Как найти массу тела погруженного в воду

Предположим на дне водоема находится некий объект, который нам необходимо поднять на поверхность. Для расчета толщины металлического троса необходимо знать массу этого объекта. Как можно измерить массу объекта находящегося на дне водоема?

Измерить массу тела находящегося на дне водоёма нельзя, её можно только рассчитать. Для этого надо опустить на дно водолаза или батискаф,определить форму тела и произвести измерения его размеров, отрезать небольшой кусок тела, поднять его на поверхность и определить его плотность ρ в кг/дм3, подсчитать, исходя из размеров и формы, объём тела V в дм3. Тогда массу тела m можно рассчитать по формуле m=ρ*V кг.

автор вопроса выбрал этот ответ лучшим

Sachi­shin
[6.1K]

7 лет назад 

Массу можно найти по закону Архимеда. F=ρgV. V- объём вытесняемой жидкости,ρ — ее плотность. откуда находим массу вытесненной жидкости m=ρV. А массы вытесненной жидкости будет равна массе тела,погруженного в жидкость

RIOLI­t
[176K]

7 лет назад 

Так не бывает,- в воду падают известные предметы,- автомобиль, так его масса известна, труба- семисотка валяется, тоже- «не бином Ньютона»,( и так далее, и тому подобное…)

Груст­ный Родже­р
[396K]

7 лет назад 

Масса тела не зависит от того, погружено оно в воду или нет. От этого зависит вес. Поэтому для измерения массы надо просто вынуть тело из воды, высушить его и воспользоваться любыми подходящими весами. Лучше рычажными, а не пружинными.

Magnu­s
[97.1K]

7 лет назад 

Если бы знать, какой конкретно объект вам нужно поднять, можно было бы предложить что-то конкретное, а так…

Масса тела, погруженная в воду, равняется произведению его объема на (плотность минус единица).

Знаете ответ?

Вы замечали, что предметы в воде становятся легче? Существует много сказок и легенд, когда смекалистые герои поднимали вещи, которые на суше поднять было невозможно.

Мы знаем, что сила тяжести не изменяется, но вес тела может зависеть от множества причин. Когда тело погружается в воду, его сила тяжести не изменяется, но появляется новая сила (открытая Архимедом), которая уменьшает вес этого тела.

  1. Вес тела в воздухе: P=mg. Вес тела направлен вниз.
  2. Архимедова сила: FА=mж⋅g. Сила направлена вверх.
  3. Вес тела в жидкости: P1=P−FА=mg−mжg. Результирующая сил (1) и (2).

Тело, погружённое в жидкость, уменьшается в весе пропорционально весу вытесненной жидкости.

Пример:

определить, сколько весит в воде стеклянная пластина объёмом (1,5) дм³.

Дано Решение

V=1,5дм3=0,0015м3ρж=1000кг/м3ρт=2600кг/м3g=9,8Н/кг

________________

P1=mтg−mжgmт=ρт⋅V;mж=ρж⋅V⇒⇒P1=ρтVg−ρжVg=Vgρт−ρжP1=0,0015м3⋅9,8Н/кг⋅2600кг/м3−1000кг/м3≈24Н

Ответ: стеклянная пластина в воде весит (24) Н.

Содержание:

Гидростатическое взвешивание:

На этом принципе основан метод так называемого гидростатического взвешивания. Если в мензурку опустить деревянный брусок, то он будет плавать, но уровень воды поднимется. Объем этой воды равен объему погруженной части бруска, а ее вес — весу бруска. Зная объем и плотность воды, можно рассчитать вес воды и вес тела. Для случая, когда тело тяжелее воды, изготавливают специальный поплавок, дающий возможность телу плавать по поверхности воды.

Гидростатическое взвешивание

Гидростатическое взвешивание — это метод измерения плотности жидкости или твёрдого тела, основанный на законе Архимеда. Плотность твёрдых тел определяют методом двойного взвешивания тела: сначала в воздухе, а потом в жидкости, плотность которой известна. Если определяют плотность жидкости, то в ней взвешивают тело известной массы и объёма.

Если исследуемое сплошное твёрдое тело тонет в воде, то для выполнения задания нужен лишь лабораторный динамометр (или равноплечие весы) и сосуд с водой.

