Как найти мат ожидание дискретной случайной величины

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание — это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины — срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Нужна помощь? Решаем теорию вероятностей на отлично

Понравилось? Добавьте в закладки

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Используем формулу для м.о. дискретной случайной величины:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Получаем:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$
Подставляем из условия плотность вероятности и вычисляем значение интеграла:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{1} 12(x^2-x^3) cdot x dx = int_{0}^{1} 12(x^3-x^4) dx = \
=left.(3x^4-frac{12}{5}x^5) right|_0^1=3-frac{12}{5} = frac{3}{5}=0.6.
$$

Другие задачи с решениями по ТВ

Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку «Вычислить».
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Лучшее спасибо — порекомендовать эту страницу

Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей — онлайн учебник по терверу. Для закрепления материала — еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi
M(X) = ∑ xi × pi
Где:
М — математическое ожидание,
X — случайная величина,
p — вероятность появления случайной величины.

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет «1» — 1/6, «2» — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx
M(X) = ∫ f(x) × x.dx
Где:
М — математическое ожидание
f (x) — функция (которая будет предоставлена в условии задачи)
x — случайная величина
dx — элемент интегрирования

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

Кратко:

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Узнайте больше про Интегралы.

Основные свойства математического ожидания

  1. Математическое ожидание постоянной равно самой постоянной: М(c)=c.
  2. Математическое ожидание сложения/вычитания двух случайных величин равно сумме/вычитанию их математических ожиданий: пусть X и Y — две случайные величины, значит М (X ± Y) = М (X) ± М (Y).
  3. Если умножить случайную величину X на c, её среднее значение также умножается на эту константу (c): М (cX) = cМ (X).
  4. Если добавить или вычесть c из случайной величины X, то произойдёт та же операция (сложение или вычитание константы) с её средним значением: М (X ± c) = М (X) ± c.
  5. Если X и Y — две независимые случайные величины, значит: М(XY)=М(X)×М(Y).

Узнайте больше про Теорию вероятностей.

Глава седьмая

МАТЕМАТИЧЕСКОЕ
ОЖИДАНИЕ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Как уже известно,
закон распределения полностью
характеризует случайную величину.
Однако часто закон распределения
неизвестен и приходится ограничиваться
меньшими сведениями. Иногда даже выгоднее
пользоваться числами, которые описывают
случайную величину суммарно; такие
числа называют числовыми
характеристиками случайной величины.
К числу
важных числовых характеристик относится
математическое ожидание.

Математическое
ожидание, как будет показано далее,
приближенно равно среднему значению
случайной величины. Для решения многих
задач достаточно знать математическое
ожидание. Например, если известно, что
математическое ожидание числа выбиваемых
очков у первого стрелка больше, чем у
второго, то первый стрелок в среднем
выбивает больше очков, чем второй, и,
следовательно, стреляет лучше второго.
Хотя математическое ожидание дает о
случайной величине значительно меньше
сведений, чем закон ее распределения,
но для решения задач, подобных приведенной
и многих других, знание математического
ожидания оказывается достаточным.

§ 2. Математическое ожидание дискретной случайной величины

Математическим
ожиданием
дискретной
случайной величины называют сумму
произведений всех ее возможных значений
на их вероятности.

Пусть случайная
величина X
может
принимать только значения х1,
х
2,
…, хп,
вероятности
которых соответственно равны р1,
р
2,
. . ., рп.
Тогда
математическое ожидание М
(X)
случайной
величины X
определяется
равенством

М (X)
= х1р1
+ х2р2
+ … + xnpn.

Если дискретная
случайная величина X
принимает
счетное множество возможных значений,
то

М(Х)=

причем математическое
ожидание существует, если ряд в правой
части равенства сходится абсолютно.

Замечание. Из
определения следует, что математическое
ожидание дискретной случайной величины
есть неслучайная (постоянная) величина.
Рекомендуем запомнить это утверждение,
так как далее оно используется многократно.
В дальнейшем будет показано, что
математическое ожидание непрерывной
случайной величины также есть постоянная
величина.

