Как найти максимальный потенциал

Максимальное значение — потенциал

Cтраница 1

Максимальное значение потенциала, при котором начинается резкое изменение его, получило название потенциала пробоя. Как видно на рисунке, поляризация образца осуществляется в электрическом поле с помощью двух электродов, между которыми помещается исследуемый образец. Ток пропускается в направлении, при котором образец поляризуется анодно. С помощью такой установки получают кривые зависимости потенциала и тока от времени ( рис. 189) или строят кривую потенциал — приложенное напряжение; в последнем случае определяют потенциал пробоя.
 [2]

Максимальное значение потенциала рельсов ( обратного по знаку потенциала рельсов в отсасывающем пункте) будет наблюдаться примерно в середине этого перегона, в местах трогания электропоездов.
 [3]

Максимальное значение потенциала факела составляет 2400 вольт, и оно одинаково по оси всего факела, затем по мере удаления от оси идет спад. В центре факела наблюдается минимум, что объясняется тем, что зонд принимает потенциал только за счет водяных частиц, попадающих на него из факела сбоку или сверху. Характерной особенностью всех измерений является то, что они показывают второй максимум на расстоянии 60 см, от генератора. Центральный максимум объясняется наличием большого числа заряженных частиц в факеле, где имеется преобладание водяных частиц одного знака. Минимум характеризует преобладание в этом участке частиц противоположного знака по отношению к заряду факела. И второй максимум характеризует преобладание частиц в этом участке того же знака, что и факел.
 [4]

Кривая начинается от максимального значения потенциала, близкого к теоретическому, которое рассчитывают из изменения свободной энергии реакции, протекающей в элементе. При конечных значениях тока потенциал падает за счет появления перенапряжения ( см.) на электродах, и поскольку ток возрастает, то увеличиваются активационное и концентрационное перенапряжения, что дает нисходящий участок кривой. В конце концов ток может достигнуть величины предельного тока ( см. предельный ток), концентрационное перенапряжение становится очень высоким, и напряжение на ячейке быстро падает.
 [5]

Ci происходит запоминание максимальных значений потенциалов исследуемых сигналов.
 [6]

Блоки, где отмечаются максимальные значения потенциала и концентрации флюида, но минимальные значения температур ( Инзырейс-кая площадь), выделены как пятый тип. Инзырейская площадь отличается развитием в разрезе зон АВПД. Район этой структуры характеризуется интенсивными неотектоническими движениями, которые приводят к изменениям напряженного состояния в системе флюид-порода.
 [7]

При этом фиксируется не максимальное значение потенциала за истекшие 15 — 20 сек, а фактическое положение стрелки прибора в момент отсчета.
 [8]

Для электроустановок в незаземленных и компенсированных сетях ПУЭ-66 устанавливают максимальное значение потенциала заземлителя, равное 125 В для подстанций с низшим напряжением 380 / 220 В и 250 В для подстанций с низшим напряжением 6 кВ и выше. Сопротивление заземлителя, соответствующее этим требованиям, может быть определено делением потенциала на ток, стекающий в землю.
 [9]

Поскольку при набухании эта концентрация уменьшается, для достижения максимального значения потенциала Доннанг ее следует уменьшить до минимума. Способы, аиболее широко используемые для этой цели, заключаются в физическом ограничении межцепного смещения ковалентны-ми поперечными связями.
 [10]

Наибольший отсчет по прибору плюсовых и минусовых значений называется максимальным значением потенциала, наименьший — минимальным.
 [11]

Оно сосредоточено вблизи такого локального минимума потенциала, для которого превышение максимального значения потенциала на полуоси левее этого минимума над этим минимальным значением максимально.
 [12]

Представленные графики позволяют без проведения расчетов для различных геометрических соотношений резервуара определить максимальное значение потенциала поверхности жидкости в центре зеркала жидкости при различных условиях заполнения.
 [13]

Метод Кокса подкупает тем, что не нужно производить совершенно никаких расчетов, так как максимальное значение потенциала при пользовании потенциометром или даже просто максимальный отсчет по линейке отвечают моменту эквивалентности. Но достоинства этого метода умаляются том, что приходится иметь дело с двумя бюретками, что может повести к ошибкам, особенно в том случае, если задаваемая разница в показаниях бюретки не велика, а бюротки недостаточно хорошо прока-либрированы.
 [14]

IX, то увидим, что также и для этих систем конфигурациями устойчивого равновесия являются те, которым соответствует максимальное значение потенциала.
 [15]

Страницы:  

   1

   2

   3

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными

, а само поле называется
потенциальным
.