Сначала определяют вес Р исследуемого тела в воздухе: Гидростатическое взвешивание в физике - формулы и определения с примерами

Потом твёрдое тело погружают в сосуд с жидкостью, плотность которой Гидростатическое взвешивание в физике - формулы и определения с примерами известна (в случае использования дистиллированной или чистой воды Гидростатическое взвешивание в физике - формулы и определения с примерами = 1000 Гидростатическое взвешивание в физике - формулы и определения с примерами), и определяют вес тела Гидростатическое взвешивание в физике - формулы и определения с примерами в жидкости, который по закону Архимеда меньше веса тела в воздухе на значение силы Архимеда Гидростатическое взвешивание в физике - формулы и определения с примерами     Гидростатическое взвешивание в физике - формулы и определения с примерами отсюда Гидростатическое взвешивание в физике - формулы и определения с примерами, или Гидростатическое взвешивание в физике - формулы и определения с примерами.

Из этой формулы можно определить плотность жидкости, если она неизвестна, а объём тела известен:Гидростатическое взвешивание в физике - формулы и определения с примерами

Объём жидкости, вытесненной телом, равен объёму тела, но

поскольку Гидростатическое взвешивание в физике - формулы и определения с примерами то Гидростатическое взвешивание в физике - формулы и определения с примерами . Подставим это в выражение

для архимедовой силы, получим  Гидростатическое взвешивание в физике - формулы и определения с примерами , отсюда и вытекает искомая формула для определения плотности вещества твёрдого тела: Гидростатическое взвешивание в физике - формулы и определения с примерами.

Пример №1

Купаясь в реке с илистым дном, можно заметить, что ноги больше вязнут на мелких местах, чем на глубоких. Объясните, почему.

Ответ: так как на глубоких местах действует большая выталкивающая сила.

Пример №2

Определите, какая архимедова сила действует на тело объёмом

5 м3 , погружённое полностью в воду?

Дано: 

V = 5м3

Гидростатическое взвешивание в физике - формулы и определения с примерами= 9,81 Гидростатическое взвешивание в физике - формулы и определения с примерами

Гидростатическое взвешивание в физике - формулы и определения с примерами= 1000 Гидростатическое взвешивание в физике - формулы и определения с примерами

FА = 49,05 кН

FА = ?

Решение:

По формуле Гидростатическое взвешивание в физике - формулы и определения с примерами определим архимедову силу:

Гидростатическое взвешивание в физике - формулы и определения с примерами

Ответ: = 49,05 кН.

Пример №3

Нужно ли учитывать загрузку судна при переходе его из моря в реку? Догружать или разгружать нужно судно, чтобы его осадка была не глубже ватерлинии?

Ответ: при переходе судна из моря в реку нужно учитывать загрузку судна, так как плотность воды уменьшается. Судно нужно разгружать.

  • Заказать решение задач по физике

Теоретические сведения

Гидростатическое взвешивание издавна применяется для определения плотности различных веществ. Для этого используют закон Архимеда. Плотность твердых тел определяют двойным взвешиванием: сначала тело взвешивают в воздухе (при этом в большинстве случаев выталкивающей силой воздуха пренебрегают), а потом — в жидкости, плотность которой известна (например, в воде). Рассмотрим методы определения плотности.

1. Если исследуемое тело тонет в воде (его плотность рт превышает плотность воды рв), то в таком случае используют динамометр и стакан с водой.

Сначала исследуемое тело взвешивают в воздухе (рис. 120, а): Гидростатическое взвешивание в физике - формулы и определения с примерами

В этом случае архимедовой силой, действующей на тело в воздухе, можно пренебречь, так как плотность воздуха намного меньше плотности тела и воды.

Гидростатическое взвешивание в физике - формулы и определения с примерами

Потом тело опускают в стакан с водой (рис. 120, б), плотность воды известна Гидростатическое взвешивание в физике - формулы и определения с примерами В этом случае на тело, кроме сил тяжести Гидростатическое взвешивание в физике - формулы и определения с примерами и упругости пружины динамометра Гидростатическое взвешивание в физике - формулы и определения с примерами, действует сила Архимеда Гидростатическое взвешивание в физике - формулы и определения с примерами:

Гидростатическое взвешивание в физике - формулы и определения с примерами

Таким образом, 

Гидростатическое взвешивание в физике - формулы и определения с примерами

2. Для измерения плотности неизвестной жидкости можно воспользоваться также телом, которое не тонет в воде и исследуемой жидкости, например карандашом или другим телом правильной формы. Чтобы карандаш в жидкости занимал вертикальное положение, к его нижнему концу можно приколоть несколько кнопок или намотать несколько витков проволоки.

