Как найти максимум целевой функции

Среди универсальных методов решения
задач линейного программирования
наиболее распространенсимплексный
метод
(илисимплекс-метод),разработанный американским ученым Дж.
Данцигом около 50 лет назад. Суть этого
метода заключается в том, что:

  1. вначале исходная ЗЛП записывается в
    канонической форме;

  2. предварительно получают допустимый
    вариант, удовлетво­ряющий всем
    ограничениям, но необязательно
    оптимальный (так называемоеначальное
    опорное решение);

  3. полученный вариант проверяется на
    оптимальность с помощью критерия
    оптимальности;

  4. если решение не оптимальное, переходят
    к следующему опорному решению (плану)
    на основе применения метода Жордана-Гаусса
    для системы линейных уравнений;
    на­правление перехода от одного
    опорного решения к другому выбирается
    на основе критерия оптимальности
    исходной задачи;

  5. полученный опорный план снова проверяется
    на опти­мальность и т. д. Оптимальность
    достигается последовательным улучшением
    исходного варианта за определенное
    число этапов (итераций), причем на
    последнем шаге либо выявляется
    нераз­решимость задачи (конечного
    оптимума нет), либо получа­ются
    оптимальный опорный план и соответствующее
    ему оптимальное значение целевой
    функции.

Симплекс-метод осно­ван на следующих
свойствах ЗЛП:

1. Не существует локального экстремума,
отличного от глобального. Другими
словами, если экстремум есть, то он
единственный.

2. Множество всех планов задачи линейного
программиро­вания выпукло.

3. Целевая функция ЗЛП достигает своего
максимального (минимального) значения
в угловой точке многогранни­ка решений
(в его вершине). Если целевая функция
принимает свое оптимальное значение
более чем в од­ной угловой точке, то
она достигает того же значения в любой
точке, являющейся выпуклой линейной
комби­нацией этих точек.

4. Каждой угловой точке многогранника
решений отвечает опорный план ЗЛП.

Рассмотрим две разновидности симплексного
метода: симплекс-метод с естественным
базисом и симплекс-метод с искусственным
базисом (или М-метод).

СИМПЛЕКС-МЕТОД С ЕСТЕСТВЕННЫМ БАЗИСОМ.

Для примене­ния этого метода ЗЛП
должна быть сформулирована в кано­нической
форме (2.12) — (2.14). Решение ведется в
симплекс-таблицах:

Таблица 1


симплекс-таблицы

Базис

Сб

План В

с1

с2

сm

сj

сk

сn

Q

A1

A2

Am

Aj

Ak

An

0

A1

с1

b1

a11

a12

a1m

a1j

a1k

a1n

A2

с2

b2

a21

a22

a2m

a2j

a2k

a2n

Ai

сi

bi

ai1

ai2

aim

aij

aik

ain

Ar

сr

br

ar1

ar2

arm

arj

ark

arn

Am

сm

bm

am1

am2

amm

amj

amk

amn

L

Δj

Матрица системы уравнений должна
содержать единичную подматрицу
раз­мерностьютхт.В этом
случае очевиден начальный опор­ный
план (неотрицательное базисное решение).

Для определенности предположим, что
первыетвек­торов матрицы системы
составляют единичную матрицу. Тогда
очевиден первоначальный опорный план:

(b1, b2,
…, b
m,0, …,0). Т.е.основные
переменные являются свободными и равными
нулю, а дополнительные переменные
являются базисными и равны правым частям
СЛУ.

Признак оптимальности заключается в
следующих двух теоремах.

Теорема 1.Если для некоторого
вектора, не входящего в базис, выполняется
условие

<0,где,j =,(т.е.
скалярное произведение векторов столбцовСбиAj ),

то можно получить новый опорный план,
для которого зна­чение целевой функции
будет больше исходного; при этом могут
быть два случая:

а) если все координаты вектора, подлежащего
вводу в базис, неположительны, то ЗЛП
не имеет решения;

б) если имеется хотя бы одна положительная
координата у вектора, подлежащего вводу
в базис, то можно получить новый опорный
план.

мы будем называть оценкой столбцаj.

Теорема 2.Если для всех векторов
выполняется условие
,то полученный план является оптимальным.

На основании признака оптимальности в
базис вводится векторAk,давший минимальную отрицательную
величину симплекс-разности:

=
z
k — ck = min(zj
cj), j =,(т.е. имеющий минимальную отрицательную
оценку)

Чтобы выполнялось условие неотрицательности
значений опорного плана, выводится из
базиса вектор Аr,который дает минимальное положительное
отношение

Q=,
a
ik>0, i=
.

СтрокаAr называетсянаправляющей,столбецАkи эле­ментark
направляющими
(последний называют
такжеразрешающимили ведущим
элементом).

Элементы вводимой строки, соответствующей
направ­ляющей строке, в новой
симплекс-таблице вычисляются по формулам
(они – есть следствие (формализация)
метода Жордана-Гаусса).

,,

а элементы любой другой i-oй строки
пересчитываются по формулам:

,
i=
,

Значения базисных переменных нового
опорного плана (показатели графы «план»)
рассчитываются по формулам:

дляi=r;
,
i=
для
.

Число L в симплексной таблице –это
текущее значение целевой функции.

,
т.е. скалярное произведение векторов
столбцов Сб
и В.

Если наименьшее значение Qдостигается
для несколь­ких базисных векторов,
то чтобы исключить возможность
зацикливания (повторения базиса), можно
применить сле­дующий способ.

Вычисляются частные, полученные от
деления всех эле­ментов строк, давших
одинаковое минимальное значение Q, на
свои направляющие элементы. Полученные
частные со­поставляются по столбцам
слева направо, при этом учиты­ваются
и нулевые, и отрицательные значения. В
процессе просмотра отбрасываются
строки, в которых имеются большие
отношения, и из базиса выводится вектор,
соответст­вующий строке, в которой
раньше обнаружится меньшее частное.