Разность потенциалов

Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид

Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,

Единица разности потенциалов (напряжения), как и потенциала, — вольт,

Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом

данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток. Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока. Разница заключается в следующем:

Советуем изучить Как подключить диммер: пошаговая инструкция и обзор простых и удобных схем подключения (115 фото + видео)

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Движение заряда в электрическом поле

Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный заряд
q
совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.

Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются. Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля. Согласно правилам они имеют направление от заряда +Q

к заряду
-Q
, иначе говоря выходят из
положительных
зарядов (источника) и заходят в
отрицательные
заряды (источника).

Советуем изучить Что такое электроизмерительный прибор: точность и принцип действия

Направление силы действия на пробный заряд q

определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.

Движение заряда q

в электрическом поле

На рисунке изображена примерная траектория движения заряда +q

, имеющего некоторую начальную скорость
V
. Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.

Спрашивается. Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля. Наш заряд +q

, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд
-q
, то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.

Теорема Гаусса для магнитного поля

Электрическое поле — что это такое, понятие в физике

Теорема Гаусса является одной из самых основных в электродинамике законов. Существуют теоремы Гаусса для электрического и магнитного полей, которые входят в состав уравнений Максвелла. При помощи данного закона устанавливается связь между напряженностью электрического поля и заряда в случае произвольной поверхности. Теорема (закон) Гаусса гласит, что в произвольной замкнутой поверхности поток вектора электрического поля пропорционален заряду, заключенному внутри поверхности. Для магнитного поля теорема Гаусса говорит о том, что поток вектора магнитной индукции через произвольную замкнутую поверхность равен нулю.

Свойства потенциала

Между находящимися частицами в электрическом поле существует напряжение. Оно равно отношению работы к числу заряда. Находят его по формуле: U = A / q. За единицу измерения напряжения принимают вольт. Обозначают его буквой В, характеризуется эта величина отношением джоуль на кулон. Так как разность потенциалов фактически является напряжением, то и измеряют её тоже в этих величинах.

Обозначают электрический потенциал буквой φ (фи). Он позволяет описывать электрическое поле, поэтому его называют энергетической характеристикой. Это скалярная величина. Определяется она как отношение потенциальной энергии заряда к его значению. В то же время напряжённость является силовой характеристикой. Так как эти два явления описывают одно и то же, то между ними существует связь.

Напряжённость позволяет определить силу, действующую на носитель энергии: E = F /q. Если вектор во всех точках пространства имеет одинаковое направление, то поле однородное. В нём на заряд действует сила F, определяемая как произведение заряда на вектор напряжённости. Пусть частица переместилась из А в В. Тогда она пройдёт расстояние d.

Совершённая работа будет определяться как A = q * E * d. Это то же, что A = U * q. Записанные выражения можно приравнять, причём сократить левую и правую часть на q. В результате получится связь между величинами: U = E * d. Так как напряжение — это разность потенциальности начальной и конечной точек, то формулу можно переписать так: φ1 — φ2 = E * d.

Отсюда можно сделать выводы:

  1. Если в определённой области пространства поля нет (E = 0), значит, φ 1 = φ 2, то есть потенциал равняется константе. Другими словами, φ во всех точках будет одинаковой. Например, во всех точках проводника потенциал будет одним и тем же.
  2. По сути, потенциальная энергия — это материя, определяющая электрическое взаимодействие тел. Поэтому, чтобы её определить, нужно знать значение φ в начальном положении и после перемещения заряда. Для удобства исходное состояние принимают за ноль. В электротехнике за нулевой уровень потенциал берут величину Земного шара. В теоретической же физике считается, что φ = 0 в бесконечности. Там, где нет электрического поля.
  3. Эквипотенциальные поверхности и силовые линии взаимно перпендикулярны.

Для понимания следует дать определение эквипотенциальной поверхности. За неё принимают пространство, во всех точках которого потенциал одинаков.

§6. Потенциальность электрического поля

Работа в электрическом поле.