Гидростатическое взвешивание в физике - формулы и определения с примерами

Если карандаш плавает в воде (рис. 121, а), то сила тяжести Гидростатическое взвешивание в физике - формулы и определения с примерами действующая на него, равна силе Архимеда Гидростатическое взвешивание в физике - формулы и определения с примерами. В этом случае

Гидростатическое взвешивание в физике - формулы и определения с примерами

где Гидростатическое взвешивание в физике - формулы и определения с примерами — объем тела, a Гидростатическое взвешивание в физике - формулы и определения с примерамиГидростатическое взвешивание в физике - формулы и определения с примерами — объем вытесненной телом воды (объем погруженной части тела).

Если тело опустить в неизвестную жидкость (рис. 121, б), плотность которой Гидростатическое взвешивание в физике - формулы и определения с примерами, то

Гидростатическое взвешивание в физике - формулы и определения с примерами

С этого уравнения имеем

Гидростатическое взвешивание в физике - формулы и определения с примерами

Отсюда

Гидростатическое взвешивание в физике - формулы и определения с примерами

3.    Плотность неизвестной жидкости можно определить с помощью резиновой нити, тела, которое тонет в воде и неизвестной жидкости, и линейки. Последовательность действий при этом показана на рисунке 122.

Гидростатическое взвешивание в физике - формулы и определения с примерами

Длина резиновой нити (или пружины) без нагрузки Гидростатическое взвешивание в физике - формулы и определения с примерами (рис. 122, а). Если к ней прикрепить тело в воздухе (рис. 122, б), то сила тяжести Гидростатическое взвешивание в физике - формулы и определения с примерами будет равна по значению силе упругости Гидростатическое взвешивание в физике - формулы и определения с примерами возникшей в нити. Тело будет в состоянии равновесия.

Теперь, если тело опустить в воду (рис. 122, в), то на него будет действовать еще сила Архимеда:

Гидростатическое взвешивание в физике - формулы и определения с примерами

Опустим тело в жидкость, плотность которой нужно определить (рис. 122, г).

4.    Для определения плотности твердого тела или неизвестной жидкости можно использовать рычаг. Для этого нужно иметь две гирьки, плотность одной из них массой Гидростатическое взвешивание в физике - формулы и определения с примерами необходимо определить, рычаг, линейку, стаканы с водой и неизвестной жидкостью. Последовательность действий показана на рисунке 123.

Гидростатическое взвешивание в физике - формулы и определения с примерами

Для определения плотности тела используем формулу

Гидростатическое взвешивание в физике - формулы и определения с примерами

Для определения плотности неизвестной жидкости можно использовать формулу

Гидростатическое взвешивание в физике - формулы и определения с примерами

  • Воздухоплавание в физике
  • Машины и механизмы в физике
  • Коэффициент полезного действия (КПД) механизмов
  • Тепловые явления в физике
  • Барометры в физике
  • Жидкостные насосы в физике
  • Выталкивающая сила в физике
  • Условия плавания тел в физике 

На прошлом уроке мы доказали с помощью опытов существование силы, действующей на тела, погруженные в жидкость или газ — выталкивающей силы. Также мы теперь знаем, что ее можно рассчитать по формуле: $F_{выт} = gm_ж = P_ж$. Но какое еще есть значение у этой силы? На этом уроке мы более подробно рассмотрим выталкивающую силу.

Выталкивающая сила и вес тела

Как можно на опыте определить, с какой силой тело, погруженное целиком в жидкость, выталкивается из жидкости?
Давайте познакомимся с таким опытом. Он представлен на рисунке 1.

Подвесим на пружину небольшую емкость для жидкости и тело цилиндрической формы ниже. На конце пружины у нас расположена стрелка-указатель. Она отмечает растяжение пружины на штативе (рисунок 1, а). Таким образом, мы видим вес тела в воздухе.

