Как найти массу спутника планеты

Закон всемирного тяготения. Движение планет и спутников

 Закон всемирного тяготения

Со­об­ра­же­ния Нью­то­на со­сто­я­ли в сле­ду­ю­щем.

— Если сила при­тя­же­ния тела к Земле про­пор­ци­о­наль­на массе тела Fтяг = mg, а каж­дой силе дей­ствия есть сила про­ти­во­дей­ствия F1,2 = F2,1 и если тело при­тя­ги­ва­ет­ся к Земле, то и Земля при­тя­ги­ва­ет­ся к телу. Тогда сила тя­го­те­ния долж­на быть про­пор­ци­о­наль­на как массе од­но­го тела, так и массе вто­ро­го тела Fтяг ~ m1m2, то есть сила тя­го­те­ния про­пор­ци­о­наль­на про­из­ве­де­нию масс, вза­и­мо­дей­ству­ю­щих тел.

— Нью­тон за­ме­тил, что уско­ре­ние на пла­не­те Земля, уско­ре­ние сво­бод­но­го па­де­ния

g = Fтяг / m – это при­мер­но 10 м/с2, а уско­ре­ние, с ко­то­рым дви­жет­ся Луна по своей ор­би­те ал = Fтяг / Мл = g / 3600, – это цен­тро­стре­ми­тель­ное уско­ре­ние, в 3600 раз мень­ше уско­ре­ния сво­бод­но­го па­де­ния. Нью­тон до­га­дал­ся, по­че­му такая раз­ни­ца в чис­лах: дело в том, что рас­сто­я­ние от Земли до Луны со­став­ля­ет при­мер­но ше­сть­де­сят зем­ных ра­ди­у­сов rз ≈ 60Rз. Их, а также уско­ре­ние 3600 Нью­тон объ­еди­нил сле­ду­ю­щим вы­во­дом: сила тя­го­те­ния об­рат­но про­пор­ци­о­наль­на квад­ра­ту рас­сто­я­ния между вза­и­мо­дей­ству­ю­щи­ми те­ла­ми Fтяг ~ 1 / r2.

Учи­ты­вая эти два по­сы­ла, Нью­тон дал общую фор­му­ли­ров­ку: сила все­мир­но­го тя­го­те­ния прямо про­пор­ци­о­наль­на мас­сам вза­и­мо­дей­ству­ю­щих тел и об­рат­но про­пор­ци­о­наль­на квад­ра­ту рас­сто­я­ния между ними.

  = γ (-)

γ – ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти (гамма), а на­прав­ле­ние силы – это сила при­тя­же­ния друг к другу, и на­прав­ле­ние в этой фор­му­ле да­ет­ся сле­ду­ю­щим об­ра­зом: это еди­нич­ный век­тор, при­ве­ден­ный из пер­во­го тела ко вто­ро­му, то есть от­но­ше­ние са­мо­го век­то­ра к его мо­ду­лю. Знак минус озна­ча­ет, что сила тя­го­те­ния на­прав­ле­на не от пер­во­го тела ко вто­ро­му, а от вто­ро­го тела к пер­во­му.

Ко­эф­фи­ци­ент про­пор­ци­о­наль­но­сти из­ме­рил Ка­вен­диш в своем экс­пе­ри­мен­те:

γ = G = 6,62 · 10-11 Нм2 / кг2

Из за­ко­на все­мир­но­го тя­го­те­ния сле­ду­ют фор­му­лы уско­ре­ния сво­бод­но­го па­де­ния:

1. Уско­ре­ние сво­бод­но­го па­де­ния у по­верх­но­сти пла­не­ты:

g0 = Fтяг / m = γmМз / R2з · m = γ · Мз / R2з.

Зная уско­ре­ние на пла­не­те Земля, ра­ди­ус Земли, зна­че­ние гра­ви­та­ци­он­ной по­сто­ян­ной, можно при необ­хо­ди­мо­сти вы­чис­лить массу Земли.

2. Уско­ре­ние сво­бод­но­го па­де­ния на ка­ком-то рас­сто­я­нии h от по­верх­но­сти пла­не­ты:

gh = γ· Мз / (Rз + h)2 = (γ · Мз / R2з) · R2з / (Rз + h)2.

Так как в такой форме ее труд­но при­ме­нить, то поль­зу­ют­ся при­ве­ден­ной фор­му­лой:

gh = g0 · (Rз / Rз + h)2

3. Уско­ре­ние сво­бод­но­го па­де­ния на глу­бине: gh = g0 · (Rз — h / Rз).