Для использования приведенной выше
процедуры сим­плекс-метода к минимизации
линейной формыf()
следует искать максимум функцииf1()
= — f(
),затем получен­ный максимум взять с
противоположным знаком. Это и бу­дет
искомый минимум исходной ЗЛП.

Рассмотрим алгоритмы симплекс-метода
на конкретной задаче.

Пример.Для производства продукции
типаП1иП2предприятие использует два вида сырья:С1иС2. Данные
об условиях приведены в таблице.

Таблица 2

Сырье

Расход сырья на единицу продукции,
кг/ед.

Количество сырья, кг

П1

П2

С1

1

3

300

С2

1

1

150

Прибыль,
тыс.руб/ед.прод.

2

3

Составить план производства по критерию
«максимум прибыли».

Решение. Обозначим объем производства
продук­цииП1черезx1,продукцииП2 — черезx2.
С учетом этих обозначений математическая
модель задачи имеет вид:

maxf()
= 2 x1 +3 x2

при ограничениях x1+
3x
2
300,

x1+ x2
150,

x10;
x
2
0.

Приведем эту задачу к каноническому
виду, введя допол­нительные
переменныех3их4.

max f()
= 2 x1 +3 x2+
0 х
3+0 х4

A1 A2 A3
A4 B

,

или x1+ 3x2+
х
3 =300,

x1+ x24
=150,

xj0;
j =.

Задача обладает исходным опорным планом
(0,0,300,150), и ее можно решить симплекс-методом;
решение ведется в симплекс-таблицах
(табл. 3).

Таблица 3


симплекс-таблицы

Базис

Сб

План В

2

3

0

0

Q

A1

A2

A3

A4

0

A3

0

300

1

3

1

0

100

A4

0

150

1

1

0

1

150

0

-2

-3

0

0

1

A2

3

100

1/3

1

1/3

0

300

A4

0

50

2/3

0

-1/3

1

75

300

-1

0

1

0

2

A2

3

75

0

1

1/2

-1/2

A1

2

75

1

0

-1/2

3/2

375

0

0

1/2

3/2

В исходной симплекс-таблице строка
оценок Δj определяется по
приведенной выше формуле

Δ1= z1-c1
=

Δ2= z2-c2
=

Исходный опорный план (0,0,300,150) не является
опти­мальным, так как среди оценок Δjимеются отрицательные. Переход к новому
опорному плану осуществим, введя в базис
векторA2,имеющий
минимальную отрицательную оценку.
Определяем вектор, выходящий из базиса:

т.е. векторA3 следует
вывести из базиса. Направ­ляющим или
ведущим элементом являетсяa12
= 3(выделен). Переход к следующей
симплекс-таблице осуществляем с по­мощью
преобразований Жордана-Гаусса (первое
уравнение делим на себя, затем из второго
вычитаем первое).

Определим текущее значение функции и
оценки. Среди оценок также имеется
отрицательная, следовательно и второй
опорный план (0,100,0,50) не оптимальный.

Определим ведущий (направляющий) элемент

,

следовательно, ведущий a21=2/3.

Переходим к следующему опорному плану
вводя в базис векторA1 вместо
вектораA4.

Рассчитаем оценки. Теперь они все
неотрицательные. В результате получаем
оптимальный план (75,75,0,0), т.е. предприятие
получит максимум прибыли в размере
375,0 тыс. руб., если выпус­тит 75 единиц
продукции первого вида и 75 единиц
продук­ции второго вида.

СИМПЛЕКС-МЕТОД С ИСКУССТВЕННЫМ БАЗИСОМ
(М-МЕТОД).
Применяется в тех случаях,
когда затруднительно найти первоначальный
опорный план исходной задачи ЛП,
запи­санной в канонической форме.

М-метод заключается в применении
правил симплекс-метода к так называемойМ-задаче.Она получается из
ис­ходной добавлением к левой части
системы уравнений в канонической форме
исходной ЗЛП таких искусственных
единичных векторов с соответствующими
неотрицательными искусственными
переменными, чтобы вновь полученная
матрица содержала систему единичных
линейно-независи­мых векторов. В
линейную форму исходной задачи
добав­ляется в случае ее максимизации
слагаемое, представляю­щее собой
произведение числа(-М)на сумму
искусственных переменных, гдеМ —достаточно большое положительное число.

В полученной задаче первоначальный
опорный план очевиден. При применении
к этой задаче симплекс-метода оценки
Δj, теперь будут зависеть от
«буквыМ». Для сравне­ния оценок
нужно помнить, чтоМ—достаточно
большое по­ложительное число, поэтому
из базиса будут выводиться в первую
очередь искусственные переменные.

В процессе решенияМ-задачи следует
вычеркивать в симплекс-таблице
искусственные векторы по мере их вы­хода
из базиса. Если все искусственные векторы
вышли из базиса, то получаем исходную
задачу. Если оптимальное решениеМ-задачи
содержит искусственные векторы илиМ-задача неразрешима, то исходная
задача также неразре­шима.

Путем преобразований число вводимых
переменных, со­ставляющих искусственный
базис, может быть уменьшено до одной.

Пример.Найти максимум целевой
функции:

max f()
= 3 x1 + x2+
x
3

при условиях 2 x1+ x2
=8,

x1+ x2 +x3=6,

x10;
x
2
0; x
3
0

Решение.Матрица условий содержит
только один единичный вектор, добавим
еще один искусственный вектор
(искусственную неотрицательную переменнуюy1в первое ограничение):

.

Получим следующуюМ-задачу: найти
максимум целе­вой функции

max f()
= 3 x1 + x2+
x
3 — My1

при условиях 2 x1+ x2
+ y1=8,

x1+ x2 +x3=6,

x10;
x
2
0; x
3
0
; y10.

М-задачу решаем симплекс-методом.
Начальный опор­ный план (0,0,6,8), решение
проводим в симплекс-таблицах (табл.4).

