Как найти массу вещества через титр

Способы выражения концентрации растворов.

Молярная концентрация См– отношение количества вещества в молях
(n) к объему раствора в
литрах:

Если вещество обозначить через Xто:

Нормальная концентрация или молярная
концентрация эквивалента С
н
– отношение количества эквивалентов
вещества к объему раствора

Молярная и нормальная концентрации
связаны между собой: См
= С
нf
или Сн = См
/
f

Титр (Т) – часто используется на
практике. Титр раствора –это масса
вещества в граммах в 1 мл раствора (г/мл).

Если Т(HNO3) = 0,006354
г/мл, то это значит, что в 1 мл раствора
содержится 0,006354 г азотной кислоты.

Титр раствора по определяемому
веществу
– это масса вещества в г,
взаимодействующая с 1 мл титранта.
Например, ТHCl/NaOHсоставляет 0,003954 г/мл, это означает, что
1 мл раствораHCl(титранта)
реагирует с 0,003954 гNaOH(определяемого вещества).

Массовая доля вещества (ω)–
отношение массы растворенного вещества
(mв-ва) к массе
раствора(mр-ра).
Массовая доля – величина безразмерная,
ее представляют либо в долях, либо в
процентах. Например, для 5%-го раствора
хлорида кальция, широко применяемого
в медицине, ω%(CaCl2)
=5% или в долях ω=0,05. И это означает, что
в 100 г раствора содержится 5 г хлорида
кальция.

ω

где ρ – плотность раствора.

Моляльная концентрация Cm– отношение количества молей растворенного
вещества к 1000 г растворителя, т.е. число
молей растворенного в-ва в 1000 г
растворителя.

Формулы для перерасчета концентраций.

(плотность (ρ) раствора дана в г/мл)

ω,%

См,
моль/л

Сн,
моль экв./л

Т, г/мл

ω,%

См,
моль/л

Сн,
моль экв./л

Т, г/мл

Приготовление рабочих растворов

Растворы
титр, которых известен, называются
титрованными. Титрованный раствор можно
приготовить, если точную навеску
растворить в мерной колбе. Например,
навеску 0,2750 г Nа24поместим в колбу на 200 мл и доведем объем
дистиллированной водой до метки, то
титр приготовленного раствора точно,
конечно, известен:

Т= 0,2750/200 =0,0013750 г/мл

Вещества,
из которых готовят растворы с известным
титром, называются исходными (стандартными
веществами). Исходные вещества должны
удовлетворять следующим требованиям:

а) они
должны быть химически чистыми (примеси
не более 0,05-0,1 %);

б) состав
должен строго соответствовать химической
формуле;

в)
устойчивы при хранении в растворе и в
твердом состоянии;

г)
величина эквивалента должна быть
наибольшей.

Раствор,
приготовленный таким образом, называется
стандартными раствором с приготовленным
титром. Способ приготовления титрованных
растворов зависит от свойств вещества
и агрегатного состояния

1. Из
веществ кристаллических х.ч. готовят
по точной навеске.

Например:
приготовить 250 мл 0,1н раствораNa2CO3,
М(Na2CO3)
= 106 г/моль. Эквивалентная масса Э(Na2CO3)
= 53 г/моль,

Необходимо:

а)
рассчитать навеску, необходимую для
приготовления раствора:

m
= CH
M(1/z Na2CO3)∙V(л)
= 0,1∙53∙0,25 = 1,325 (г)

б)
отвесить навеску на аналитических
весах,

в)
навеску количественно перенести в
мерную колбу на 250 мл, растворить в
небольшом количестве дистиллированной
воды и долить ею до метки, тщательно
перемешивая.

2.
Приготовление из фиксанала.Готовят
раствор, сразу разбивая фиксанал в
мерную колбу нужного объема, и вымывают
из фиксанала все кристаллы дистиллированной
водой и доводят раствор до метки.

3. Из
кристаллических веществ
, загрязненных,
гигроскопичных, летучих и т.д.

Необходимо
для приготовления;

а)
рассчитать навеску,

б)
отвесить ее на технических весах,
перенести в любую склянку на 250 мл,
растворить в дистиллированной воде и
долить до метки,

в)
установить точную концентрацию
приготовленного раствора по исходному
веществу (титрованному раствору).
Растворы, титр которых находят не по
точной навеске, а путем титрования
титрованным раствором, называют растворы
с установленным титром.

Примеры:

1.
Приготовить
400мл 0,05 н раствора буры
из кристаллической.

Решение:

Определить
массу навески буры, она равна:

m=
Э(Nа2В4О7∙10Н2О)∙Сн∙V(л)=190,71∙0,05∙0,4=3,81
г.