На ос­но­ве за­ко­на все­мир­но­го тя­го­те­ния можно рас­счи­тать ско­рость спут­ни­ков пла­нет (рис. 1).

При­мер рас­че­та ско­ро­сти спут­ни­ка

Рис. 1. При­мер рас­че­та ско­ро­сти спут­ни­ка

m ┴  => gh =  ; g0 = ; Vh =  

при h <<  Vh =  ≈ 7,9 км/с

В этом слу­чае сила при­тя­же­ния будет пер­пен­ди­ку­ляр­на ско­ро­сти спут­ни­ка при дви­же­нии по кру­го­вой ор­би­те, она вы­зы­ва­ет цен­тро­стре­ми­тель­ное дви­же­ние. Зная уско­ре­ние сво­бод­но­го па­де­ния на вы­со­те h, по­лу­ча­ем фор­му­лу ско­ро­сти спут­ни­ка на вы­со­те h. Оче­вид­но, что с ро­стом вы­со­ты ско­рость будет умень­шать­ся, а у самой по­верх­но­сти Земли при очень малых h по срав­не­нию с ра­ди­у­сом Земли при­ме­ня­ет­ся упро­ще­ние. То есть h пре­не­бре­га­ют, вно­сят ра­ди­ус Земли под ко­рень, про­из­во­дят со­кра­ще­ния и по­лу­ча­ют фор­му­лу пер­вой кос­ми­че­ской ско­ро­сти, ко­то­рая равна 7,9 км/с. При такой ско­ро­сти спут­ник неда­ле­ко от по­верх­но­сти Земли может дви­гать­ся по кру­го­вой ор­би­те.

 Пример решения задачи 1

У по­верх­но­сти Луны на кос­мо­нав­та дей­ству­ет сила тя­го­те­ния 120 Н. Какая сила тя­го­те­ния дей­ству­ет со сто­ро­ны Луны на того же кос­мо­нав­та в кос­ми­че­ском ко­раб­ле, дви­жу­щем­ся по кру­го­вой ор­би­те во­круг Луны на рас­сто­я­нии трех лун­ных ра­ди­у­сов от ее цен­тра?

1. 0 Н; 2. 39 Н; 3. 21 Н; 4. 13 Н.

За­пи­шем крат­кое усло­вие за­да­чи и рас­смот­рим ре­ше­ние:

Какая сила тя­го­те­ния дей­ству­ет со сто­ро­ны Луны на того же кос­мо­нав­та в кос­ми­че­ском ко­раб­ле

Ответ: ва­ри­ант 4. 13 Н.

 Пример решения задачи 2

Два тела мас­сой по 1000 тонн уда­ле­ны на 0,1 км друг от друга. Найти силу их гра­ви­та­ци­он­но­го при­тя­же­ния.

1. 6,7 мН; 2. 0,67 Н; 3. 6,7 Н; 4. 6,7 кН.

За­пи­сы­ва­ем крат­кое усло­вие за­да­чи, пе­ре­во­дя тонны в ки­ло­грам­мы, рас­сто­я­ние в метры, и ре­ше­ние.

Пример решения задачи 2 айти силу их гра­ви­та­ци­он­но­го при­тя­же­ния

Ответ: ва­ри­ант 1. 6,7 мН.

При­ме­няя закон все­мир­но­го тя­го­те­ния, мы по­лу­ча­ем пра­виль­ный ответ 1.

 Пример решения задачи 3

Чему равна ско­рость спут­ни­ка Земли на кру­го­вой ор­би­те на вы­со­те 500 км от ее по­верх­но­сти? Ра­ди­ус Земли при­нять рав­ным 6400 км.

1. 7,6 км/с; 2. 7,8 км/с; 3. 7,9 км/с; 4. 8,2 км/с.

За­пи­сы­ва­ем крат­кое усло­вие за­да­чи и вы­чис­ле­ния.

Чему равна ско­рость спут­ни­ка Земли на кру­го­вой ор­би­те на вы­со­те 500 км от ее по­верх­но­сти

Ответ: ва­ри­ант 1. 7,6 км/с.