Таблица 4


симплекс-таблицы

Базис

Сб

План В

3

1

1

Q

A1

A2

A3

A4

0

A4

-M

8

2

1

0

1

4

A3

1

6

1

1

1

0

6

-8M+6

-2M-2

M-1

0

0

1

A1

3

4

1

0.5

0

A3

1

2

0

0.5

1

14

0

0

0

В начальной таблице наименьшая оценка
соответствует векто­руA1
он вводится в базис, а искусственный
вектор (строка)A4из базиса
выводится, так как ему отвечает наименьшееQ. Ведущий элементa11 . Столбец,
соответствующийA4,из дальнейших симплексных таблиц
вычеркивается.

Полученный новый опорный план является
опорным планом исходной задачи. Для
него все
> 0, поэтому он является и оптимальным.
Таким образом, получен оптималь­ный
план исходной задачи (4,0,2), и максимальное
значение целевой функцииf()=14.

Пример.Решить ЗЛП: minf()
= 10 x1 — 5x2

при условиях 2 x1 — x2
3,

x1+ x2
2,

x1+2x2
-1,

x10;
x
2
0;

Приведем ЗЛП к каноническому виду,
перейдя к задаче «на максимум»:

mах f1()
= -10 x1 + 5x2

при условиях 2 x1 — x2
— x
3=3,

x1+ x2 – x4=2,

-x1 — 2x2 +x5=1,

xj0;
j =.

Для нахождения опорного плана переходим
кМ-задаче:

mах g(,)
= -10 x1 + 5x2 M(y1+
y2)

при условиях 2 x1 — x2
— x
3+ y1=3,

x1+ x2 – x4
+
y2=2,

-x1 — 2x2 +x5=1,

xj0;
j =
,
y1,20

Дальнейшее решение проводим в
симплекс-таблицах (табл.5).

В симплекс-таблице2получен опорный план исходной ЗЛП;
поскольку все оценки
> 0, то этот план явля­ется и оптимальным,
т.е.x1=5/3,x2=
1/3 (исходные
перемен­ные),x5 =10/3,x3 =
0,x4 =0 (дополнительные переменные), при этом
minf()
=
mахf1()
= -(-15)
= 15.

Таблица 5


симплекс-таблицы

Базис

Сб

План В

-10

5

0

0

0

-M

-M

Q

A1

A2

A3

A4

A5

A6

A7

0

A6

-M

3

2

-1

-1

0

0

1

0

3/2

A7

-M

2

1

1

0

-1

0

0

1

2

A5

0

1

-1

-2

0

0

1

0

0

-5M

-3M+10

-5

M

M

0

0

0

1

A1

-10

3/2

1

-1/2

-1/2

0

0

0

A7

-M

1/2

0

3/2

1/2

-1

0

1

1/3

A5

0

5/2

0

-5/2

-1/2

0

1

0

-M/2-15

0

-3M/2

-M/2+5

M

0

0

2

A1

-10

5/3

1

0

-1/3

-1/3

0

A2

5

1/3

0

1

1/3

-2/3

0

A5

0

10/3

0

0

0

-5/3

1

-15

0

0

5

0

0

Калькулятор симплекс-метода

Количество переменных:

Количество ограничений:

Очистить

Решить

В двойственную

Выполнено действий:

Как пользоваться калькулятором

  • Задайте количество переменных и ограничений
  • Введите коэффициенты целевой функции
  • Введите коэффициенты ограничений и выберите условия (≤, = или ≥)
  • Выберите тип решения
  • Нажмите кнопку «Решить»

Что умеет калькулятор симплекс-метода

  • Решает основную задачу линейного программирования
  • Позволяет получить решение с помощью основного симплекс-метода и метода искусственного базиса
  • Работает с произвольным количеством переменных и ограничений

Что такое симплекс-метод

Задача линейного программирования — это задача поиска неотрицательных значений параметров, на которых заданная линейная функция достигает своего максимума или минимума при заданных линейных ограничениях.

Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве. Алгоритм является универсальным методом, которым можно решить любую задачу линейного программирования.

Если вам тоже ничего не понятно из этого определения, то вы на верном пути. Чаще всего статьи про симплекс-метод очень сильно углубляются в дебри теории задачи линейного программирования, из-за чего очень легко потерять суть и так ничего и не понять. Мы постараемся описать алгоритм симплекс-метода так, чтобы показать, что в нём нет ничего страшного и на самом деле он весьма простой. Но сначала нам всё-таки потребуется ввести несколько определений.

Целевая функция — функция, максимум (или минимум) которой нужно найти. Представляет собой сумму произведений коэффициентов на значения переменных: F = c1·x1 + c2·x2 + … + cn·xn

Ограничение — условие вида a1·x1 + a2·x2 + … + an·xn v b, где вместо v ставится один из знаков: ≤, = или ≥

План — произвольный набор значений переменных x1 … xn.

Алгоритм решения основной задачи ЛП симплекс-методом

Пусть в задаче есть m ограничений, а целевая функция заивисит от n основных переменных. Первым делом необходимо привести все ограничения к каноническому виду — виду, в котором все условия задаются равенствами. Для этого предварительно все неравенства с ≥ умножаются на -1, для получения неравенств с ≤.

Чтобы привести ограничения с неравенствами к каноническому виду, для каждого ограничения вводят переменную, называемую дополнительной с коэффициентом 1. В ответе эти переменные учитываться не будут, однако сильно упростят начальные вычисления. При этом дополнительные переменные являются базисными, а потому могут быть использованы для формирования начального опорного решения.

Пример 1


Привести к каноническому виду ограничения:
2·x1 + 3·x2 + 6·x3 ≤ 240
4·x1 + 2·x2 + 4·x3 = 200
4·x1 + 6·x2 + 8·x3 ≥ 160
Меняем знаки у ограничений с ≥, путём умножения на -1 и добавляем дополнительные переменные к ограничениям с неравенством:
2·x1 + 3·x2 + 6·x3 + x4 = 240
4·x1 + 2·x2 + 4·x3 = 200
-4·x1 — 6·x2 — 8·x3 + x5 = -160


Формирование начального базиса

После того как задача приведена к каноническому виду, необходимо найти начальный базис для формирования первого опорного решения. Если в процессе приведения были добавлены дополнительные переменные, то они становятся базисными.

