем выше будет эффективность двигателя и его коэффициент полезного действия. Тем больше полезной работы сможет совершить газ при расширении, толкая поршень двигателя, или раскручивая диск газовой турбины.

Элементы тепловой машины

Конструкции тепловых машин отличаются разнообразием. Однако, из каких бы частей двигатель не состоял, он всегда содержит рабочее тело, холодильник и нагреватель (рис. 1).

Три ключевых элемента любого теплового двигателя

Рис. 1. Любой тепловой двигатель всегда содержит три ключевых элемента

Например, в двигателе внутреннего сгорания рабочим телом будут пары топлива и воздух.

В двигателе внутреннего сгорания роль нагревателя совместно выполняют свеча и поршень. Однако, поршень выполняет функции нагревателя только тогда, когда он сжимает газ. А свеча зажигает сжатый газ с помощью искры и вызывает горение топлива.

Чтобы передать остатки тепловой энергии атмосфере, двигатели с воздушным охлаждением имеют специальные ребристые поверхности на наружной части цилиндров.

А двигатели, в которых используется жидкостное (водяное) охлаждение, содержат насос, прокачивающий жидкость в специальных полостях двигателя и радиатор с вентилятором. Жидкость интенсивно охлаждается в радиаторе, а вентилятор обеспечивает обдув, чтобы ускорить охлаждение. Температура охлаждающей жидкости всегда выше температуры окружающего воздуха.

Какие функции выполняет каждый элемент

От нагревателя рабочее тело — газ, или пар, получает запас тепловой энергии (рис. 2). Затем, полученная энергия делится на две, как правило, неравные части. За счет одной части совершается работа.

Функции нагревателя, рабочего тела и холодильника

Рис. 2. Функции ключевых элементов тепловых машин

А оставшаяся часть передается холодильнику (например, атмосфере) и рассеивается окружающей средой.

Роль холодильника в тепловом двигателе

Совершая работу, рабочее тело – расширяющийся газ, охлаждается. Температура (T_{x}), до которой газ охладился, называется температурой холодильника.

Так как газ, расширяясь, охлаждается, а при охлаждении энергию нужно куда-то девать, то никакая тепловая машина без холодильника работать не сможет. Чтобы функционировать, тепловая машина обязательно должна отдавать часть тепловой энергии холодильнику.

Обычно температура (T_{x}) немного выше температуры окружающей среды. Но если речь идет о паровых машинах, оснащенных специальным приспособлением для конденсации отработанного пара и его охлаждения – конденсатором, то (T_{x}) может быть несколько ниже температуры окружающей атмосферы (рис. 3).

Холодильник тепловой машины - это или атмосфера, или устройство - конденсатор

Рис. 3. Если холодильником служит атмосфера, то температура холодильника выше атмосферной, а если – конденсатор, то температура холодильника ниже температуры окружающей среды

Примечание: Паровой конденсатор применяется только в конструкциях паровых двигателей.

На какие части делится энергия нагревателя

Мы выяснили, что за счет одной части энергии газ совершает работу. Вторая часть полученной от нагревателя энергии передается холодильнику, который затем рассеивает ее в окружающее пространство (рис. 4).

Эта теплота выбрасывается в атмосферу вместе с отработанным паром, или сгоревшими выхлопными газами турбин и двигателей внутреннего сгорания – то есть, теряется безвозвратно.  Главное то, что никакой газ не превращает свою внутреннюю энергию в работу полностью. Часть энергии неизбежно будет утеряна.

На полезную работу тратится только часть полученной энергии.

Часть энергии нагревателя тратится на полезную работу, а оставшаяся часть передается окружающей среде

Рис. 4. Энергия нагревателя частично расходуется на совершение работы, оставшаяся часть теряется в окружающую среду

Посмотрев на рисунок 4, легко составить связь между энергией нагревателя, работой и энергией холодильника.

[large boxed{ Q_{H} =  Q_{X} + A }]

(large Q_{H} left(text{Дж} right) ) – тепловая энергия, полученная от нагревателя;

(large Q_{X} left(text{Дж} right) ) – тепловая энергия, переданная холодильнику;

(large A left(text{Дж} right) ) – работа, которую совершил расширяющийся газ (пар);

Так как часть энергии теряется, работа всегда будет меньше полученной энергии. Работу и энергию измеряют в джоулях. Работа – это затраченная энергия, то есть, разница между конечной и начальной энергией.

[large boxed{ Q_{H} — left| Q_{X} right| = A }]

Примечание: Полученная энергия берется со знаком «плюс», а утерянная – со знаком «минус». Нам уже известно, что энергия (Q_{X}), переданная холодильнику и утерянная, будет отрицательной. Запишем ее по модулю, чтобы не учитывать в формуле ее знак.

Формулы коэффициента полезного действия

Мы уже выяснили, что работа газа всегда меньше полученной теплоты. Чтобы ответить на вопрос, какую часть от полученной теплоты будет составлять работа, составим дробь:

[large frac{A}{Q_{H}}]

(large A left(text{Дж} right) ) – работа газа;

Эту дробь обозначают греческой буквой «эта» (eta) и называют коэффициентом полезного действия (КПД). Так как этот коэффициент дает понятие о том, как соотносятся работа, совершенная газом и, полученная им тепловая энергия.