Рисунок 1. Опыт по определению зависимости выталкивающей силы и веса погруженного тела

Теперь опустим наше тело в большой сосуд. Сосуд имеет трубку для слива и наполнен жидкостью до уровня этой трубки (рисунок 1, б).

Когда мы полностью опустим тело в сосуд, часть жидкости из него выльется через трубку для слива в стакан. Объем этой жидкости будет равен объему тела. Мы уже знаем, что на тело действует выталкивающая сила: пружина сокращается, стрелка-указатель поднимается, вес тела в жидкости становится меньше.

А теперь возьмем жидкость, которая вылилась в стакан. Зальем ее в емкость, которая также подвешена к пружине (рисунок 1, в). Теперь стрелка-указатель вернулась к своему изначальному положению.

Так чему равна эта сила? Сделаем вывод из данного опыта.

Сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.

Если провести подобный опыт с газом, а не с жидкостью, то мы получим, что сила, выталкивающая тело из газа, равна весу газа, взятого в объеме тела.

Сила Архимеда

Как называют силу, которая выталкивает тела, погруженные в жидкости и газы?
Теперь мы добавим, что эту выталкивающую силу называют архимедовой силой. Архимед (рисунок 2) — древнегреческий ученый и инженер, сделавший множество открытий и в математике, и в физике. Именно он первый обнаружил наличие выталкивающей силы и рассчитал ее значение.

Рисунок 2. Архимед (287–212 годы до н. э.) — древнегреческий ученый и инженер

Как подсчитать архимедову силу?
В прошлом уроке мы получили формулу $F_{выт} = P_ж = g m_ж$. Теперь мы будем называть эту силу архимедовой $F_A$.

Из выше рассмотренных опытов мы можем выразить массу вытесненной жидкости через ее плотность и объем тела, который эту жидкость вытеснил (они одинаковы): $m_ж = rho_ж cdot V_т$. Получим формулу для архимедовой силы.

$F_A = g rho_ж V_т$.

От чего зависит архимедова сила?

Взгляните еще раз на формулу: $F_A = g rho_ж V_т$.

Ясно видно, что архимедова сила зависит только от плотности жидкости и от объема тела, которое мы погружаем в эту жидкость.

Если мы будем погружать в одну и ту же жидкость тела разной плотности и разной формы (рисунок 3), то значение силы меняться не будет (при условии, что эти тела будут обладать одинаковым объемом).

Рисунок 3. Демонстрация равенства силы Архимеда для тел одинакового объема, погруженных в одну и ту же жидкость

Определение веса тела, погруженного в жидкость или газ

На тело, погруженное в жидкость (или в газ), действуют две силы: сила тяжести и архимедова сила. Направлены они в противоположные стороны. Вес тела в жидкости $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_A$. То есть:
$P_1 = P space − space F_A = gm space − space gm_ж$.

Если тело погружено в жидкость или газ, то его вес уменьшается на вес вытесненной им жидкости или газа.

Пример задачи

Определите выталкивающую силу, которая будет действовать на камень объемом $2.6 space м^3$, лежащий на морском дне.

Дано:
$V_т = 2.6 space м^3$
$rho_ж = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$F_A — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Сила Архимеда рассчитывается по формуле:
$F_A = g rho_ж V_т$.

Подставим численные значения величин и рассчитаем эту силу:
$F_A = 9.8 frac {Н}{кг} cdot 1030 frac{кг}{ м^3} cdot 2.6 space м^3 approx 26 244 space Н approx 26.2 space кН$.

Ответ: $F_A approx 26,2 space кН$.

Забавное дополнение: легенда об Архимеде

Архимед, великий изобретатель, шокировал своих современников гениальными открытиями. Его имя упоминается во множестве легенд, но одна из них стала наиболее известной: легенда о том, как Архимед пришел к открытию выталкивающей силы.

Царь Гиерон поручил Архимеду проверить работу мастера, который изготовил для него золотую корону.

Долгое время ученый не мог найти ответ: как определить количество некачественных примесей? Проблема заключалась в том, что определить ее объем — сложная задача. По легенде озарение настигло Архимеда, когда он принимал ванну.