Иначе необходимо выделить среди коэффициентов ограничений столбец, который участвует в формировании единичной матрицы в заданной строке (например, если требуется определить вторую базисную переменную, то необходимо искать столбец, в котором второе число равно 1, а остальные равны нулю). Если такой столбец найден, то переменная, соответствующая этому столбцу, становится базисной.

В противном случае можно поискать столбец, в котором все значения кроме числа в заданной строке равны нулю, и, если он будет найден, то разделить все значения строки на число, стоящее на пересечении этих строки и столбца, тем самым образовав столбец, участвующий в формировании единичной матрицы.

Пример 2


9·x1 + 5·x2 + 4·x3 + 3·x4 + 2·x5 → max
x1 — 2·x2 + 2·x3 ≤ 6
x1 + 2·x2 + x3 + x4 = 24
2·x1 + x2 — 4·x3 + 2·x5 = 30
Для ограничения с неравенством добавляем дополнительную переменную x6.
Перепишем ограничения в каноническом виде:
x1 — 2·x2 + 2·x3 + x6 = 6
x1 + 2·x2 + x3 + x4 = 24
2·x1 + x2 — 4·x3 + 2·x5 = 30

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x6
Столбец 4 является частью единичной матрицы. Переменная x4 входит в начальный базис
В пятом столбце все значения кроме третьего равны нулю. Поэтому в качестве третьей базисной переменной берём x5, предварительно разделив третью строку на 2.
Симплекс-таблица

базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
? 2 1 -4 0 2 0 30

После преобразования получаем следующую таблицу:

базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 1

1

2

-2 0 1 0 15

Если такой столбец отсутствует, то для формирования базиса необходимо применить исключение Гаусса для первого ненулевого столбца, который ещё не является базисным. Для этого вся строка делится на элемент в найденном столбце, а из остальных строк вычитается полученная строка, разделённая на значение, стоящее в этом же столбце. После этой операции все значения вне данной строки будут обнулены, и столбец можно будет считать базисным.

Пример 3


4·x1 + 5·x2 + 4·x3 → max
2·x1 + 3·x2 + 6·x3 ≤ 240
4·x1 + 2·x2 + 4·x3 = 160
4·x1 + 6·x2 + 8·x3 ≤ 200
Для каждого ограничения с неравенством добавляем дополнительные переменные x4 и x5.
Перепишем ограничения в каноническом виде:
2·x1 + 3·x2 + 6·x3 + x4 = 240
4·x1 + 2·x2 + 4·x3 = 160
4·x1 + 6·x2 + 8·x3 + x5 = 200

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x5

Начальная симплекс-таблица

базис x1 x2 x3 x4 x5 b
x4 2 3 6 1 0 240
? 4 2 4 0 0 160
x5 4 6 8 0 1 200

Для определения второй базисной переменной ищем первый ненулевой столбец, который ещё не является базисным. Первый столбец не нулевой и не является базисным. Выполняем исключение Гаусса: делим строку 2 на 4, а из первой и третьей строк вычитаем вторую, умноженную на соответствующий элемент в первом столбце.

базис x1 x2 x3 x4 x5 b
x4 2 3 6 1 0 240
x1 4 2 4 0 0 160
x5 4 6 8 0 1 200

После исключения получаем следующую таблицу:

базис x1 x2 x3 x4 x5 b
x4 0 2 4 1 0 160
x1 1

1

2

1 0 0 40
x5 0 4 4 0 1 40

После того как базис сформирован, нужно построить начальную симплекс-таблицу. Она строится следующим образом:

  • Для удобства в первой строке можно записать коэффициенты Ci целевой функции (для дополнительных переменных эти коэффициенты равны нулю)
  • Вторая строка формирует шапку таблицы. В ней первый столбец называется базис, а остальные перечисляют основные переменные x1..xn и дополнительные xn+1..xn+k
  • Затем построчно перечисляются базисные переменные и коэффициенты ограничений

Схематично начальная таблица будет выглядеть примерно так:

C с1 c2 cn 0 0 0 0
базис x1 x2 xn xn+1 xn+2 xn+k b
xe1 a11 a12 a1n a1n+1 a1n+2 a1n+k b1
xe2 a21 a22 a2n a2n+1 a2n+2 a2n+k b2
xem am1 am2 amn amn+1 amn+2 amn+k bm

Избавляемся от отрицательных свободных коэффициентов

После приведения к каноническому виду или после алгебраических преобразований при формировании базиса некоторые из свободных коэффициентов (bi) могли стать отрицательными, что не позволяет перейти к дальнейшим вычислениям. Чтобы избавиться от отрицательных значений b необходимо:

  • Найти строку, в которой находится максимальное по модулю значение b. Пусть это будет строка i;
  • Найти максимальный по модулю элемент в этой строке. Пусть он находится в столбце j;
  • Строку i разделить на элемент, стоящий на пересечении i-ой строки и j-го столбца;
  • Из каждой оставшейся строки k вычесть строку i, умноженную на элемент строки k и столбца j;
  • Переменную, соответствующую найденному столбцу j, сделать базисной (добавить в базис вместо переменной, находящейся в строке i).

Этот шаг необходимо повторять до тех пор, пока все отрицательные b не станут положительными или в строке не останется отрицательных элементов. Если строка с максимальным по модулю bi не содержит отрицательных элементов, то такая задача не имеет решений и на этом алгоритм заканчивает свою работу. В противном случае все bi положительны и алгоритм переходит к следующему этапу — расчёту дельт.