Пример 1. Найти
математическое ожидание случайной
величины X,
зная закон
ее распределения:

X

3

5

2

p

0,1

0,6

0,3

Решение. Искомое
математическое ожидание равно сумме
произведений всех возможных значений
случайной величины на их вероятности:

M(X)=3*0,1+5*0,6+2*0,3=3,9.

Пример 2. Найти
математическое ожидание числа появлений
события А в
одном испытании, если вероятность
события А
равна р.

Решение. Случайная
величина X
— число
появлений события А
в одном
испытании — может принимать только два
значения: х1=1
(событие А
наступило)
с вероятностью р
и х2
=
0
(событие А
не наступило)
с вероятностью q=
1 —р.
Искомое
математическое ожидание

M(X)=1*p+0*q=p

Итак, математическое
ожидание числа появлений события в
одном испытании равно вероятности этого
события.
Этот
результат будет использован ниже.

§ 3. Вероятностный смысл математического ожидания

Пусть произведено
п испытаний,
в которых случайная величина X
приняла т1
раз значение
х1,
т
2
раз значение
х2,…,mk
раз значение
xk,
причем т1
+
т2+
…+т
к
= п.
Тогда
сумма всех значений, принятых X,
равна

х1т1
+ х2т2
+ … + хктк.

Найдем среднее
арифметическое

всех значений,
принятых, случайной величиной, для чего
разделим найденную сумму на общее число
испытаний:

= (х1т1
+ х2т2+
… +
хктк)/п,

или

=
х
1
(m1/
n)
+ х2
(m2/
n)
+ … + хк
(тк/п).
(*)

Заметив, что
отношение m1/
n
— относительная частота W1
значения
х1,
m2/
n
— относительная
частота W2
значения х2
и т. д., запишем
соотношение (*) так:

=
х
1
W1
+
x2W2
+ ..
. + хкWk.
(**)

Допустим, что число
испытаний достаточно велико. Тогда
относительная частота приближенно
равна вероятности появления события
(это будет доказано в гл. IX,
§ 6):

W1
p1,
W2
p2,
…,
Wk
pk.

Заменив в соотношении
(**) относительные частоты соответствующими
вероятностями, получим

x1p1
+ х2р2
+ … + хкрк.

Правая часть этого
приближенного равенства есть М
(X).
Итак,

М (X).

Вероятностный
смысл полученного результата таков:
математическое
ожидание приближенно равно
(тем
точнее, чем больше число испытаний)
среднему
арифметическому наблюдаемых значений
случайной величины.

Замечание 1. Легко
сообразить, что математическое ожидание
больше наименьшего и меньше наибольшего
возможных значений. Другими словами,
на числовой оси возможные значения
расположены слева и справа от
математического ожидания. В этом смысле
математическое ожидание характеризует
расположение распределения и поэтому
его часто называют центром
распределения.

Этот термин
заимствован из механики: если массы
р1,
р
2,
…, р
п
расположены
в точках с абсциссами x1,
х
2,…,
хn,
причем

то абсцисса центра тяжести

xc=.

Учитывая, что
=
M
(X)
и

получим М(Х)
= х
с.

Итак, математическое
ожидание есть абсцисса центра тяжести
системы материальных точек, абсциссы
которых равны возможным значениям
случайной величины, а массы — их
вероятностям.

Замечание 2.
Происхождение термина «математическое
ожидание» связано с начальным периодом
возникновения теории вероятностей (XVI
— XVII
вв.), когда область ее применения
ограничивалась азартными играми. Игрока
интересовало среднее значение ожидаемого
выигрыша, или, иными словами, математическое
ожидание выигрыша.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Математическое ожидание случайной величины и его свойства

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Математическим ожиданием
дискретной случайной величины
, множество возможных значений которой
конечно, называется сумма произведений всех ее возможных значений на
соответствующие вероятности:

Если множество возможных
значений счетное, то

Причем математическое
ожидание существует, если ряд в правой части сходится абсолютно.

Математическое ожидание
приближенно равно среднему значению случайной величины.

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для дискретных случайных величин, сохраняются и для непрерывных величин.