Ученый заметил, что из ванны вылилась вода, когда он залез в нее. И здесь его посетила гениальная мысль. Все вы слышали его известную цитату: «Эврика! Эврика!» (в переводе означает: «Нашел!  Нашел!»).

Так Архимед победно выкрикивал свою фразу, потрясенный своим открытием, что она дошла в виде легенды и до наших времен.

Упражнения

Упражнение №1

К коромыслу весов подвешены два цилиндра одинаковой массы: свинцовый и алюминиевый (рисунок 4). Весы находятся в равновесии. Нарушится ли равновесие весов, если оба цилиндра одновременно погрузить в воду; в спирт? Ответ обоснуйте. Проверьте его на опыте. Как зависит выталкивающая сила от объема тела?

Рисунок 4. Цилиндры одинаковой массы, но изготовленные из разных материалов

Посмотреть ответ

Скрыть

Ответ:

Когда мы погрузим цилиндры в жидкость, на каждый их них будет действовать сила Архимеда. Если эти силы будут равны, то весы останутся в равновесии.

Запишем формулы архимедовой силы для каждого цилиндра.
Для свинцового цилиндра:
$F_{A1} = g rho_ж V_1$.
Для алюминиевого цилиндра:
$F_{A2} = g rho_ж V_2$.

Мы видим, что равенство этих сил зависит от объемов цилиндров. Они равны? Нет, они имеют одинаковые массы, но разные плотности. Цилиндр из алюминия будет обладать большим объемом, чем свинцовый цилиндр ($V = frac{m}{rho}$). Значит, на алюминиевый цилиндр будет действовать большая выталкивающая сила, чем на свинцовый.

Если мы проверим это на опыте, то увидим подтверждение нашим выводам (рисунок 5).

Рисунок 5. Погружение цилиндров из разных материалов в жидкости

При этом весы выйдут из равновесия в случае и с водой (рисунок 5, а), и со спиртом (рисунок 5, б). Так как мы опускаем цилиндры одновременно в один и тот же тип жидкости, значение архимедовой силы, действующей на цилиндры, будет различаться только в зависимости от объемов этих цилиндров — свинцовый перевесит алюминиевый в любой жидкости.

Заметим, что в случае погружения в воду, архимедова сила будет больше, чем в случае погружения в спирт. Это объясняется тем, что вода имеет большую плотность, чем спирт.

Упражнение №2

К коромыслу весов подвешены два алюминиевых цилиндра одинакового объема. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а другой — в спирт? Ответ обоснуйте. Зависит ли выталкивающая сила от плотности жидкости?

Посмотреть ответ

Скрыть

Ответ:

Если один цилиндр погрузить в воду, а другой — в спирт, то равновесие весов нарушится (рисунок 6). На цилиндр, находящийся в воде, будет действовать большая архимедова сила.

Рисунок 6. Зависимость величины архимедовой силы от плотности жидкости

Так происходит, потому что архимедова сила зависит от объема погруженного тела (а они у нас одинаковые: $V_1 = V_2 = V$) и от плотности жидкости:
$F_А = g rho_ж V$.
Плотность спирта ($800 frac{кг}{м^3}$) меньше плотности воды ($1000 frac{кг}{м^3}$). Значит, на цилиндр, погруженный в воду, будет действовать большая архимедова сила, чем на тот, что погружен в спирт.

Упражнение №3

Объем куска железа равен $0.1 space дм^3$. Какая выталкивающая сила будет на него действовать при полном его погружении в воду; в керосин?

Дано:
$V = 0.1 space дм^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$

СИ:
$V = 0.1 cdot 10^{-3} space м^3$

$F_{А1} — ?$
$F_{А2} — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Рассчитаем архимедову силу, которая будет действовать на кусок железа в воде:
$F_{А1} = g rho_1 V$,
$F_{А1} = 9.8 frac{Н}{кг} cdot 1000 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.98 space Н approx 1 space Н$.

Теперь рассчитаем архимедову силу, которая будет действовать на кусок железа в керосине:
$F_{А2} = g rho_2 V$,
$F_{А2} = 9.8 frac{Н}{кг} cdot 800 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.784 space Н approx 0.8 space Н$.