Пример 4


20·x1 + 20·x2 + 10·x3 → min
4·x1 + 3·x2 + 2·x3 ≥ 33
3·x1 + 2·x2 + x3 ≥ 23
x1 + x2 + 2·x3 ≥ 12

Меняем знаки у ограничений с ≥, путём умножения на -1:
-4·x1 — 3·x2 — 2·x3 ≤ -33
— 3·x1 — 2·x2 — x3 ≤ -23
— x1 — x2 — 2·x3 ≤ -12

Для каждого ограничения с неравенством добавляем дополнительные переменные x4..x6.
Перепишем ограничения в каноническом виде:
— 4·x1 — 3·x2 — 2·x3 + x4 = -33
— 3·x1 — 2·x2 — x3 + x5 = -23
— x1 — x2 — 2·x3 + x6 = -12

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство, базисной будет добавленная дополнительная переменная x5
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x6

Начальная симплекс-таблица

C 20 20 10 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x4 -4 -3 -2 1 0 0 -33
x5 -3 -2 -1 0 1 0 -23
x6 -1 -1 -2 0 0 1 -12

В столбце b присутствуют отрицательные значения.
Максимальное по модулю |b|max = |-33| находится в первой строке.
Максимальный по модулю элемент в первой строке = -4 находится в первом столбце.
В качестве базисной переменной x4 берём x1.
Делим первую строку на -4. Из второй и третьей строк вычитаем первую, умноженную на соответствующий элемент в первом столбце.

Обновлённая таблица:

C 20 20 10 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x1 1

3

4

1

2

1

4

0 0

33

4

x5 0

1

4

1

2

3

4

1 0

7

4

x6 0

1

4

3

2

1

4

0 1

15

4

В столбце b присутствуют отрицательные значения.
Максимальное по модулю |b|max = |-

| находится в третьей строке.
Максимальный по модулю элемент в третьей строке = —

находится в третьем столбце.
В качестве базисной переменной x6 берём x3.
Делим третью строку на —

. Из первой и второй строк вычитаем третью, умноженную на соответствующий элемент в третьем столбце.

Обновлённая таблица:

C 20 20 10 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x1 1

2

3

0

1

3

0

1

3

7
x5 0

1

6

0

5

6

1

1

3

1

2

x3 0

1

6

1

1

6

0

2

3

5

2


Расчёт дельт

Дельты — это параметры, на основании которых проверяется оптимальность текущего решения и улучшается функция. Они рассчитываются для каждой из переменных ограничений и записываются последней строкой таблицы.

Для расчёта дельт используется следующая формула: Δi = ce1·a1i + ce2·a2i + … + cem·ami — ci. Проще говоря, чтобы вычислить дельту по заданной i-ой переменной, нужно перемножить коэффициенты условий в i-ом столбце на коэффициенты целевой функции при соответствующих базисных переменных, сложить эти произведения и вычесть из полученной суммы коэффициент целевой функции столбца i.

Пример 5


Таблица:

C 3 0 2 0 0 -6 0
базис x1 x2 x3 x4 x5 x6 b
x2 2 1 -3 0 0 6 18
x4 -3 0 2 1 0 -2 24
x5

1

5

0

3

5

0 1

4

5

36

5

Вычисляем дельты: Δi = C2·a1i + C4·a2i + C5·a3i — Ci

Симплекс-таблица с дельтами

C 3 0 2 0 0 -6 0
базис x1 x2 x3 x4 x5 x6 b
x2 2 1 -3 0 0 6 18
x4 -3 0 2 1 0 -2 24
x5

1

5

0

3

5

0 1

4

5

36

5

Δ -3 0 -2 0 0 6 0

Проверка плана на оптимальность

После того как дельты рассчитаны, необходимо проверить оптимальность текущего плана. Критерий оптимальности формулируется следующим образом:
При максимизации функции: текущее решение считается оптимальным, если в таблице отсутствуют отрицательные дельты.
При минимизации функции: текущее решение считается оптимальным, если в таблице отсутствуют положительные дельты.

Пример 6


9·x1 + 5·x2 + 4·x3 + 3·x4 + 2·x5 → max
x1 — 2·x2 + 2·x3 ≤ 6
x1 + 2·x2 + x3 + x4 = 24
2·x1 + x2 — 4·x3 + x5 = 30
Симплекс-таблица с дельтами

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Критерий оптимальности: план оптимален, если в таблице отсутствуют отрицательные дельты.
План не оптимален, так как ищется максимум функции, а Δ1 = -2 отрицательна.


Если текущий план оптимален, то алгоритм завершает свою работу. Значениям переменных соответствуют значения столбца свободных коэффициентов b. Если свободной переменной нет в базисе, то её значение считается нулевым. Значение целевой функции, принимаемой на данном наборе, находится в строке с дельтами в том же столбце. Если какое-либо из значений столбца b отрицательно, то решения задачи не существует.

Переход к более оптимальному решению

Если текущий план оказался не оптимальным, то алгоритм ищет столбец с наименьшей (с наибольшей, если ищется минимум) дельтой. После чего вычисляются симплекс-отношения Q. Для этого значения свободных коэффициентов делятся на ненулевые коэффициенты из найденного столбца. Если результат деления получается отрицательным, то такие отношение игнорируются.

Среди найденных симплекс-отношений ищется строка, в которой находится симплекс-отношение с наименьшим значением. Если таких отношений нет, то алгоритм останавливает свою работу, так как целевая функция не ограничена и решения не существует.

Пример 7


Симплекс-таблица с дельтами

C 2 1 -2 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x1 1 -5 0 -3 0 -1 25
x5 0 -16 0 -7 1 -3 57
x3 0 -6 1 -2 0 -1 17
Δ 0 1 0 -2 0 0 16

Проверяем план на оптимальность: план не оптимален, так как ищется минимум функции, а Δ2 = 1 положительна.
Определяем разрешающий столбец — столбец, в котором находится максимальная дельта: 2, Δ2: 1
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения второго столбца

C 2 1 -2 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x1 1 -5 0 -3 0 -1 25
x5 0 -16 0 -7 1 -3 57
x3 0 -6 1 -2 0 -1 17
Δ 0 1 0 -2 0 0 16

Все значения второго столбца отрицательны. Функция не ограничена. Оптимальное решение отсутствует.