Так как сила, действующая в электрическом поле на точечный заряд Q

Равна
(6.1)
То при перемещении заряда Q

на расстояние
Эта сила совершает работу: (6.2)
При перемещении заряда из точки 1 в точку 2 по траектории

работа равна: (6.3)

Потенциальность кулоновского поля.

Поле, созданное кулоновскими зарядами, потенциально. Поле сил называется потенциальным, если при перемещении в этом поле работа зависит лишь от начального и конечного положения точек (тела) пути и не зависит от формы пути — траектории. Вторым эквивалентным определением потенциальности поля является условие равенства нулю работы при перемещении в нем по любому замкнутому контуру.

Вся математическая часть учения о потенциале была разработана в рамках теории тяготения, а понятие о потенциале возникло в работах Ж. Л. Лагранжа (1736-1813) в 1777г. Выражение “потенциал” было введено в науку в 1828 г. Дж. Грином и независимо К. Ф. Гауссом (1775-1855). Большой вклад в теорию потенциала был внесен П. С. Лапласом (1749-1827) и С. Д. Пуассоном (1781-1840).

На основании принципа суперпозиции из потенциальности поля точечного заряда следует потенциальность произвольного электростатического поля.

Из сказанного следует, что

, тогда условие потенциальности электрического поля (6.4)

(6.4) – интегральная формулировка потенциальности электрического поля.

Дифференциальная формулировка потенциальности поля.

Если воспользоваться формулой Стокса

, то из (6.4) следует дифференциальная формулировка потенциальности поля: (6.5)

Непосредственной проверкой можно убедиться, что

. (6.6)

Тогда сопоставляя (6.6) и (6.5) можно записать:

, (6.7)

где

— некоторая скалярная функция, которая называется потенциалом. Знак «-» выбран для того, чтобы вектор напряженности
Е
был направлен в сторону убывания . Скалярная функция называется скалярным потенциалом электрического поля.

Если напряженность поля можно измерить экспериментально, то потенциал

не имеет определенного числового значения и бессмысленно говорить об экспериментальном определении его значения. Потенциал определен с точностью до некоторого постоянного значения.

Для того, чтобы не было неоднозначности, используют процедуру нормировки потенциала. При решении пространственных задач за ноль принимают потенциал бесконечно удаленной точки. А при решении задач, связанных с изучением электрических полей вблизи поверхности Земли, за ноль принимают потенциал Земли.

Выражение работы через потенциал.

Если заряд перемещается между точками (1) и (2), то

(6.8)

Если сопоставить (6.8) и (6.3), то

, откуда следует (6.9)

Таким образом, с помощью (6.9) можно вычислить разность потенциалов между двумя точками поля.

Потенциал поля точечного заряда.

Будем нормировать потенциал на нуль в бесконечности. Считая, что в формуле (6.9) точка (2) находится в бесконечности, полагаем

и получаем выражение для потенциала в точке (1):. (6.10)

Воспользовавшись выражением для напряженности поля точечного заряда получим:

. (6.11)

Соотношение (6.11) определяет потенциал поля, создаваемого точечным зарядом.

Потенциал поля системы точечных зарядов.

Если имеется система из точечных зарядов, то потенциал поля в некоторой точке А равен

. (6.12)

В случае, когда заряд распределен непрерывно с объемной плотностью

=, потенциал в некоторой точке (x, y, z) поля: (6.13) — расстояние от точечного заряда находящегося в точке до точки где вычисляется потенциал.

Если заряд распределен по поверхности, то потенциал определяется формулой

, (6.14)

где R

–расстояние между элементом площадки
DS
и точкой, где

Вычисляется потенциал.

Бесконечность потенциала поля точечного заряда.

Из (6.14) следует, что при

потенциал . Это связано с тем, что точечный заряд формально имеет бесконечную объемную плотность, поскольку его объем равен нулю. Именно
бесконечная объемная плотность заряда и обуславливает обращение в бесконечность потенциала
.

При непрерывном распределении заряда с конечной плотностью потенциал нигде не обращается в бесконечность, т. е. потенциал функция конечная.

Конечность потенциала при непрерывном распределении заряда с конечной плотностью.