Отвешиваем
на аналитических весах навеску, переносим
в мерную колбу, тщательно растворяем и
доводим до метки 400 мл.

2.Приготовить
100 мл
0,15 н раствора из 3н раствора её.

Вопросы
к задаче: а) в каких объемах реагируют
растворы с одинаковой концентрацией?
б) какая зависимость между объемами
реагирующих веществ и нормальными
концентрациями?

Данную
задачу можно решить по формуле: Сн1∙V1= Сн2∙V2;

Сн1
и Сн2 — концентрации растворов
моль/л;V1иV2
– объемы исходного и конечного
раствора в мл,

V1= Сн2∙V2/ Сн1= 0,15 100 / 3 = 5 мл

Значит,
для приготовления 100 мл 0,15 н раствора
нужно взять 5 мл 3н раствора и довести
до метки 100 мл дистиллированной водой.

3.Приготовить
100г 14% раствора,
хлорида натрия из 22%-
го и 10%-го растворов этой соли.

Весовое
соотношение исходных растворов находим
по правилу смешения (правило креста):

10%
8 весовых частей

14%

22%
4 весовые части

Из
большего числа вычитаем меньшее: 22-14= 8
в.ч. 10%-го

14-10 = 4
в.ч. 22%-го

Получим
12 г 14% -го раствора

Дальше
рассуждаем:

на 12 г
14%-го раствора нужно 8 г 10%-ного

на 100 г
Х

Х =66,7 г

на 12 г
14%-го раствора нужно 4 г 22%-ного

на
100 г Х

Х = 33,3 г

Измеряем ареометром плотность исходных
растворов. Разделив массы растворов на
плотность, получим объемы исходных
растворов, необходимых для приготовления
нужного раствора. Отмериваем их и
переливаем в склянку для использования
в работе.

Определить
титр раствора хлорида натрия, если
известно, что на титрование его 10 мл
расходовалось 9,2 мл 0,1 н раствора нитрата
серебра. Титр можно определить:

по
закону эквивалентов: (Cн∙V)NaCl= (Cн∙V)AgNO3


(NaCl) = (9,2∙0,1)/10 = 0,092 моль/л,
Т = (58,5∙0,092)/1000 = 0,005382 г/мл

58,5 –
это эквивалентная масса хлорида натрия.

ФИКСИРОВАНИЕ ТОЧКИ ЭКВИВАЛЕНТНОСТИ

Установление состояния эквивалентности
является очень важным моментом в
проведении анализа. Несоответствие
момента прекращения титрования (точки
эквивалентности) приводит к возникновению
индикаторных ошибок титрования, к
неправильным ответам, что чревато
последствиями. В принципе, индикаторная
ошибка неизбежна при любом определении,
но при правильном определении точки
конца реакции столь мала, что ею можно
пренебречь. Точку эквивалентности можно
определить химическими методами
(применение индикаторов) и физико-химическими
методами (потенциометрическими,
кондуктометрическими, фотоколометрическими).

В
некоторых случаях изменения в системе
титрования столь заметны, что не требуется
каких то заметных особых приемов для
обнаружения конца реакции. Проблема
выбора способа фиксирования точки
эквивалентности всегда решается
применительно к конкретной практике
(методике исследования). Чаще всего
используют индикаторы. Полученные
результаты должны быть достоверны, т.е.
должны быть подвергнуты статистической
обработке. Методику статобработки см.
в данном методическом руководстве.

Метод нейтрализации
и его применение в медико-санитарной
практике

Медико биологическое значение.

Метод кислотно-основного титрования
позволяет определять количественно в
исследуемых объектах кислые и основные
продукты.

Так, в санитарно-гигиенической практике
этим методом определяют кислотность и
щелочность многих пищевых продуктов,
питьевых и сточных вод.

В клинической практике кислотно-основное
титрование используют для определения
кислотности желудочного сока, буферной
емкости крови, спинно-мозговой жидкости,
мочи и других биологических жидкостей.

Этот метод широко используется в
фармацевтической химии при анализе
лекарственных веществ, установления
доброкачественных продуктов питания
(например,молока).

Большое значение имеет рассматриваемый
метод и при санитарно гигиенической
оценке объектов окружающей среды.
Промышленные стоки могут содержать или
кислые, или щелочные продукты. Закисление
или защелачивание природных водоемов
и почвы приводит порой к необратимым
последствиям, в связи с чем контроль
кислотно-основного баланса весьма
важен.

МЕТОД НЕЙТРАЛИЗАЦИИ

Краткое описание метода нейтрализации
сводится к следующим моментам:

а)
Реакция

В основе метода лежит реакция взаимодействия

H++ OH
H2O.

б)
Определяемые
вещества:

кислоты:
сильные и слабые

основания:
сильные и слабые: соли, подвергающиеся
гидролизу.