В противном случае строка с наименьшим отношением считается разрешающей и, аналогично избавлению от отрицательных свободных коэффициентов, делится на разрешающий элемент, расположенный в найденных столбце и строке, и из остальных строк вычитается найденная строка, разделённая на значения, стоящие в этом же столбце соответствующей строки. Переменная, стоящая в разрешающем столбце заменяет базисную переменную, находящуюся в найденной строке.

После этого вычисляются новые дельты и проверяется новый план. Так продолжается до тех пор пока не будет выполнен критерий оптимальности плана или не будет установлено, что решение не существует.

Пример 8


Симплекс-таблица с дельтами

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Проверяем план на оптимальность: план не оптимален, так как Δ1 = -2 отрицательна.

Итерация 1

Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 3, Δ3: -9
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения третьего столбца
В найденном столбце ищем строку с наименьшим значением Q: Qmin = 3, строка 1.
На пересечении найденных строки и столбца находится разрешающий элемент: 2
В качестве базисной переменной x6 берём x3.

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3 1 -2 2 0 0 1 6 6 / 2 = 3
x4 1 2 1 1 0 0 24 24 / 1 = 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Делим первую строку на 2. Из второй и третьей строк вычитаем первую, умноженную на соответствующий элемент в третьем столбце.
Вычисляем новые дельты: Δi = C3·a1i + C4·a2i + C5·a3i — Ci

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3

1

2

-1 1 0 0

1

2

3 3
x4

1

2

3 0 1 0

1

2

21 24
x5 4 -3 0 0 1 2 42
Δ

5

2

-6 0 0 0

9

2

159

Текущий план X: [ 0, 0, 3, 21, 42, 0 ]
Целевая функция F: 9·0 + 5·0 + 4·3 + 3·21 + 2·42 + 0·0 = 159
Проверяем план на оптимальность: план не оптимален, так как Δ2 = -6 отрицательна.

Итерация 2

Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 2, Δ2: -6
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения второго столбца
В найденном столбце ищем строку с наименьшим значением Q: Qmin = 7, строка 2.
На пересечении найденных строки и столбца находится разрешающий элемент: 3
В качестве базисной переменной x4 берём x2.

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3

1

2

-1 1 0 0

1

2

3
x2

1

2

3 0 1 0

1

2

21 21 / 3 = 7
x5 4 -3 0 0 1 2 42
Δ

5

2

-6 0 0 0

9

2

159

Делим вторую строку на 3. Из первой и третьей строк вычитаем вторую, умноженную на соответствующий элемент во втором столбце.
Вычисляем новые дельты: Δi = C3·a1i + C2·a2i + C5·a3i — Ci

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3

2

3

0 1

1

3

0

1

3

10
x2

1

6

1 0

1

3

0

1

6

7 7
x5

9

2

0 0 1 1

3

2

63
Δ

7

2

0 0 2 0

7

2

201

Текущий план X: [ 0, 7, 10, 0, 63, 0 ]
Целевая функция F: 9·0 + 5·7 + 4·10 + 3·0 + 2·63 + 0·0 = 201
Проверяем план на оптимальность: отрицательные дельты отсутствуют, следовательно план оптимален.
Ответ: x1 = 0, x2 = 7, x3 = 10, x4 = 0, x5 = 63, F = 201


Метод искусственного базиса

Очень часто при решении задачи линейной оптимизации бывает довольно сложно выполнять алгебраические преобразования над коэффициентами ограничений для поиска начального базиса. Для упрощения вычислений существует альтернативный метод решения, называемый методом искусственного базиса. Его суть заключается в том, что вместо того, чтобы искать базис среди имеющихся основных и дополнительных переменных, ввести так называемые искусственные переменные, которые сформируют начальный базис. Возможно, звучит сложно и непонятно, но сейчас мы всё объясним.

Подготовительный этап

Аналогично базовому симплекс-методу для всех ограничений с неравентством вводятся дополнительные переменные, причём для ограничений с ≥ они берутся с коэффициентом -1, а для ограничений с ≤ с коэффициентом 1. Ограничения с равенством остаются без изменений. Если свободный коэффициент какого-либо из ограничений меньше нуля, то такое ограничение умножается на -1 (знак неравенства при этом меняется на противоположный). После этого приступают к поиску базиса.

Пример 9


3·x1 + 2·x2 + 3·x3 → min
-2·x1 — x2 — x3 ≥ -2
3·x1 + 8·x2 + 2·x3 ≥ 8
2·x1 + x3 = 1
Меняем знаки у ограничений с отрицательными свободными коэффициентами, путём умножения на -1:
2·x1 + x2 + x3 ≤ 2
3·x1 + 8·x2 + 2·x3 ≥ 8
2·x1 + x3 = 1

Для каждого ограничения с неравенством добавляем дополнительные переменные x4 и x5.
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство с ≥. Базисная переменная для этого ограничения будет определена позднее.
Ограничение 3 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.

Начальная симплекс-таблица

C 3 2 3 0 0 0
базис x1 x2 x3 x4 x5 b
x4 2 1 1 1 0 2
?1 3 8 2 0 -1 8
?2 2 0 1 0 0 1


Формирование начального базиса

Для того, чтобы сформировать начальный базис в первую очередь можно поискать столбец, у которого одно значение равно единице, а все значения остальные значения равны нулю, и сделать соответствующую переменную базисной для этой строки. Однако такое случается довольно редко, поэтому проще сразу перейти к следующему пункту. Для всех ограничений, не имеющих базисной переменной, добавляем искусственную переменную с коэффициентом 1. В целевую функцию добавляем эту же переменную с коэффициентов -M, если ищется максимум или с коэффициентом M, если ищется минимум. M всего лишь является очень большим числом.

Пример 10


x1 — x2 → min
2·x1 + x2 = 1
x1 — 3·x2 + x3 = 3
x1 + 11·x2 = 11
Ограничение 1 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.
Столбец 3 является частью единичной матрицы. Переменная x3 входит в начальный базис
Ограничение 3 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.