Ис­поль­зуя фор­му­лу спут­ни­ка на вы­со­те, мы вно­сим ра­ди­ус пла­не­ты под знак ра­ди­ка­ла и раз­би­ва­ем его на два мно­жи­те­ля. У нас под кор­нем по­лу­чи­лась пер­вая кос­ми­че­ская ско­рость, ко­то­рую мы можем вы­не­сти за знак ра­ди­ка­ла и, под­ста­вив зна­че­ния, по­лу­чим, что ско­рость будет равна 7,6 км/с – это со­от­вет­ству­ет 1 от­ве­ту.

 Движение планет и спутников

На ос­но­ве за­ко­на все­мир­но­го тя­го­те­ния рас­счи­ты­ва­ют пе­ри­од об­ра­ще­ния спут­ни­ков, как есте­ствен­ных, так и ис­кус­ствен­ных. Зная пе­ри­од об­ра­ще­ния, мы можем найти массу спут­ни­ков. Пе­ри­од об­ра­ще­ния на­хо­дит­ся по фор­му­ле: Т = 2πR / V, то есть длина окруж­но­сти, де­лен­ная на ско­рость по ор­би­те. При малых вы­со­тах по срав­не­нию с ра­ди­у­сом Земли для вы­чис­ле­ния ско­ро­сти спут­ни­ка, ко­то­рый летит неда­ле­ко от по­верх­но­сти Земли, пе­ри­од мы на­хо­дим по фор­му­ле:

То =  = 2π

Пом­ним о том, что в чис­ли­те­ле у нас длина эк­ва­то­ра, а в зна­ме­на­те­ле пер­вая кос­ми­че­ская ско­рость. Про­из­ве­дя рас­че­ты мы по­лу­чим, что То ≈ 5060 с ≈ 1 ч 24 мин = 1,4 ч – это время, за ко­то­рое ис­кус­ствен­ный спут­ник Земли, дви­га­ю­щий­ся неда­ле­ко от по­верх­но­сти, со­вер­ша­ет пол­ный обо­рот. Если спут­ник летит по ор­би­те, вы­со­та ко­то­рой со­из­ме­ри­ма с ра­ди­у­сом Земли, мы поль­зу­ем­ся фор­му­лой:

Тh =  = 2π  = То ( )3/2

Эту фор­му­лу мы по­лу­чи­ли, внеся (R + h) под знак ра­ди­ка­ла и ис­поль­зуя уже по­лу­чен­ное зна­че­ние То.

Рас­смот­рим за­да­чу, по ко­то­рой была вы­чис­ле­на масса Солн­ца.

Ра­ди­ус зем­ной ор­би­ты со­став­ля­ет 1,5 · 1011 м. Чему равна масса Солн­ца?

Обыч­но эта за­да­ча вы­зы­ва­ет за­труд­не­ние, так как дан всего лишь один па­ра­метр, но нужно пом­нить, что Земля во­круг Солн­ца со­вер­ша­ет один обо­рот за 365 дней, в сут­ках у нас 24 часа и в каж­дом часе 3600 се­кунд, так что нам из­ве­стен пе­ри­од об­ра­ще­ния Земли как спут­ни­ка Солн­ца. По­это­му за­пи­сы­ва­ем крат­кое усло­вие за­да­чи и ре­ше­ние.

Движение планет и спутников

Ответ: 2·1030 кг.

Сила, с ко­то­рой Земля при­тя­ги­ва­ет­ся к Солн­цу, при­во­дит к цен­тро­стре­ми­тель­но­му уско­ре­нию, по­это­му при­ме­ня­ем фор­му­лу, ко­то­рая вы­ра­жа­ет­ся через пе­ри­од об­ра­ще­ния. С дру­гой сто­ро­ны, это сила тя­го­те­ния, и по за­ко­ну все­мир­но­го тя­го­те­ния вы­ра­жа­ет­ся через гра­ви­та­ци­он­ную по­сто­ян­ную, массу Земли и массу Солн­ца, де­лен­ные на квад­рат рас­сто­я­ния между ними. Со­кра­ща­ем массу Земли в двух по­след­них чле­нах этого ра­вен­ства, неиз­вест­ным оста­ет­ся толь­ко масса Солн­ца, ко­то­рую мы можем вы­чис­лить, под­став­ляя все дан­ные.

Рас­смот­рим еще одну за­да­чу.