Ответ: $F_{А1} approx 1 space Н$, $F_{А2} approx 0.8 space Н$.

Упражнение №4

Бетонная плита объемом $2 space м^3$ погружена в воду. Какую силу необходимо приложить, чтобы удержать ее в воде; в воздухе?

Дано:
$V = 2 space м^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 1.29 frac{кг}{м^3}$
$rho_б = 2300 frac{кг}{м^3}$

$F_1 — ?$
$F_2 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Бетонная плита находится в воде. На нее действует сила тяжести и архимедова сила. Они направлены противоположно друг другу и будут иметь разные величины. Разность этих сил — и будет искомая сила $F_1$, которую нужно приложить, чтобы удержать бетонную плиту в воде (чтобы она не опускалась на дно и не всплывала):
$F_1 = F_{тяж} space − space F_{А1}$.

Сила тяжести рассчитывается по формуле:
$F_{тяж} = gm$.
Массу бетонной плиты мы можем выразить через ее плотность и объем:
$m = rho_б V$,
$F_{тяж} = g rho_б V$.

Архимедова сила, действующая на бетонную плиту в воде:
$F_{А1} = g rho_1 V$.

Подставим силу тяжести и архимедову силу в формулу и рассчитаем $F_1$:
$F_1 = F_{тяж} space − space F_{А1} = g rho_б V space − space g rho_1 V = gV cdot (rho_б space − space rho_1)$,
$F_1 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1000 frac{кг}{м^3}) = 25 space 480 space Н approx 25 space кН$.

Используем ту же формулу для того, чтобы рассчитать силу $F_2$, которую нужно приложить, чтобы удержать бетонную плиту в воздухе:
$F_2 = gV cdot (rho_б space − space rho_2)$,
$F_2 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3}) approx 45 space 054 space Н approx 45 space кН$.

Ответ: $F_1 approx 25 space кН$, $F_2 approx 45 space Н$.

Упражнение №5

Предположив, что корона царя Гиерона в воздухе весит $20 space Н$, а в воде — $18.75 space Н$, вычислите плотность вещества короны. Полагая, что к золоту было подмешано только серебро, определите, сколько в короне было золота и сколько серебра. При решении задачи плотность золота считайте равной $20 space 000 frac{кг}{м^3}$, плотность серебра — $10 space 000 frac{кг}{м^3}$. Каков был бы объем короны из чистого золота?

Дано:
$P_1 = 20 space Н$
$P_2 = 18.75 space Н$
$rho_з = 20 space 000 frac{кг}{м^3}$
$rho_с = 10 space 000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1.29 frac{кг}{м^3}$
$rho_2 = 1000 frac{кг}{м^3}$

$rho — ?$
$m_з — ?$
$m_с — ?$
$V_1 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Вес короны в воздухе $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_{A1}$. То есть:
$P_1 = P space − space F_{A1}$.

Значит, вес короны в вакууме будет равен сумме ее веса в воздухе и архимедовой силы:
$P = P_1 space + space F_{А1}$,
$gm = P_1 space + space g rho_1 V$.

Теперь запишем такое же уравнение для веса короны в воде:
$gm = P_2 space + space g rho_2 V$.

Левые части уравнений у нас равны, поэтому мы можем приравнять правые части друг к другу:
$P_1 space + space g rho_1 V = P_2 space + space g rho_2 V$.
Перенесем элементы, содержащие неизвестный объем вправо:
$P_1 space − space P_2 = g rho_2 V space − space g rho_1 V$,
$P_1 space − space P_2 = gV (rho_2 space − space rho_1)$.

Выразим отсюда объем короны и рассчитаем его:
$V = frac{P_1 space − space P_2}{g (rho_2 space − space rho_1)}$,
$V = frac{20 space Н space − space 18.75 space Н}{9.8 frac{Н}{кг} (1000 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3})} = frac{1.25}{9787} space м^3 = 12.8 cdot 10^{-5} space м^3$.

Используем одно из первых уравнений для веса короны в вакууме и в воздухе:
$gm = P_1 space + space g rho_1 V$.
Выразим отсюда массу короны и рассчитаем ее:
$m = frac{P_1 space + space g rho_1 V}{g}$,
$m = frac{20 space Н space + space 9.8 frac{Н}{кг} cdot 1.29 frac{кг}{м^3} cdot 12.8 cdot 10^{-5} space м^3}{9.8 frac{Н}{кг}} approx 2.04 space кг$.