Свойства математического ожидания

Свойство 1.

Математическое ожидание
константы равно этой константе:

Свойство 2.

Постоянный множитель
можно выносить за знак математического ожидания:

Свойство 3.

Математическое ожидание
суммы случайных величин равно сумме математических ожиданий слагаемых:

Свойство 4.

Математическое ожидания
произведения случайных величин:

где 

 –
ковариация  случайных величин

 и

В частности, если

 и

 независимы, то

И вообще, для независимых случайных величин
математическое ожидание их произведения равно произведению математических
ожиданий сомножителей:

Смежные темы решебника:

  • Дисперсия и ее свойства. Среднее квадратическое отклонение
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

Производится
3 выстрела с вероятностями попадания в цель, равными p1=0,4; p2=0,3 и p3=0,6. Найти математическое
ожидание общего числа попаданий.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Число
попаданий при первом выстреле есть случайная величина

, которая может принимать
только два значения:

1 –
попадание с вероятностью

0 –
промах с вероятностью

Математическое
ожидание числа попаданий при первом выстреле:

Аналогично
находим математические ожидания числа попаданий при втором и третьем выстрелах:

Общее
число попаданий есть также случайная величина, состоящая из суммы попаданий в
каждом из трех выстрелов:

Искомое
математическое ожидание:

Ответ:


Пример 2

Для случайных величин X,Y известны
характеристики M(X)=3, M(Y)=7, D(X)=16, D(Y)=49, ρXY=0.35

Найдите математическое ожидание M(XY).

Решение

Коэффициент корреляции:

Искомое математическое ожидание:

Ответ:


Пример 3

Даны законы распределения двух независимых
случайных величин X и Y:

Требуется:


составить закон распределения случайной величины Z=3X-Y;

— найти
числовые характеристики случайных величин X, Y, Z;


проверить свойство M(Z)=3M(X)-M(Y);


построить функцию распределения для

Z и построить ее график.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Составим закон распределения

:

или

Проверка:

Закон
распределения величины

:

Найдем математические
ожидания:

Проверим
свойство:

 – выполняется

Найдем
дисперсии:

Средние
квадратические отклонения:

Запишем
функцию распределения:

 

График функции распределения


Пример 4

Найти
математическое ожидание суммы числа очков, которые могут выпасть при бросании
двух игральных костей.

Решение

Обозначим
число очков, которое может выпасть на первой кости, через

, и на второй – через

.

Возможные
значения этих величин одинаковы и равны: 1,2,3,4,5 и 6.

При этом
вероятность каждого из этих значений равна 1/6.

Математическое
ожидание числа очков, выпавших на первой кости:

Аналогично
математическое ожидание числа очков, выпавших на второй кости:

Искомое
математическое ожидание:

Ответ:

.

Задачи контрольных и самостоятельных работ


Задача 1

Найти
математическое ожидание случайной величины Z=6X-9Y+7XY-10, если известно, что
M(X)=2; M(Y)=3.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Случайные
величины X и Y независимы и распределены
равномерно: X – в интервале (a,b), Y

– в интервале (c,d).
Найти математическое ожидание случайной величины Z.

a=-3, b=4, c=3, d=6, Z=6XY, M(Z)-?


Задача 3

Найти
математическое ожидание и дисперсию случайной величины Z=3+2.2X-Y, где X и Y –
независимые случайные величины, если известны M(X)=1, D(X)=0.5,
M(Y)=2, D(Y)=2.


Задача 4

Независимые
случайные величины заданы законами распределения:

и

Построить ряд распределения F(Z), где Z=X-Y.
Проверить свойства:

M(Z)=M(X)-M(Y)

D(Z)=D(X)+D(Y)


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 5

Независимые
случайные величины X и Y заданы следующими законами
распределения:

и

Найти
математическое ожидание случайной величины XY


Задача 6

Дискретная
случайная величина X принимает три возможных значения: x1=4 с вероятностью p1=0.5; x2=6 c вероятностью p2=0.3 и x3 с вероятностью p3. Найти x3 и p3, зная, что M(X)=8.