При непрерывном распределении заряда с конечной плотностью потенциал нигде не обращается в бесконечность. В этом можно убедиться при вычислении потенциала по формуле (6.13). Причем точку (X,Y,Z)

за начало координат
(X=Y=Z=0)
и будем вести расчет в сферической системе координат. Элемент объема в ней выражается формулой
, где . Тогда [см. (6.13)].
Следовательно, Если
Конечно, то и потенциалконечен,
Что и требовалось доказать.

Непрерывность потенциала.

Производная от потенциала по декартовой координате дает соответствующую компоненту напряженности электрического поля. Ясно, что напряженность не может быть бесконечной, значит, производные по координатам от потенциала должны быть конечными. А это означает, что потенциал является непрерывной функцией. Таким образом, потенциал

является непрерывной и конечной функцией с конечными производными по координатам. Эти условия важны при решении дифференциальных уравнений для .

Теорема Ирншоу.

Эта теорема утверждает, что не существует такой конфигурации неподвижных зарядов, которая была бы устойчивой, если нет других сил, кроме сил кулоновского взаимодействия между зарядами системы. Устойчивые конфигурации неподвижных зарядов могут существовать лишь тогда, когда кроме сил электрического взаимодействия между ними имеются некоторые посторонние силы, удерживающие заряды в положении равновесия.

Доказательство теоремы Ирншоу следует из теоремы Гаусса. Допустим, что равновесие устойчиво. Тогда при смещении любого из зарядов системы из его положения равновесия в любом направлении на него должна действовать сила, стремящаяся возвратить заряд в прежнее положение. А это означает, что напряженность поля, создаваемого вблизи каждого из покоящихся зарядов всеми другими зарядами, направлена вдоль радиусов, исходящих из точки нахождения этого заряда. Поток напряженности этого поля сквозь замкнутую поверхность вокруг заряда отличен от нуля, поскольку напряженность направлена вдоль радиусов в одном направлении (вблизи положительного заряда – к заряду, вблизи отрицательного – от заряда). По теореме Гаусса поток сквозь замкнутую поверхность создается зарядом, находящимся в ограничиваемом ею объеме. Это противоречит исходному предположению о том, что он создается зарядами, находящимися вне объема. Тем самым отвергается допущение об устойчивости конфигурации неподвижных зарядов, и теорема Ирншоу доказана.

Устойчивые конфигурации неподвижных зарядов могут существовать лишь тогда, когда кроме сил взаимодействия между ними имеются какие-то посторонние силы, удерживающие заряды в положениях равновесия. Устойчивые состояния движущихся зарядов возможны, как, например, движение двух разноименных зарядов по эллипсам вокруг центра масс (если, конечно, пренебречь излучением).

Share 0

Tweet

Share 0

Share

Share

Share

Определите максимальный потенциал сферы генератора Ван де Граафа, имеющий радиус 1 м, при котором еще не будет наблюдаться пробой в воздухе вблизи этой сферы.

На этой странице сайта вы найдете ответы на вопрос Определите максимальный потенциал сферы генератора Ван де Граафа, имеющий радиус 1 м, при котором еще не будет наблюдаться пробой в воздухе вблизи этой сферы?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 5 — 9 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

III. Основы электродинамики

Тестирование онлайн

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

Зависимость напряженности и потенциала от расстояния

Напряжение в природе

Энергия взаимодействия зарядов*

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными

, а само поле называется
потенциальным
.

Движение заряда в электрическом поле

Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный заряд
q
совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.

Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются. Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля. Согласно правилам они имеют направление от заряда +Q

к заряду
-Q
, иначе говоря выходят из
положительных
зарядов (источника) и заходят в
отрицательные
заряды (источника).

Советуем изучить Аккумулятор для шуруповерта: новые возможности для эффективной работы

Направление силы действия на пробный заряд q

определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.

Движение заряда q

в электрическом поле

На рисунке изображена примерная траектория движения заряда +q

, имеющего некоторую начальную скорость
V
. Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.

Спрашивается. Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля. Наш заряд +q

, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд
-q
, то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом

данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток. Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока. Разница заключается в следующем:

Советуем изучить Мощные магниты

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Основные формулы электричества

Изучение основ электродинамики, электрики невозможно без определения электрического поля, точных зарядов, сопротивления и прочих явлений.

Поэтому важно рассмотреть все основные формулы электричества и примеры решения задач с их использованием.