Теперь мы знаем массу и объем короны. Рассчитаем ее плотность:
$rho = frac{m}{V}$,
$rho = frac{2.04 space кг}{12.8 cdot 10^{-5} space м^3} approx 16 space 000 frac{кг}{м^3}$.

Корона состоит из серебра и золота. Это означает, что ее общий объем мы можем записать в виде суммы объемов серебра и золота, ее составляющих:
$V = V_с space + space V_з$.
То же самое с общей массой короны:
$m = m_с space + space m_з$.

Запишем объемы через массы и плотности (а также выразим массу золота через общую массу короны и массу серебра):
$V_с = frac{m_с}{rho_с}$,
$V_з = frac{m_з}{rho_з} = frac{m space − space m_с}{rho_з}$.

Подставим эти объемы в формулу для общего объема короны и выразим из нее массу серебра:
$V = frac{m_с}{rho_с} space + space frac{m space − space m_с}{rho_з} = frac{m_с (rho_з space − space rho_с) space + space rho_с m}{rho_с rho_з} = m_с cdot frac{rho_з space − space rho_с}{rho_с rho_з} space + space frac{m}{rho_з}$,
$m_с = frac{V space − space frac{m}{rho_з}}{frac{rho_з space − space rho_с}{rho_с rho_з}} = frac{rho_с (V rho_з space − space m)}{rho_з space − space rho_с}$.

Рассчитаем массу серебра, содержащегося в короне:
$m_с = frac{10 space 000 frac{кг}{м^3} (12.8 cdot 10^{-5} space м^3 cdot 20 space 000 frac{кг}{м^3} space − space 2.04 space кг)}{20 space 000 frac{кг}{м^3} space − space 10 space 000 frac{кг}{м^3}} = frac{5200 frac{кг^2}{м^3}}{10 space 000 frac{кг}{м^3}} = 0.52 space кг$.

Теперь мы можем вычислить и количество золота в короне:
$m_з = m space − space m_с$,
$m_з = 2.04 space кг space − space 0.52 space кг = 1.52 space кг$.

Если бы вся корона была из золота, то ее объем был бы равен:
$V_1 = frac{m}{rho_з}$,
$V_1 = frac{2.04 space кг}{20 space 000 frac{кг}{м^3}} = 10.2 cdot 10^{-5} space м^3$.

Ответ: $rho approx 16 space 000 frac{кг}{м^3}$, $m_з = 1.52 space кг$, $m_с = 0.52 space кг$, $V_1 = 10.2 cdot 10^{-5} space м^3$.

Упражнение №6

По мелким камешкам ходить босыми ногами больно. Почему человек не испытывает боли, если ходит по таким же камням в воде?

Посмотреть ответ

Скрыть

Ответ:

Что означает фраза «ходить по камням»? Со стороны физики, когда мы наступаем на камни, мы давим на них своим весом: $p = frac{F}{S} = frac{P}{S}$.

Когда мы оказываемся в воде, наш вес уменьшается. Это следствие действия на нас архимедовой силы. Уменьшается вес — уменьшается и давление наших стоп на камни.

Все категории

  • Фотография и видеосъемка
  • Знания
  • Другое
  • Гороскопы, магия, гадания
  • Общество и политика
  • Образование
  • Путешествия и туризм
  • Искусство и культура
  • Города и страны
  • Строительство и ремонт
  • Работа и карьера
  • Спорт
  • Стиль и красота
  • Юридическая консультация
  • Компьютеры и интернет
  • Товары и услуги
  • Темы для взрослых
  • Семья и дом
  • Животные и растения
  • Еда и кулинария
  • Здоровье и медицина
  • Авто и мото
  • Бизнес и финансы
  • Философия, непознанное
  • Досуг и развлечения
  • Знакомства, любовь, отношения
  • Наука и техника


2

Как измерить массу тела погруженного в воду?

Предположим на дне водоема находится некий объект, который нам необходимо поднять на поверхность. Для расчета толщины металлического троса необходимо знать массу этого объекта. Как можно измерить массу объекта находящегося на дне водоема?

