Как найти массу одного фотона

Условие задачи:

Найти массу фотона излучения с длиной волны 1 мкм.

Задача №11.1.14 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(lambda=1) мкм, (m-?)

Решение задачи:

Согласно формуле Планка, энергия фотона (E) пропорциональна частоте колебаний (nu) и определяется следующим образом:

[E = hnu;;;;(1)]

В этой формуле (h) – это постоянная Планка, равная 6,62·10-34 Дж·с.

Известно, что частоту колебаний (nu) можно выразить через скорость света (c), которая равна 3·108 м/с, и длину волны (lambda) по следующей формуле:

[nu = frac{c}{lambda };;;;(2)]

Подставим выражение (2) в формулу (1), тогда получим:

[E = frac{{hc}}{lambda };;;;(3)]

Так известен тот факт, что энергия фотона (E) связана с массой (m) по такой формуле:

[E = m{c^2};;;;(4)]

Приравняем (3) и (4), тогда:

[frac{{hc}}{lambda } = m{c^2}]

[frac{h}{lambda } = mc]

Из этого равенства выразим массу фотона (m):

[m = frac{h}{{lambda c}}]

Задача решена в общем виде, посчитаем численный ответ:

[m = frac{{6,62 cdot {{10}^{ – 34}}}}{{{{10}^{ – 6}} cdot 3 cdot {{10}^8}}} = 2,21 cdot {10^{ – 36}};кг]

Ответ: 2,21·10-36 кг.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

11.1.13 Какой массой обладает фотон с длиной волны 0,6 мкм?
11.1.15 Определить импульс фотона, соответствующего рентгеновскому излучению с частотой
11.1.16 С какой скоростью должен двигаться электрон, чтобы его импульс был равен

Фотон

Фотон — это частица света или квант света; частица с которой можно делать расчёты.

Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).

В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.

Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).

Формулы фотона

Эти формулы являются наиболее важными.

Формула энергии кванта/фотона (формула Планка или Энергия кванта)

Энергия — это постоянная Планка, умноженная на частоту колебаний

Формула энергии кванта/фотона формула Планка или Энергия кванта E=h.v

E = h×v

Где:

  • E — энергия фотона/кванта (в Дж – джоуль),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц).

Масса фотона

Масса фотона формула m = hv/c² = h/cλ

m = hv/c² = h/cλ

Где:

  • m — масса фотона (в кг),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Примечание:

Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).

Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).

Импульс фотона

Импульс фотона формула p=hv/c=h/λ

p = hv/c = h/λ

Где:

  • p — импульс фотона (в Н•с – ньютон-секунда),
  • h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
  • ν — частота колебаний света (в Гц – герц),
  • c = 3.10^8 (это скорость света в м/с),
  • λ — длина световой волны (в метрах).

Длина волны света, период и частота

Это ещё одно соотношение, которое может быть полезным в расчётах.

Длина волны света, период и частота λ = cT = c/v

λ = cT = c/v

Где:

  • λ — длина световой волны (в метрах),
  • c = 3.10^8 (это скорость света в м/с),
  • T — период световых колебаний (в секундах),
  • ν — частота колебаний света (в Гц – герц).

Пример решения задачи с данными формулами

Определите энергию фотонов красного (λк = 0,76 мкм) света.

Известно:

λк = 0,76 мкм = 0,76 × 10^(–6) м

Решение:

Формула энергии фотонов: E = h×v

Где:

h — постоянная Планка,

v — частота света; из равенства λ = c/v выходит, что v = с/λ.

Таким образом, составляем равенство:

E = h × (с/λ) = hc / λ

Вспоминаем другие данные:

c = 3.10^8 (это скорость света в м/с)

h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)

E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж

Фотон является волной?

Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.

Так он доказал, что:

  • свет — это поток фотонов,
  • энергия этих фотонов — это высота их частоты колебаний,
  • интенсивность света соответствует количеству фотонов.

Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.

Узнайте также про:

  • Нейтрино
  • Теорию относительности
  • Магнитную индукцию
  • Полимер
  • Теорию струн

Масса фотона — это масса элементарной частицы (фотона), квант электромагнитного излучения (в узком смысле — света). Это частица, способная существовать и иметь массу только двигаясь со скоростью света.

 Large m=frac{hnu  }{c^2}=frac{h}{clambda }=frac{homega }{2pi c^2}


Масса фотона

Фотон не может иметь массу покоя, она будет равняться нулю. Фотон обладает массу, когда он двигается со скорость света.

Так же фотон имеет:

Энергия фотона:  LARGE E=frac{hnu  }{c^2}=frac{h}{clambda }=frac{homega }{2pi c^2}

Импульс фотона: LARGE p=frac{hv}{c}=frac{h}{lambda }

В Формуле мы использовали :

 m — Масса фотона

E — Энергия фотона

h = 6,6*10^{-34} — Постоянная Планка

nu — Частота волны

 c= 3*10^8 — Скорость света в вакууме

lambda — Длина волны


Масса фотона

Масса фотона выводится из формулы E=mc2.