Начальная симплекс-таблица

C 1 -1 0 0
базис x1 x2 x3 b
?1 2 1 0 1
x3 1 -3 1 3
?3 1 11 0 11

Для ограничения 1 добавляем искусственную переменную u1 и делаем её базисной.
Для ограничения 3 добавляем искусственную переменную u2 и делаем её базисной.
В целевую функцию добавляем искусственные пременные с коэффициентом M, где M — очень большое число.

Таблица с искусственными переменными

C 1 -1 0 M M 0
базис x1 x2 x3 u1 u2 b
u1 2 1 0 1 0 1
x3 1 -3 1 0 0 3
u2 1 11 0 0 1 11

Перепишем условие задачи с учётом добавленных искусственных переменных:
F = 1x1 -1x2 + Mu1 + Mu2 → min
2·x1 + x2 + u1 = 1
x1 — 3·x2 + x3 = 3
x1 + 11·x2 + u2 = 11


Расчёт дельт и проверка плана на оптимальность

После того, как начальный базис сформирован необходимо вычислить дельты. Дельты вычисляются полностью аналогично базовому методу: Δi = ce1·a1i + ce2·a2i + … + cem·ami — ci. Единственным отличием будет тот факт, что результат может содержать значения с M. Когда дельты будут получены необходимо проверить текущий опорный план на оптимальность (см. проверку плана на оптимальность в базовом симплекс-методе). Если план оптимален, то алгоритм завершает свою работу, иначе формирует более оптимальное решение и повторяет процесс.

Пример 11


Таблица с искусственными переменными

C 3 2 3 0 0 0 M M 0
базис x1 x2 x3 x4 x5 x6 u1 u2 b
x4 2 1 1 1 0 0 0 0 2
u1 3 0 2 0 -1 0 1 0 3
u2 0 0 1 0 0 -1 0 1 1

Вычисляем дельты: Δi = C4·a1i + C7·a2i + C8·a3i — Ci

Δ1 = C4·a11 + C7·a21 + C8·a31 — C1 = 0·2 + M·3 + M·0 — 3 = -3 + 3M
Δ2 = C4·a12 + C7·a22 + C8·a32 — C2 = 0·1 + M·0 + M·0 — 2 = -2
Δ3 = C4·a13 + C7·a23 + C8·a33 — C3 = 0·1 + M·2 + M·1 — 3 = -3 + 3M
Δ4 = C4·a14 + C7·a24 + C8·a34 — C4 = 0·1 + M·0 + M·0 — 0 = 0
Δ5 = C4·a15 + C7·a25 + C8·a35 — C5 = 0·0 + M·(-1) + M·0 — 0 = -M
Δ6 = C4·a16 + C7·a26 + C8·a36 — C6 = 0·0 + M·0 + M·(-1) — 0 = -M
Δ7 = C4·a17 + C7·a27 + C8·a37 — C7 = 0·0 + M·1 + M·0 — M = 0
Δ8 = C4·a18 + C7·a28 + C8·a38 — C8 = 0·0 + M·0 + M·1 — M = 0
Δb = C4·b1 + C7·b2 + C8·b3 — C9 = 0·2 + M·3 + M·1 — 0 = 4M

Симплекс-таблица с дельтами

C 3 2 3 0 0 0 M M 0
базис x1 x2 x3 x4 x5 x6 u1 u2 b
x4 2 1 1 1 0 0 0 0 2
u1 3 0 2 0 -1 0 1 0 3
u2 0 0 1 0 0 -1 0 1 1
Δ -3 + 3M -2 -3 + 3M 0 -M -M 0 0 4M

Текущий план X: [ 0, 0, 0, 2, 0, 0, 3, 1 ]
Целевая функция F: 3·0 + 2·0 + 3·0 + 0·2 + 0·0 + 0·0 + M·3 + M·1 = 4M
Проверяем план на оптимальность: план не оптимален, так как Δ1 = -3 + 3M положительна.


Ранее я описал, как принимать решения с учетом ограничивающих факторов. Цель таких решений – определить ассортимент продукции (производственный план), максимально увеличивающий прибыль компании. Решение заключалось в том, чтобы распределить ресурсы между продуктами согласно маржинальной прибыли, полученной на единицу ограниченных ресурсов, при соблюдении любых других ограничений, таких как максимальный или минимальный спрос на отдельные виды продукции. [1]

Если ограничивающий фактор один (например, дефицитный станок), решение может быть найдено с применением простых формул (см. ссылку в начале статьи). Если же ограничивающих факторов несколько, применяется метод линейного программирования.

Линейное программирование – это название, данное комбинации инструментов используемых в науке об управлении. Этот метод решает проблему распределения ограниченных ресурсов между конкурирующими видами деятельности с тем, чтобы максимизировать или минимизировать некоторые численные величины, такие как маржинальная прибыль или расходы. В бизнесе он может использоваться в таких областях как планирование производства для максимального увеличения прибыли, подбор комплектующих для минимизации затрат, выбор портфеля инвестиций для максимизации доходности, оптимизация перевозок товаров в целях сокращения расстояний, распределение персонала с целью максимально увеличить эффективность работы и составление графика работ в целях экономии времени.

Скачать заметку в формате Word, рисунки в формате Excel

Линейное программирование предусматривает построение математической модели рассматриваемой задачи. После чего решение может быть найдено графически (рассмотрено ниже), с использованием Excel (будет рассмотрено отдельно) или специализированных компьютерных программ. [2]

Пожалуй, построение математической модели – наиболее сложная часть линейного программирования, требующая перевода рассматриваемой задачи в систему переменных величин, уравнений и неравенств – процесс, в конечном итоге зависящий от навыков, опыта, способностей и интуиции составителя модели.

Рассмотрим пример построения математической модели линейного программирования

Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно.

Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.

Рис. 1. Использование и предоставление ресурсов

Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.

Линейная модель может быть построена в четыре этапа.

Этап 1. Определение переменных

Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:

Z =    суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.