Задача 7

Дан
перечень возможных значений случайной величины X: x1=-1, x2=0, x3=1, а также известны
математические ожидания этой величины и ее квадрата:

M(X)=0.1, M(X2)=0.9.

Найти
вероятности p1, p2, p3 соответствующие возможным
значениям x1, x2, x3.


Задача 8

Дан
перечень возможных значений дискретной случайной величины X:

x1=1, x2=2, x3=3

А также
известны математические ожидания этой величины и ее квадрата:

M(X)=2.3

M(X2)=5.9

Найти вероятности, соответствующие
возможным значениям X.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Числовые характеристики распределения вероятностей. Математическое ожидание, дисперсия и стандартное отклонение

  1. Закон распределения дискретной случайной величины
  2. Математическое ожидание
  3. Дисперсия
  4. Среднее квадратичное отклонение
  5. Правило трёх сигм
  6. Примеры

п.1. Закон распределения дискретной случайной величины

Законом распределения дискретной случайной величины называют соответствие между полученными на опыте значениями этой величины X= {xi} и их вероятностями pi = P(xi).
При этом сумма всех вероятностей равна 1: (mathrm{sum_{i=1}^n p_i=1})
Закон распределения можно задать таблицей, графиком или аналитически (в виде формулы).

Например:
Закон распределения случайной величины X = {0;1;2;3}, равной числу выпадения орлов при 3 бросках монеты, аналитически задаётся формулой: $$ mathrm{ p_i=P(x_i)=P_3(i)=frac{C_3^{i}}{2^3}, i={0;1;2;3} } $$

В табличном виде:

xi

pi

0

1/8

1

3/8

2

3/8

3

1/8

В виде графика:

Закон распределения дискретной случайной величины

п.2. Математическое ожидание

Математическое ожидание дискретной случайной величины X = {xi} равно сумме произведений всех возможных значений xi на соответствующие вероятности pi: $$ mathrm{ M(X)=x_1p_1+x_2p_2+…+x_{n}p_{n}=sum_{i=1}^n x_{i}p_{i} } $$ Математическое ожидание является средним значением величины X.

Свойства математического ожидания
1) Размерность математического ожидания равна размерности случайной величины.
2) Математическое ожидание может быть любым действительным числом: положительным, равным 0, отрицательным.
3) Математическое ожидание постоянной величины равно этой постоянной:

M(C) = C

4) Математическое ожидание суммы независимых случайных величин равно сумме математических ожиданий:

M(X + Y) = M(X) + M(Y)

5) Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий:

M(XY) = M(X) · M(Y)

6) Постоянный множитель можно вынести за знак математического ожидания:

M(CX) = C · M(X)

Например:
Пусть в результате экспериментов получено следующее распределение случайной величины X – числа появления белых шаров (см. пример 1, §40 данного справочника):

Число белых шаров, xi 0 1 2 3 4 5
pi (mathrm{C_5^0q^5}) (mathrm{C_5^1pq^4}) (mathrm{C_5^2p^2q^3}) (mathrm{C_5^3p^3q^2}) (mathrm{C_5^4p^4q}) (mathrm{C_5^5p^5})
0,0074 0,0618 0,2060 0,3433 0,2861 0,0954

Найдём математическое ожидание для данного распределения:

M(X) = 0 · 0,0074 + 1 · 0,0618 + … + 5 · 0,0954 = 3,125

п.3. Дисперсия

Дисперсия дискретной случайной величины X = {xi} – это математическое ожидание квадрата отклонения случайной величины от её математического ожидания: $$ mathrm{ D(X)=M(X-M(X))^2 } $$ На практике дисперсия рассчитывается по формуле: $$ mathrm{ D(X)=M(X)^2-M^2(X)=sum_{i=1}^n x_i^2p_i-M^2(X) } $$

Свойства дисперсии
1) Размерность дисперсии равна квадрату размерности случайной величины.
2) Дисперсия может быть любым неотрицательным действительным числом.
3) Дисперсия постоянной величины равна нулю:

D(C) = 0

4) Дисперсия суммы независимых случайных величин равна сумме дисперсий:

D(X + Y) = D(X) + D(Y)

5) Постоянный множитель можно вынести за знак дисперсии:

D(CX) = C2 · D(X)

Например:
Продолжим исследование и найдём дисперсию для распределения случайной величины X – числа появления белых шаров. Составим расчётную таблицу:

pi

0,0074

0,0618

0,2060

0,3433

0,2861

0,0954

1

xip1

0

0,0618

0,4120

1,0300

1,1444

0,4768

3,125

(mathrm{x_i^2})

0

1

4

9

16

25

(mathrm{x_i^2p_i})

0

0,0618

0,8240

3,0899

4,5776

2,3842

10,9375

Получаем: D(X) = 10,9375 – 3,1252 ≈ 1,1719.

п.4. Среднее квадратичное отклонение

Среднее квадратичное отклонение (СКО) дискретной случайной величины X = {xi} – это корень квадратный от дисперсии: $$ mathrm{ sigma(X)=sqrt{D(X)} } $$ СКО характеризует степень отклонения случайной величины от среднего значения.

Свойства СКО
1) Размерность СКО равна размерности случайной величины.
2) СКО может быть любым неотрицательным действительным числом.
3) СКО постоянной величины равно нулю:

σ(C) = 0

4) Постоянный множитель можно вынести за знак СКО:

σ(CX) = C · σ(X)

п.5. Правило трёх сигм

Большое количество случайных величин, измеряемых в экспериментах (например, в школьных лабораторных работах), имеет так называемое нормальное распределение.
В частности, при больших n, биномиальное распределение можно с хорошей точностью описывать как нормальное с M(X) = np и (mathrm{sigma(X)=sqrt{npq}}).
График плотности нормального распределения p(x) похож на колокол, с максимумом, соответствующим M(X) = Xcp – среднему значению измеряемой величины.
Правило трёх сигм
Величина СКО σ(X) характеризует степень отклонения X от среднего значения M(X).

Если величина X имеет нормальное распределение, то в пределах
±σ лежит 68,26% значений, принимаемых этой величиной
±2σ лежит 95,44% значений, принимаемых этой величиной
±3σ лежит 99,72% значений, принимаемых этой величиной
Вероятность того, что нормально распределённая величина примет значение, отклоняющееся от среднего больше, чем на «три сигмы», равна 0,28%, т.е. пренебрежимо мала.

п.6. Примеры

Пример 1. Найдите математическое ожидание, дисперсию и СКО при бросании кубика.

Закон распределения величины X – очки на верхней грани при бросании кубика и расчётная таблица:

pi

1/6

1/6

1/6

1/6

1/6

1/6

1

xip1

1/6

1/3

1/2

2/3

5/6

1

3,5

(mathrm{x_i^2})

1

4

9

16

25

36

(mathrm{x_i^2p_i})

(mathrm{frac16})

(mathrm{frac23})

(mathrm{1frac12})

(mathrm{2frac23})

(mathrm{4frac16})

6

(mathrm{15frac16})

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=1}^6 x_ip_i=3,5 }\ mathrm{ D(X)=sum_{i=1}^6 x_i^2p_i-M^2(X)=15frac16-3,5^3=2frac{11}{12} }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{2frac{11}{12}}approx 1,7 } end{gather*} Ответ: (mathrm{M(X)=3,5; D(X)=2frac{11}{12}; sigma(X)approx 1,7}).

Пример 2*. Найти математическое ожидание, дисперсию и СКО суммы очков при бросании двух кубиков.

Используем свойства мат.ожиданий и дисперсий.
Пусть X – очки на первом кубике, Y – на втором.
Параметры распределения для каждого из кубиков рассчитаны в примере 1.
(mathrm{M(X)=M(Y)=3,5, D(X)=D(Y)=2frac{11}{12}}).
Для суммы очков получаем:
(mathrm{M(X+Y)=M(X)+M(Y)=3,5+3,5=7})
(mathrm{D(X+Y)=D(X)+D(Y)=2frac{11}{12}+2frac{11}{12}=5frac56})
(mathrm{sigma(X+Y)=sqrt{D(X+Y)}=sqrt{5frac56}approx 2,4})
Ответ: (mathrm{M(X+Y)=7; D(X+Y)=5frac56; sigma(X+Y)approx 2,4}).