Если

m масса фотона, кг
h постоянная Планка, 6,626176 × 10-34 Дж × с
ν частота излучения, Гц
λ длина волны излучения, м
c скорость света в вакууме, м/с

то

используя одновременно формулы Энергия кванта и Уравнение Эйнштейна, получаем hν = mc2.
Отсюда

[ m = frac{hν}{c^2} ]

Поскольку с = λν, имеем

[ m = frac{h}{cλ}]

Фотоны всегда движутся со скоростью света.
Они не существуют в состоянии покоя,
Масса покоя фотонов равна нулю.

Масса фотона

стр. 730

Фотоны

  • Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

  • Энергия фотона

  • Импульс фотона

  • Давление света

  • Двойственная природа света

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.

к оглавлению ▴

Энергия фотона

Выражение для энергии фотона с частотой nu мы уже знаем:

E = h nu. (1)

Часто бывает удобно работать не с обычной частотой nu, а с циклической частотой omega = 2 pi nu.

Тогда вводят другую постоянную Планка «аш с чертой»:

h^{mkern -14mu -} = frac{displaystyle h}{displaystyle 2 pi vphantom{1^a}} = 1,05 cdot 10^{-34}  Дж · с.

Выражение (1) для энергии фотона примет вид:

E = h^{mkern -14mu -} omega.

Фотон движется в вакууме со скоростью света c и потому является релятивистской частицей: описывая фотон, мы должны привлекать формулы теории относительности. А там имеется такая формула для энергии тела массы m, движущегося со скоростью v:

E = frac{displaystyle mc^2}{displaystyle sqrt{1 - frac{displaystyle v^2}{displaystyle c^2vphantom{1^a}}} vphantom{1^a}}. (2)

Если предположить, что m neq 0, то формула (2) приводит к бессмысленному заключению: энергия фотона должна быть бесконечной. Чтобы избежать этого противоречия, остаётся признать, что масса фотона равна нулю. Формула (2) позволяет сделать и более общий вывод: только безмассовая частица может двигаться со скоростью света.

к оглавлению ▴

Импульс фотона

Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:

E^2 = p^2c^2 + m^2c^4. (3)

Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:

E = pc.

Отсюда для импульса фотона получаем:

p = frac{displaystyle E}{displaystyle cvphantom{1^a}} = frac{displaystyle h nu}{displaystyle cvphantom{1^a}}. (4)

Направление импульса фотона совпадает с направлением светового луча.

Учитывая, что отношение c/ nu есть длина волны lambda, формулу (4) можно переписать так:

p =frac{displaystyle h}{displaystyle lambda vphantom{1^a}}. (5)

В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.

к оглавлению ▴

Давление света

Свет оказывает давление на освещаемую поверхность. Такой вывод был сделан Максвеллом из теоретических соображений и получил экспериментальное подтверждение в знаменитых опытах П.Н. Лебедева. Если понимать
свет как поток фотонов, обладающих импульсом , то можно легко объяснить давление света и вывести формулу Максвелла.

Предположим, что на некоторое тело падает свет частоты nu. Лучи направлены перпендикулярно поверхности тела; площадь освещаемой поверхности равна S (рис. 1).

Рич. 1. Давление света

Пусть n — концентрация фотонов падающего света, то есть число фотонов в единице объёма.

За время t на нашу поверхность попадают фотоны, находящиеся внутри цилиндра высотой ct.

Их число равно:

N = nV = nSct.

При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть rкоэффициент отражения света; величина r < 1 показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина 1 - r — это доля падающей энергии, поглощаемая телом.

Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа N) отразится от поверхности, а какое — поглотится ею:

N_{o} = rN,   N_{n} = (1 - r)N.

Импульс каждого падающего фотона равен p = h nu/c. Поглощённый фотон испытывает неупругое столкновение с телом и передаёт ему импульс p. Отражённый фотон после упругого столкновения меняет направление своего импульса на противоположное, и поэтому импульс, переданный телу отражённым фотоном, равен 2p.

Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.

Суммарный импульс, полученный телом от N падающих фотонов, равен:

P = 2p cdot N_o + p cdot N_n = 2prN + p(1 - r)N = (1 + r)pN.

На нашу поверхность S действует сила F, равная импульсу, полученному телом в единицу времени:

F = frac{displaystyle P}{displaystyle t vphantom{1^a}} = (1 + r)p frac{displaystyle N}{displaystyle tvphantom{1^a}} = (1 + r)  frac{displaystyle h nu}{displaystyle cvphantom{1^a}}  frac{displaystyle nSct}{displaystyle tvphantom{1^a}} = (1 + r)h nu nS.

Давление света есть отношение этой силы к площади освещаемой поверхности:

p_{CB} = frac{displaystyle F}{displaystyle Svphantom{1^a}} = (1 + r)h nu n. (6)

Выражение h nu n имеет простой физический смысл: будучи произведением энергии фотона на число фотонов в единице объёма, оно равно энергии света в единице объёма, то есть объёмной плотности энергии w. Тогда соотношение (6) приобретает вид:

p_{CB} = (1 + r)w.

Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.

к оглавлению ▴

Двойственная природа света

В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.

1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.

Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.

2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.

Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.

Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.

Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.

Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.

О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Фотоны» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти расстояние мед
  • Как найти переименовавшую папку
  • Золото как его найти на урале
  • Как исправить некрасивую стрижку каре
  • Дневник ру как найти друзей