В ре­зуль­та­те пе­ре­хо­да с одной кру­го­вой ор­би­ты на дру­гую цен­тро­стре­ми­тель­ное уско­ре­ние спут­ни­ка Земли умень­ша­ет­ся. Как из­ме­ня­ют­ся в ре­зуль­та­те этого пе­ре­хо­да ра­ди­ус ор­би­ты спут­ни­ка, ско­рость его дви­же­ния по ор­би­те и пе­ри­од об­ра­ще­ния во­круг Земли? Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

1. уве­ли­чи­лась; 2. умень­ши­лась; 3. не из­ме­ни­лась.

При ре­ше­нии задач с вы­бо­ром от­ве­та необ­хо­ди­мо перед ре­ше­ни­ем вы­пи­сать фор­му­лы ве­ли­чин, ко­то­рые фи­гу­ри­ру­ют в усло­вии за­да­чи. Ска­за­но о том, что цен­тро­стре­ми­тель­ное уско­ре­ние умень­ши­лось, а цен­тро­стре­ми­тель­ное уско­ре­ние спут­ни­ка есть не что иное, как уско­ре­ние сво­бод­но­го па­де­ния на его ор­би­те: gh = g0 · (Rз / Rз + h)2, если g умень­ши­лось, зна­чит, h уве­ли­чи­лось.

Ско­рость спут­ни­ка на ор­би­те, на­хо­дя­ще­го­ся на вы­со­те, – Vh =  , если h уве­ли­чи­ва­ет­ся, то ско­рость умень­ша­ет­ся.

Фор­му­лу для пе­ри­о­да об­ра­ще­ния при­ме­ня­ем Тh = То ()3/2, по ко­то­рой видно без вы­чис­ле­ний, что про­изо­шли из­ме­не­ния.

Ответ: в ре­зуль­та­те пе­ре­хо­да ра­ди­ус ор­би­ты спут­ни­ка уве­ли­чил­ся, ско­рость его дви­же­ния по ор­би­те умень­ши­лась, пе­ри­од об­ра­ще­ния во­круг Земли уве­ли­чил­ся.

 Заключение

На­ли­чие все­мир­но­го тя­го­те­ния объ­яс­ня­ет устой­чи­вость Сол­неч­ной си­сте­мы, дви­же­ние пла­нет и дру­гих небес­ных тел. С от­кры­ти­ем за­ко­на все­мир­но­го тя­го­те­ния к людям при­шло по­ни­ма­ние прин­ци­па стро­е­ния все­лен­ной. Яр­чай­шим при­ме­ром при­ме­не­ния за­ко­на все­мир­но­го тя­го­те­ния яв­ля­ет­ся за­пуск ис­кус­ствен­но­го спут­ни­ка Земли. Спут­ник все время на­хо­дит­ся на рав­ном рас­сто­я­нии над по­верх­но­стью Земли. Земля при­тя­ги­ва­ет оди­на­ко­во во всех на­прав­ле­ни­ях.

  • Печать

Страницы: [1]   Вниз

A A A A

Тема: Как рассчитывать формулу максимальной массы спутника  (Прочитано 2317 раз)

0 Пользователей и 1 Гость просматривают эту тему.

По какой формуле можно рассчитать максимальную массу спутника который может вращаться вокруг планеты Х? Какие тогда должны быть известны данные о планете Х?
пОМОГИТЕ ПОЖАЛУЙСТА, СРОЧНО НАДО!!!!

« Последнее редактирование: 17 Июн 2009 [20:19:51] от Pluto »


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.


Записан


Если спутником планеты считаем только такие тела, центр масс которых с планетой находится внутри планеты, то необходимо знать массу планеты и ее радиус (либо массу и среднюю плотность, приняв форму планеты шарообразной). Но тогда Харон — не спутник Плутона :-)


Записан


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.

Наиболее поразительной особенностью всех этих систем является то, что все отношения масс спутниковых систем весьма близки друг к другу, несмотря на громадное различие их пространственно-временных масштабов и состава. Между ними есть и ещё одна общность – спутники располагаются не как попадя, а в определённых положениях к наибольшему по массе спутнику http://astronomij.narod.ru/zakon20.htm . Всё это можно объяснить универсальным принципом формирования всех этих систем, при котором вначале формируется главный спутник, который помогает формированию всех остальных.


Записан


Насколько я знаю, такой формулы нет. У астероидов и земноподобных планет (спутники которых образуются путем захвата или отрыва) соотношение масс может быть любым, вплоть до 1:1 (астероид Антиопа). У планет-гигантов (спутники которых образуются в основном из дисков, как планеты), должен быть верхний предел массы спутника, но он теоретически не определен (?). Эмпирические данные: Юпитер тяжелее своей спутниковой системы в 4800 раз, Сатурн в 4000, Уран в 9500, Нептун в 4800.