в)
Титранты:

Сильные
кислоты (соляная, серная) с концентрацией
от 0,01 до 1,0 моль/л используются для
определения концентрации оснований и
солей, гидролизующихся по аниону.

Сильные
основания: (NaOH, KOH) с концентрацией от
0,01 до 1,0 моль/л
используются
для определения концентрации кислот и
солей, гидролизующихся по катиону.

Чаще всего
титранты для метода нейтрализации
готовят из фиксаналов. Иногда растворы
сильных кислот готовят разбавлением
концентрированного раствора кислоты,
а растворы сильных оснований, растворением
навески твердой щелочи. Последние
способы приготовления растворов, требуют
экспериментального уточнения концентрации
приготовленного титранта с использованием
установочных (исходных) веществ.

Для
титрантов кислот, в качестве установочных
веществ, используют соду Na2CO3
или буру Na2B4O7•10H2O.

Для
титрантов щелочей — щавелевую кислоту
(H2C2O4•2H2O).

г)
Индикаторы

Реакция
между кислотами и основаниями не
сопровождается, как правило, какими-либо
внешними эффектами, поэтому для
фиксирования точки эквивалентности
приходится использовать специальные
вещества-индикаторы. Кислотно-основные
индикаторы это, слабые кислоты или
основания, степень ионизации которых
определяется концентрацией [H+]
ионов в растворе.

H+Ind

H++Ind

Чем больше
концентрация H+
ионов, тем меньше будет степень ионизации
индикатора. Молекулярная HInd и ионная
HInd формы индикатора имеют разные окраски.
Таким образом, концентрация ионов H+
влияет
на соотношение концентраций HInd и Ind что,
в свою очередь, определяет характер или
яркость окраски.

Для
характеристики кислотности растворов
в химии широко пользуются водородным
показателем, pH — отрицательный десятичный
логарифм молярной концентрации [H
+].

В кислых
растворах pH<7, в щелочных pH>7, в
нейтральных

Все
индикаторы изменяют свою окраску не
скачкообразно, а плавно, т.е. в определенном
интервале значений pH, называемом
интервалом перехода.

Поскольку
индикаторы как кислоты или основания
отличаются друг от друга по силе, они
имеют разные интервалы перехода (см.
табл.1).

Таблица
1

N

п/п

Анализ вещество
титрант

pH в точке эквивалент-ности

Скачок титрования

Используемые индикаторы

Интервал

перехода

окраски

индикатора

1.

Сильная
кислота

Сильное
основание

или наоборот

7.0

3-11

Метилоранж

Метилрот

Фенолфталеин

3.1-4.4

4.2-6.3

8.3-10.0

2.

Слабая
кислота

Сильное основание

8-10

6-11

Фенолфталеин

8.3-10.0

3.

Слабое
основание

Сильная кислота

4-6

3-7

Метилоранж

Метилрот

3.1-4.4

4.2-6.3

Соседние файлы в предмете Химия

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Растворы. Способы выражения концентрации растворов

Способы выражения концентрации растворов

Существуют различные способы выражения концентрации растворов.

Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:

ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1)                (1)

Массовый процент представляет собой массовую долю, умноженную на 100:

ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%)                (2)

где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.

Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.

Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:

χ(X) = n(X)/(n(X) + n(H2O))                (3)

Мольный процент представляет мольную долю, умноженную на 100:

χ(X), % = (χ(X)·100)%                (4)

Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:

φ(Х) = V(Х)/V  (0 < φ(Х) < 1)             (5)

Объёмный процент представляет собой объёмную долю, умноженную на 100.

φ(X), % = (φ(X)·100)%                

Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:

Cм(Х) = n(Х)/V                   (6)

Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.

Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:

Cн(Х) = nэкв.(Х)/V                   (7)

Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.

Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:

T(Х) = m(Х)/V                   (8)

где m(X) – масса растворённого вещества X, V – объём раствора в мл.

Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:

μ(Х) = n(Х)/mр-ля                   (9)

где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.

Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.

Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:

См = Сн · f(Х)               (10)

Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.

Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:

Сн = См/f(Х)                   (11)

Результаты расчётов приведены в табл. 2.

Таблица 1. К определению молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2 M Na2SO4 ? 6 н FeCl3 ?
1,5 M Fe2(SO4)3 ? 0,1 н Ва(ОН)2 ?
Реакции окисления-восстановления 0,05 М KMnO4

в кислой среде

? 0,03 М KMnO4

в нейтральной среде

?

Таблица 2

Значения молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2M Ma2SO4 0,4н 6н FeCl3
1,5M Fe2(SO4)3 0,1н Ва(ОН)2 0,05М
Реакции окисления-восстановления 0,05М KMnOв кислой среде 0,25н 0,03М KMnO4

в нейтральной среде

0,01М

Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:

V1 Сн,1 =VСн,2                    (12)

Примеры решения задач

Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см3.