Закон Кулона

Согласно короткому описанию, это физический закон, который говорит о взаимодействии между прямо стоящими точечными электрозарядами в зависимости от того, на каком расстоянии они находятся. Согласно полному определению, формулировка обозначает, что между двумя точками в виде электрических зарядов формируется вакуум. Там появляется конкретная сила, которая пропорциональна умножению их модульных частиц, поделенных на квадратный показатель расстояния.

Расстояние — длина, которая соединяет заряды. Сила взаимодействия направлена по отрезку. Кулоновская сила — сила, отталкивающая при зарядах минус-минус и плюс-плюс и притягательная при минус-плюс и плюс-минус.

Обратите внимание! Электрическая сила формула выглядит так: F=k⋅|q1|⋅|q2|/r2, где F — сила заряда, q — величина заряда, r — вектор или расстояние между зарядами, а k — коэффициент пропорциональности. Последний равен c2·10−7 Гн/м.

Решение задачи с законом Кулона. При наличии заряженных шариков, которые находятся на расстоянии 15 см и отталкиваются с силой 1 Н в поиске начального заряда, выявить неизвестное можно, переведя основные единицы в систему СИ и подставив величины в указанную формулу. Выйдет значение 2 * 5 * 10 (-8) = 10 (-7).

Напряженность поля уединенного точечного заряда

Электрическое поле будучи материей, создаваемой электрическими точечными зарядами, характеризуется разными величинами, в том числе напряженностью. Напряженность выступает векторной величиной или силовой характеристикой поля, которая направлена в сторону электростатического взаимодействия зарядов. Чтобы получить ее, нужно использовать формулу E = k (q / r (2)), где Е — векторное поле.

Согласно данной формулировке, напряженность поля заряда имеет обратную пропорциональность квадратному значению расстояния от заряда. То есть если промежуток увеличивается в несколько раз, показатель напряжения снижается в четыре.

Применить закон можно для решения задач. Например, неизвестен радиус. Тогда нужно преобразовать константу. Нужно решить уравнение E / r (2) = kq, подставив известные числа.

Потенциал точки в поле точечного заряда

Потенциалом в электростатическом поле называется скалярная величина, которая равна делению потенциального показателя энергии заряда на него. Он не зависит от величины q, которая помещена в область. Так как потенциальный показатель энергии зависит от того, какая выбрана система координат, то потенциал определяется с точностью до постоянной. Он равен работе поле, которое смещает единичный положительный заряд в бесконечность. Выражается через ф = W / q =const.

Вам это будет интересно Особенности люменов и люксов

Обратите внимание! В задачах можно преобразовывать константу. Если неизвестно W, то можно поделить q на ф, а если q — то, W на ф.

Потенциальная энергия заряда в электростатическом поле

Потенциальная энергия заряда q1 в поле точечного заряда

Во время перемещения заряженных частиц по полю из одной точки в другую они совершают некую работу за определенный временной промежуток. Потенциальная энергия в этих точках не зависит от того, какой путь держат заряженные частицы. Энергия первого заряда пропорциональна его модулю. Выражается это все в формуле, представленной на картинке ниже. Задачи решать можно, используя представленную константу и вставляя известные значения.

Теорема Гаусса

Основной закон в электродинамике, входящий в уравнения Максвелла. Это следствие из кулоновского умозаключения и принципа суперпозиции. По ней вектор напряжения поля движется сквозь произвольное значение замкнутой поверхности, окруженной зарядами. Он имеет пропорциональность сумме заряженных частиц, которые находятся внутри этого замкнутого пространства. Указанный вектор поделен на е0. Все это выражается формулой, указанной ниже.

Напряженность электрического поля вблизи от поверхности проводника

Напряженность суммарного пространства заряженных частиц имеет прямую пропорциональность поверхностному показателю их плотности. Если в задаче требуется найти напряженность, а поверхностная заряженная плотность это сигма, то нужно нарисовать цилиндр и обозначить, что поток сквозь его боковую поверхность равен 0. В таком случае линии напряженности будут параллельны боковой поверхности. Получится, что ф = 2ф, осн =2еs, а 2es =q / 2ε0.

Емкость плоского конденсатора

Емкостью называется проводниковая характеристика, по которой электрический заряд может накапливать энергию. Плоским конденсатором называются несколько противоположно заряженных пластин, разделенных диэлектрическим тонким слоем. Емкостью плоского конденсатора считается его характеристика, способность к накоплению электрической энергии.