Речь идет о спутниках планет-гигантов. На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.Значит очень приблизительно предел определен :)


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.

Например?


Записан



Записан


Максимальная масса спутника <= массе обьекта вокруг которого вращается. Спутник ведь должен быть меньше по массе  ;)


Записан

Телескоп Алькор
Доб 150 мм в разработке


Возьмите двойные звезды, там отношение M1/M2 варируется в широких пределах. По крайней мере от 0.01 до 100.
Если звезды на ГП и одной массы то их различить не возможно, то кто из них спутник?

Возьмем пример ЧД и обычная звезда, опять отношение варируеся в пределах 0.1 — 10.
И кто из них кто?

По тому часто говорят не спутник, а компаньен.


Записан


На сайте Extrasolar visions  у некоторых экзопланет указана максимальная масса спутника.

Например?

HD  168746 B
Max Moon Mass:  < 0.0001 Earths 
233.2015 x Phobos 

HD 195019
Max Moon Mass:  0.3662 Earths 3
3.4085 x Mars 

HD 37605
Max Moon Mass:  0.0056 Earths 
2.6442 x Pluto 


Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.



Записан



Записан

«The only way to win World War III is to prevent it»-
Dwight Eisenhower.


  • Печать

Страницы: [1]   Вверх

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Содержание:

  • 1 Рассчитываем массу Земли и Луны
  • 2 Общие методики определения масс планет
  • 3 Значения масс планет Солнечной системы
  • 4 Определение масс звезд и галактик

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –

Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Тела солнечной системы, расположенные по убыванию массыСамой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,662
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,985
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Тема: Законы Кеплера. Определение масс  небесных  тел

Цель занятия: Освоить методику решения задач, используя законы движения планет.

                                                      Теоретические сведения

При решении задач неизвестное движение сравнивается с уже известным путём применения законов Кеплера и формул синодического периода обращения.

Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

Первый закон Кеплера

Второй закон Кеплера. Радиус-вектор планеты описывает в равные времена равные площади.

Второй закон Кеплера

Третий закон Кеплера. Квадраты времен обращения планет относятся как кубы больших полуосей их орбит:

Третий закон Кеплера

Для определения масс небесных тел применяют обобщённый третий закон Кеплера с учётом сил всемирного тяготения:

Обобщённый третий закон Кеплера,

где М1 и М2 -массы каких-либо небесных тел, а m1 и m2 — соответственно массы их спутников.

Обобщённый третий закон  Кеплера применим и к другим системам, например, к движению планеты вокруг Солнца и спутника вокруг планеты. Для этого сравнивают движение Луны вокруг Земли с движением спутника вокруг той планеты, массу которой определяют, и при этом массами спутников в сравнении с массой центрального тела пренебрегают. При этом в исходной формуле индекс надо отнести к движению Луны вокруг Земли массой , а индекс 2 –к движению любого спутника вокруг планеты массой . Тогда масса планеты вычисляется по формуле:

Обобщённый третий закон Кеплера,

где Тл и αл— период и большая полуось орбиты спутника планеты , М⊕ -масса Земли.

Формулы, определяющие соотношение между сидерическим (звёздным) Т и синодическим периодами S планеты и периодом обращения Земли , выраженными в годах или сутках,

а) для внешней планеты формула имеет вид:

б) для внутренней планеты:

Выполнение работы

Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Задание 5. Марс дальше от Солнца, чем Земля, в 1.5 раза. Какова продолжительность года на Марсе? Орбиты планет считать круговыми.

Задание 6. Синодический период планеты 500 суток. Определите большую полуось её орбиты и звёздный (сидерический) период обращения.

Задание 7.  Определить период обращения астероида Белоруссия если большая полуось его орбиты    а=2,4 а.е.

Задание 8. Звёздный период обращения Юпитера вокруг Солнца Т=12 лет. Каково среднее расстояние от Юпитера до Солнца?

Примеры решения задач 1-4

Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

 За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?

Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км

Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?

Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Понравилась статья? Поделить с друзьями:
  • Как найти мои подписки в инстаграм
  • Как найти бункер братство стали
  • Как найти альтернативные издержки увеличения производства
  • На флешке повреждены файлы в одной папке как исправить
  • Как найти короче маму