Существует ряд неизвестных искомых переменных (обозначим их х1, х2, х3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:

х1 = количество единиц продукта А, произведенных в следующем месяце.

х2 = количество единиц продукта В, произведенных в следующем месяце.

Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.

Этап. 2. Построение целевой функции

Целевая функция – это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х1, х2… в виде линейного уравнения.

В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х1 единиц продукта А, маржинальная прибыль составит 2500 * х1. Аналогично маржинальная прибыль от изготовления х2 единиц продукта В составит 3500 * х2. Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х1 единиц продукта А и х2 единиц продукта В, то есть, целевая переменная Z составит:

Z = 2500 * х1 + 3500 *х2

Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:

Максимизировать Z = 2500 * х1 + 3500 *х2

Этап. 3. Определение ограничений

Ограничения – это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».

В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х1 их2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х1, единиц, то будет потрачено З * х1, часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х2 продуктов, то потребуется 10 * х2 часов. Таким образом, общий объем машинного времени, необходимого для производства х1 единиц продукта А и х2 единиц продукта В, составляет 3 * х1 + 10 * х2. Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:

3 * х1 + 10 * х2 ≤ 330

Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:

16 * х1 + 4 * х2 ≤ 400

6 * х1 + 6 * х2 ≤ 240

Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В:

х2 ≥ 12

Этап 4. Запись условий неотрицательности

Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х1 ≥ 0 и х2 ≥ 0. В нашем примере второе условия является избыточным, так как выше было определено, что х2 не может быть меньше 12.

Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:

Максимизировать:    Z = 2500 * х1 + 3500 *х2

При условии, что:       3 * х1 + 10 * х2 ≤ 330

16 * х1 + 4 * х2 ≤ 400

6 * х1 + 6 * х2 ≤ 240

х2 ≥ 12

х1 ≥ 0

Рассмотрим графический метод решения задачи линейного программирования.

Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.

Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.

Рис. 2. Оси графика линейного программирования

Рассмотрим, например, первое ограничение: 3 * х1 + 10 * х2 ≤ 330. Это неравенство описывает область, лежащую ниже прямой: 3 * х1 + 10 * х2 = 330. Эта прямая пересекает ось х1 при значении х2 = 0, то есть уравнение выглядит так: 3 * х1 + 10 * 0 = 330, а его решение: х1 = 330 / 3 = 110

Аналогично вычисляем точки пересечения с осями х1 и х2 для всех условий-ограничений:

Область допустимых значений Граница допустимых значений Пересечение с осью х1 Пересечение с осью х2
3 * х1 + 10 * х2 ≤ 330 3 * х1 + 10 * х2 = 330 х1 = 110; х2 = 0 х1 = 0; х2 = 33
16 * х1 + 4 * х2 ≤ 400 16 * х1 + 4 * х2 = 400 х1 = 25; х2 = 0 х1 = 0; х2 = 100
6 * х1 + 6 * х2 ≤ 240 6 * х1 + 6 * х2 = 240 х1 = 40; х2 = 0 х1 = 0; х2 = 40
х2 ≥ 12 х2 = 12 не пересекает; идет параллельно оси х1 х1 = 0; х2 = 12

Графически первое ограничение отражено на рис. 3.

Рис. 3. Построение области допустимых решений для первого ограничения

Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.

Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х1 и х2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.

Рис. 4. Область допустимых решений для модели в целом

Теперь в области допустимых решений необходимо определить значения х1 и х2, которые максимизируют Z. Для этого в уравнении целевой функции:

Z = 2500 * х1 + 3500 *х2

разделим (или умножим) коэффициенты перед х1 и х2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон – от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):

Z = 25х1 + 35х2

затем присвоим Z значение равное произведению коэффициентов перед х1 и х2 (25 * 35 = 875):

875 = 25х1 + 35х2

и, наконец, найдем точки пересечения прямой с осями х1 и х2:

Уравнение целевой функции Пересечение с осью х1 Пересечение с осью х2
875 = 25х1 + 35х2 х1 = 35; х2 = 0 х1 = 0; х2 = 25

Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):

Рис. 5. Нанесение целевой функции (черная пунктирная линия) на область допустимых решений

Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х1 и х2, которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С (рис. 6).

Рис. 6. Линия целевой функции достигла максимума в пределах области допустимых решений (в точке С)

Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию – все, что необходимо, это определить значения х1 и х2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х1 и х2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная – при решении задачи минимизации.

Определим, например значения х1 и х2 в точке С. Заметим, что точка С находится на пересечении линий: 3х1 + 10х2 = 330 и 6х1 + 6х2 = 240. Решение этой системы уравнений дает: х1 = 10, х2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:

Точка Значение х1 Значение х2 Z = 2500х1 + 3500х2
А 22 12 97 000
В 20 20 120 000
С 10 30 130 000
D 0 33 115 500
E 0 12 42 000

Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.

Кратко суть графического метода решения задач линейного программирования можно изложить следующим образом:

  1. Начертите на графике две оси, представляющие собою два параметра решения; нарисуйте только I-й квадрант.
  2. Определите координаты точек пересечения всех граничных условий с осями, подставляя в уравнения граничных условий поочередно значения х1 = 0 и х2 = 0.
  3. Нанести линии ограничений модели на график.
  4. Определите на графике область (называемую допустимой областью принятия решения), которая соответствует всем ограничениям. Если такая область отсутствует, значит, модель не имеет решения.
  5. Определите значения искомых переменных в крайних точках области принятия решения, и в каждом случае рассчитайте соответствующее значение целевой переменной Z.
  6. Для задач максимизации решение – точка, в которой Z максимально, для задач минимизации, решение – точка, в которой Z минимально.

[1] Настоящая заметка написана по материалам CIMA.

[2] См., например, здесь.

Понравилась статья? Поделить с друзьями:
  • Как найти перегрузку парашютиста
  • Как найти угол зная котангенс угла
  • Как составить графики по дате рождения
  • Как составить объявление по наращиванию ресниц
  • Как составить план рекламной кампании