Обратите внимание! Это физическая величина, которая равна делению заряда на разность потенциалов его обкладки. Зарядом при этом служит заряженная одна пластина.

Если в задаче требуется узнать емкость конденсатора из двух пластин с площадью в 10(-2) квадратных метров и в них находится 2*10(-3) метровый лист, ε0 электрическая постоянная с 8,85×10-12 фарад на метр и ε=6 — диэлектрическая проницаемость слюды. В таком случае нужно вставить значения в формулу C= ε* ε* S/d.

Энергия плоского конденсатора

Поскольку любая частица конденсатора имеет способность запаса энергии, который сохранен на конденсаторной обкладке, вычислить эту самую Е просто, поскольку чтобы элемент зарядился, ему нужно совершить работу. Работа совершается полем. В результате была выведена следующая формула: Еp = А = qEd, где А является работой, d — расстоянием.

Формулы для постоянного электрического тока

Постоянный электрический ток не изменяется в величине и направлении. Он используется для расчета замкнутой, однородной цепи, мощности и прочих параметров. Поэтому важно знать формулы для него и основные законы, связанные с ним.

Вам это будет интересно Описание распределительной коробки

Закон Ома для участка однородной цепи

Чтобы электрический ток существовал, нужно поле. Для его образования, нужны потенциалы или разность их, выраженная напряжением. Ток будет направлен на снижение потенциалов, а электроны начнут свое передвижение в обратном направлении. В 1826 г. Г. Ом провел исследование и сделал заключение: чем больше показатель напряжения, тем больше ток, который проходит через участок.

К сведению! Смежные проводники при этом проводят электричество по-разному. То есть каждый элемент имеет свою проводимость, электрическое сопротивление.

В результате, согласно теореме Ома, сила тока для участка однородной цепи будет иметь прямую пропорциональность показателю напряжения на нем и обратную пропорциональность проводниковому сопротивлению.

По формуле I = U / R, где I считается силой тока, U — напряжением, а R — электрическим сопротивлением, последнее значение можно найти, если p * l / S, где p является удельным проводниковым сопротивлением, l — длиной проводника, а S — площадью поперечного проводникового сечения.

Закон Ома для замкнутой цепи с источником тока

Ом сделал формулу и для замкнутой цепи. По ней ток на этом участке из токового источника, имеющего внутреннее и внешнее нагрузочное сопротивление, равен делению электродвижущей силы источника на сумму внутреннего и внешнего сопротивления. Она выглядит так: I = e / R + r, где I является токовой силой, е — ЭДС, R — сопротивлением, а r — внутренней сопротивляемостью источника напряжения.

Обратите внимание! В физическом смысле по этому закону, чем выше показатель ЭДС, тем выше источник энергии, больше скорость движения зарядов. Чем выше сопротивляемость, тем ниже величина тока.

Работа постоянного тока

Энергия, когда проходит через проводник, упорядоченно двигается в носитель. Во время движения она совершает работу. В результате работой постоянного тока называется деятельность поля, направленная на перенос электрических зарядов по проводнику. Она равна умножению I на совершаемое работой напряжение и время.

Закон Джоуля-Ленца

Когда электричество проходит через какой-то проводник с сопротивляемостью, всегда высвобождается теплота. Количество тепла, которое высвободилось за определенный промежуток времени, определяет закон Джоуля-Ленца. По формуле мощность тепла равняется умножению плотности электричества на напряжение — w =j * E = oE(2).

Обратите внимание! В практическом понимании закон имеет значение для снижения потери электроэнергии, выбора проводника для электроцепи, подбора электронагревательного прибора и использования плавкого предохранителя для защиты сети.

Полная мощность, развиваемая источником тока

Мощность — работа, которая совершается за одну секунду времени. Электрическая мощность является физической величиной, которая характеризует скорость передачи с преобразованием электроэнергии.

Работа, которая развивается источником электроэнергии по всей цепи, это полная мощность. Ее можно определить по формуле Р = El, где E считается ЭДС, а I — величиной токовой характеристики.

К сведению! Если есть линейная нагрузка, то полный мощностный показатель равен квадратному корню из квадратов активной и реактивной работы источника. Если есть нелинейная нагрузка, то она равна квадратному корню из квадратов активной и неактивной работы источника.