Решение.

Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.

Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.

Молярность раствора См = 521,2/98 = 5,32 М.

Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.

Титр раствора Т = 521,2/1000 = 0,5212 г/см3.

Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.

Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.

Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.

Количество вещества воды: n = 781,8/18 = 43,43 моль.

Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.

Мольное отношение равно 5,32/43,43 = 0,1225.

Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см3), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.

Решение.

2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.

Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.

Объём раствора кислоты V = 14/1,611 = 8,69 мл.

Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см3.

Решение.

Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.

Масса раствора m = 5000 + 75,9 = 5075,9 г.

Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.

Количество вещества NH3 равно 100/22,4 = 4,46 моль.

Объём раствора V = 5,0759/0,992 = 5,12 л.

Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.

Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?

Решение.

Переводим молярность в нормальность:

0,1 М Н3РО4  0,3 н; 0,3 М Ва(ОН)2  0,6 н.

Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.

Задача 5. Какой объем, мл  2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?

Плотности растворов NaCl:

С, мас.% 2 6 7 14
ρ, г/см3 2,012 1,041 1,049 1,101

Решение.

Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:

6,2% =6% + 0,2(7% —6% )/(7 – 6) = 1,0410 + 0,0016 = 1,0426 г/см3.

Определяем массу раствора: m = 150·1,0426 = 156,39 г.

Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.

Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):

156,39 = V1 1,012 + V2 1,101 ,

9,70 = V1·1,012·0,02 + V2·1,101·0,14 .

Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.

Задачи для самостоятельного решения

3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.

12 н.

3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.

0,1 M.

3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.

0,06 н.

3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.

0,02 M.

3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.

1,2 M.

3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?

0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.

3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.

255 мл; 2 н; 0,203 г/мл.

3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.

0,035; 0,0177; 1:55,6.

3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.

74,28 г; 3,05 М; 0,179 г/мл.

3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.

192,4 г; 0,111 г/мл; 0,56 моль/кг.

Определение титра, эквивалентной концентрации (нормальности) и титра раствора по определяемому веществу.

Титр раствора – отношение массы растворённого вещества к объёму раствора, T = ; (г/мл).

Титр раствора по определяемому веществу – отношение массы определяемого вещества к объёму раствора, пошедшего на титрование данной массы, показывает массу вещества, титруемую 1 мл раствора. Например, титр раствора соляной кислоты по карбонату натрия равен:

T HCl/Na2CO3 = ; г/мл.

Эквивалентная концентрация раствора (Сэ), или нормальность (N) равна:

Сэ = N = ; моль/л; Сэ = N = ;

См = ; моль/л

(молярная концентрация)

Пример 1. Определить титр раствора перманганата калия по железу и пероксиду водорода, если нормальность (Сэ) этого раствора 0,025 моль/л.

Решение. При окислении железа и пероксида водорода перманганатом калия протекают реакции:

А) Fe2+ — e- ® Fe3+; Мэ(Fe) = М(Fe) = 55,85 г/моль.

Б) H2O2 — 2e — ® 2H+ + O2­ ® Мэ(H2O2) = М(H2O2) = 17,01 г/моль.

(В точке эквивалентности nэ(KMnO4) = nэ(Fe));

Сэ(KMnO4) = 0,025 ® 0,025 моль содержится в 1000 мл раствора перманганата калия.

В точке эквивалентности nэ(H2O2) = nэ(KMnO4) = 0,025 моль в 1000 мл раствора перманганата калия.

Пример 2. Образец массой 0,1182 г с массовой долей марганца 0,84% растворили и оттитровали 22,27 мл раствора арсенита натрия. Определить титр раствора арсенита натрия по марганцу, если марганец присутствует в виде марганцовой кислоты (HMnO4).

Решение. Находим массу марганца в образце:

M(Mn) =

® Т NaAsO2/Mn = .

Пример 3. Определить нормальность (Сэ) раствора азотной кислоты с массовой долей азотной кислоты 30,1% и плотностью 1,185 г/мл в реакции:

NO3- + 4H+ + 3e — ® NO + 2H2O.

Решение.

Сэ = ;

M(HNO3) = ; если масса раствора равна 100 г, то m(HNO3) = w(HNO3) = 30,1 г; Vр-ра=;

Мэ(HNO3) = М(HNO3) = · 63 г/моль = 21,01 г/моль;

Сэ(HNO3) =

Понравилась статья? Поделить с друзьями:
  • Как составить письмо извинение
  • Как составить таблицу соревнований по шахматам
  • Как найти в моем мире новость
  • Как найти плотность этена
  • Как узнать найду ли я потерянную вещь