5 ответов:



1



0

Так не бывает,- в воду падают известные предметы,- автомобиль, так его масса известна, труба- семисотка валяется, тоже- «не бином Ньютона»,( и так далее, и тому подобное…)



1



0

Массу можно найти по закону Архимеда. F=ρgV. V- объём вытесняемой жидкости,ρ — ее плотность. откуда находим массу вытесненной жидкости m=ρV. А массы вытесненной жидкости будет равна массе тела,погруженного в жидкость



1



0

Измерить массу тела находящегося на дне водоёма нельзя, её можно только рассчитать. Для этого надо опустить на дно водолаза или батискаф,определить форму тела и произвести измерения его размеров, отрезать небольшой кусок тела, поднять его на поверхность и определить его плотность ρ в кг/дм3, подсчитать, исходя из размеров и формы, объём тела V в дм3. Тогда массу тела m можно рассчитать по формуле m=ρ*V кг.



0



0

Если бы знать, какой конкретно объект вам нужно поднять, можно было бы предложить что-то конкретное, а так…

Масса тела, погруженная в воду, равняется произведению его объема на (плотность минус единица).



0



0

Масса тела не зависит от того, погружено оно в воду или нет. От этого зависит вес. Поэтому для измерения массы надо просто вынуть тело из воды, высушить его и воспользоваться любыми подходящими весами. Лучше рычажными, а не пружинными.

Читайте также

Это гигрометр (прибор для измерения относительной влажности воздуха), чувствительным элементом которого есть волос. Принцип работы основан на свойстве волоса изменять свою длину в зависимости от уровня влажности. При повышении влажности волос становится длиннее, при понижении влажности — короче.

Конструкций волосяных гигрометров есть довольно много. Но во всех к подвижной стрелке (реже шкале) прикреплен волос, который изменяя длину двигает стрелку.

Во времена СССР выпускались комбинированные приборы, в составе которых тоже был волосяной гигрометр

Конечно можно. Для этого существуют специальные ресурсы. Их достаточно много. Например, можете воспользоваться этим: http://internet.yandex.ru/

Но следует учтывать, что скорость может зависеть от времени суток, выходного/рабочего дня, погодных условий, технических работ у провайдера.

Радиацию в скважинах не измеряют. Если есть задача определить радиоактивность подземных вод, тогда отбирается проба, сдается в лабораторию на соответствующий анализ. Есть такая вещь как радиоактивный каротаж (гамма и гамма-гамма каротаж). Эти методы используется для уточнения геологического строения, более детального расчленения разреза. Самостоятельно его не сделать, да и смысла нет.

Это конечно же ртутный столб. Измерять давление ртутным столбом первым придумал Эванджелиста Торричелли.

Эванджелиста Торричелли

Именно Торричелли первый измерил атмосферное давление и придумал ртутный барометр.

Ртутный барометр Торричелли

Нормальное атмосферное давление составляет 760 мм. рт. ст. = примерно 100 000 Па.

Я решил все усложнить. Во-первых, слона нужно погрузить полностью в бассейн. Но в таком случае он утонет! Наверное. К тому же, объем вытесненной воды не покажет реального объема слона. Слон дышит, у него легкие есть, которые воздухом заполнены, и этот объем меняется.

Можно сделать со слона слепок, изготовить форму, залить ее водой и определить объем этой воды. Сложно, опять же остается проблема внутренних пустот.

Можно измерить массу слона и разделить на среднюю плотность его же. Поскольку слон в воде не тонет, его плотность меньше единицы. Что-то около 0,95. 3-тонный слон будет иметь объем порядка 3,15 кубометра — не тонущий. Но! Человек тоже не тонет, а плотность его тела в среднем 1,036. Т.е. если из него выйдет весь воздух — потонет. Почему у слона должно быть иначе? При такой плотности 3-тонный слон занимает объем 2,9 кубометра, а 5-тонный — 4,8 кубометра.

Результат опять же приблизительный.

Понравилась статья? Поделить с друзьями:
  • Как найти айфон если нет imei
  • Как найти утечку в кондиционере сплит систему
  • Как братья отцовский клад нашли молдавская сказка
  • Как найти доктора в call of chernobyl
  • Как исправить настойчивость