В практических измерениях такая работа выражается в киловаттах в час. Используется, чтобы измерять потребление электричества в бытовых и производственных условиях, определять выработанную электрическую энергию в электрическом оборудовании.

Полезная мощность

Максимальная или полезная мощность — та, что выделяется во внешнем промежутке цепи, то есть во время нагрузки резистора. Она может быть применена для выполнения каких-либо задач. Подобное понятие можно применить, чтобы рассчитать, как работает электрический двигатель или трансформатор, который способен на потребление активной и реактивной составляющей.

Вам это будет интересно Особенности дифференциального тока

Полезный мощностный показатель можно рассчитать по трем формулам: P = I 2R, P = U2 / r, P = IU, где I является силой тока на определенном участке цепи; U — напряжением на части клемм (зажимов) токового источника, а R — сопротивлением нагрузки или внешней цепью.

Коэффициент полезного действия источника тока

Коэффициентом полезного действия токового источника называется деление полезного мощностного показателя на полный. Если внутреннее сопротивление источника равно внешнему, то половина результатов всей работы будет утеряна в источнике, а другая половина будет выделена на нагрузке. В такой ситуации КПД будет равен 50 %.

Если рассматривать это понятие наиболее полно, то когда электрические заряды перемещаются по замкнутой электрической цепи, источник тока выполняет определенную полезную и полную работу. Совершая первую, он перемещает заряды во внешнюю цепь. Делая вторую работу, заряженные частицы перемещаются по всему участку.

Обратите внимание! Полезное действие достигается, когда сопротивление внешней электроцепи будет иметь определенное значение, зависящее от источника и нагрузки. Соотношения полезной работы на полную выражают формулой: η = Аполез / Аполн = Рполез / Рполн = U/ε = R / (R + r).

Первое правило Кирхгофа

Согласно первому закону Кирхгофу, токовая сумма в любом участке электрической цепи равняется нулевому значению. Направленный заряд к узлу положительный, а от него — отрицательный. Алгебраическая токовая сумма зарядов, которые направлены к узлу, равна сумме тех, которые направлены от него. Если перевести это правило, то можно получить следующее определение: сколько тока попадает в узел, столько и выходит из него. Это правило вытекает из закона о сохранности заряженных частиц.

Благодаря решению линейных уравнений на основе кирхгофских правил можно отыскать все токовые значения и напряжения на участках постоянного, переменного и квазистационарного электротоков.

Обратите внимание! В электотехнике правило Кирхгофа имеет особое значение, поскольку оно универсально для решения многих поставленных задач в теории электроцепи. С помощью него можно рассчитать сложные электрические цепи. Применяя его, можно получить систему линейных уравнений относительно токам или напряжениям на всех межузловых ветвях цепей.

Второе правило Кирхгофа

Второе кирхгофское правило вытекает из первого и третьего максвеллского уравнения. По нему алгебраическая сумма напряжений на резистивных элементах замкнутого участка равна сумме ЭДС, которая входит в него. Если на участке нет ЭДС, то суммарный показатель падения напряжения равен нулевому значению. Если еще проще, то во время полного обхода контура потенциал изменяется. Он возвращается на исходное значение.

Частый случай для участка одного контура — это закон Ома. Составляя уравнения напряжений для контура, требуется подобрать его положительный обход. Чтобы это сделать, нужно знать, что при подборе обхода показатель падения напряжения ветви будет положительным, если обходное направление в ветви совпадает с тем, которое было ранее выбрано. Если оно не совпадает, то показатель напряжения ветви будет отрицательным.

Важно! Второе правило Кирхгофа можно использовать в линейной или нелинейной линеаризованной цепи при любом изменении токов и напряжения.

В результате, чтобы понять основы физики явлений, электрики, электродинамики и с успехом использовать знания в процессе жизнедеятельности, необходимо знать выведенные теоремы, законы, формулы и правила в области электричества, которые представлены выше. Например, представляя, как выглядит та или иная формула, можно решить любую задачу в учебнике по физике или жизни.

Понравилась статья? Поделить с друзьями:
  • Как найти обрыв цепи в автомобиле мультиметром
  • Ошибка терминала 4128 как исправить
  • Как найти загрузки на телефоне оппо
  • Как найти отправленные сообщения в андроид
  • Как найти скрытые файлы linux