[large boxed{eta = frac{A}{Q_{H}} }]

Числитель этой дроби всегда меньше знаменателя, математики такие дроби называют правильными. Если КПД теплового двигателя описывается правильной дробью, значит, он не может превышать единицу (рис. 5).

Основные свойства коэффициента полезного действия тепловой машины

Рис. 5. КПД отвечает на вопрос: какая часть полученной энергии тратится на полезную работу

КПД теплового двигателя не превышает единицу, так как описывается правильной дробью.

Если подставить в числитель выражение для работы, получим развернутое выражение для вычисления КПД:

[large boxed{ eta = frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} }]

Правая часть уравнения – это две дроби, имеющие одинаковые знаменатели. Если записать правую часть в виде отдельных дробей, то можно получить такое соотношение:

[large frac{ Q_{H} — left| Q_{X} right|}{Q_{H}} = frac{Q_{H}}{Q_{H}} — frac{left| Q_{X} right|}{Q_{H}} = 1 — frac{left| Q_{X} right|}{Q_{H}} ]

Подставим его в выражение для КПД и получим еще одну формулу:

[large boxed{ eta = 1 — frac{left| Q_{X} right|}{Q_{H}} }]

Какой максимальный КПД может иметь тепловой двигатель

Талантливый французский ученый и инженер Сади Карно в 1824 году придумал идеальную тепловую машину. В качестве рабочего тела в ней выступал идеальный газ. А сосуд, в который заключен газ, обернут теплоизоляцией, которую можно мысленно снять, когда возникнет такая необходимость.

Проведя мысленный эксперимент, Карно рассчитал, какую часть полученной энергии можно превратить в полезную работу при идеальных условиях. Другими словами, он рассчитал, какой максимально возможный КПД может иметь идеальный тепловой двигатель.

Для КПД идеального двигателя он получил такую формулу:

[large boxed{ eta = frac{ T_{H} — T_{X}}{T_{H}} = 1 — frac{T_{X}}{T_{H}} }]

(large T_{H} left(Kright) ) – температура нагревателя в градусах Кельвина;

(large T_{X} left(Kright) ) – температура холодильника в градусах Кельвина;

Из формулы следует:

Чем больше различаются температуры нагревателя и холодильника, тем выше будет КПД.

Если температура нагревателя сравняется с температурой холодильника, то полезной работы машина не совершит (large eta = 0 ).

Максимальный КПД даже для идеального теплового двигателя всегда меньше единицы.

Температура холодильника не может равняться абсолютному нулю, так как достигнуть абсолютного нуля температуры не получается.

Примечание: В идеальном двигателе нет потерь энергии, так как полностью отсутствует трение между его движущимися частями. В реальных двигателях трение есть, поэтому КПД реальных двигателей всегда ниже, чем КПД идеального двигателя.

КПД реальных тепловых двигателей

КПД лучших образцов реальных двигателей, выпускаемых мировой промышленностью:

  • паровых машин — менее 10 процентов.
  • большинства двигателей внутреннего сгорания – до 30 процентов.
  • газовых турбин — примерно 40 процентов.
  • двигателя внутреннего сгорания Дизеля – около 44 процентов.

В настоящее время инженеры и ученые-физики работают над тем, чтобы в реальных двигателях уменьшить трение и потери тепловой энергии. Чтобы повысить давление в цилиндре, применяют дополнительные компрессоры и турбины. Это дает выигрыш еще в несколько процентов полезности, однако, сокращает срок службы таких двигателей.

Так называемые «атмосферники» — атмосферные двигатели внутреннего сгорания, в которых не применяются дополнительные турбины и компрессоры, повышающие рабочее давление в цилиндрах, могут без капитального ремонта прослужить на автомобилях весьма длительное время.

Некоторые автомобили, оснащенные особо удачными конструкциями двигателей, успевали без капитального ремонта двигателя проехать до 1 миллиона километров. Из-за этого, такие конструкции двигателей получили в народе название «миллионники». К сожалению, ныне выпуск подобных двигателей резко сокращен, из экономических соображений.

Выводы

  1. В настоящее время изобретено много тепловых двигателей, имеющих различную конструкцию. Но любая тепловая машина всегда содержит нагреватель, холодильник и рабочее тело.
  2. Нагреватель нужен для того, чтобы сообщать тепловую энергию рабочему телу.
  3. В качестве рабочего тела используется горячий пар, или раскаленный газ. Рабочее тело полученную тепловую энергию делит на две части. За счет одной части газ расширяется и совершает работу. Вторую часть энергии передается холодильнику.
  4. Никакая тепловая машина не может работать без холодильника. Тепловая энергия, передаваемая холодильнику, рассеивается в окружающую среду и теряется безвозвратно. Даже КПД идеального теплового двигателя будет меньше единицы.
  5. Показатель полезного действия можно посчитать, взяв отношение совершенной работы A к полученному от нагревателя количеству теплоты Q.
  6. Реальные двигатели внутреннего сгорания, сконструированные инженером Дизелем, имеют максимальный КПД 44 процента. Это непревзойденный на сегодняшний день показатель среди всех выпускаемых промышленностью тепловых машин, не оснащенных дополнительными компрессорами.

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

Понравилась статья? Поделить с друзьями:
  • Как найти вай фай на роутере ростелеком
  • Как найти папку снимки экрана
  • Сталкер зачистка как найти пропавшего охотника
  • Как найти динамическую вязкость смеси
  • Как найти массу при силе тяжести