Пример 3*. Докажите, что в опытах по схеме Бернулли математическое ожидание M(X)=np, а дисперсия D(X)=npq.

Проведем один опыт. В нём может быть только два исхода: «успех» и «неудача».
Составим расчётную таблицу:

(mathrm{x_i^2p_i})

0

p

p

Мат.ожидание первого опыта (mathrm{M(X)=sum x_ip_i=p}).
Общее число успехов при n опытах складывается из числа успехов при каждом опыте, т.е. (mathrm{X=X_1+X_2+…+X_n}). Все опыты между собой независимы.
По свойству мат.ожидания суммы независимых событий: begin{gather*} mathrm{ M(X)=M(X_1+X_2+…+X_n)=M(X_1)+M(X_2)+…+M(X_n)= }\ mathrm{=underbrace{p+p+…+p}_{n text{раз}}=np } end{gather*} Дисперсия первого опыта (mathrm{D(X)=sum x_i^2p_i-M(X)=p-p^2=p(1-p)=pq})
По свойству дисперсии суммы независимых событий: begin{gather*} mathrm{ D(X)=D(X_1+X_2+…+X_n)=D(X_1)+D(X_2)+…+D(X_n)= }\ mathrm{=underbrace{pq+pq+…+pq}_{n text{раз}}=npq } end{gather*} Что и требовалось доказать.

Пример 4. 100 канцелярских кнопок высыпали на стул. Вероятность, что кнопка упала острием вверх, равна 0,4. Найдите среднее количество, дисперсию и СКО для числа кнопок, упавших острием вверх. Найдите интервал оценки для количества этих кнопок по правилу «трёх сигм».

По условию n = 100, p = 0,4.
Для каждой кнопки может быть два исхода: упасть острием вверх или вниз.
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. begin{gather*} mathrm{ M(X)=np=100cdot 0,4=40 }\ mathrm{D(X)=npq=100cdot 0,4cdot 0,6=24 }\ mathrm{sigma(X)=sqrt{D(X)}=sqrt{24}approx 4,9} end{gather*} Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X)lt Xlt M(X)+3sigma(X) }\ mathrm{40-3cdot 4,9lt Xlt 40+3cdot 4,9 }\ mathrm{25,3lt Xlt 54,7}\ mathrm{26leq Xleq 54} end{gather*} Скорее всего (99,7%), от 26 до 54 кнопок будут острием вверх.
Ответ: (mathrm{M(X)=40; D(X)=24; sigma(X)approx 4,9; 26leq Xleq 54})

Пример 5*. В тесте 10 задач с 4 вариантами ответов. Ответы выбираются наугад. Постройте распределение величины X = «количество угаданных ответов», найдите числовые характеристики этого распределения.
Найдите интервал оценки для количества угаданных ответов по правилу «трёх сигм».
Какова вероятность угадать хотя бы 1 ответ? Хотя бы 5 ответов? Угадать все 10 ответов?

По условию: (mathrm{n=10, p=frac14, q=frac34}).
Для каждого ответа может быть два исхода: «угадал»/ «не угадал».
Таким образом, это испытание Бернулли с биномиальным распределением случайной величины. $$ mathrm{ P_{10}(k)=C_{10}^kp^kq^{10-k}=C_{10}^kfrac{3^{10-k}}{4^{10}}=left(frac34right)^{10}frac{C_{10}^k}{3^k} } $$ Строим расчётную таблицу. Для (mathrm{C_{10}^k}) используем рекуррентную формулу (см. §36 данного справочника): $$ mathrm{ C_{n}^k=frac{n-k+1}{k}C_n^{k-1} } $$

(mathrm{x_i=k}) (mathrm{C_k}) (mathrm{3^k}) (mathrm{p_i(x_i)}) (mathrm{x_icdot p_i}) (mathrm{x_i^2}) (mathrm{x_i^2cdot p_i})
0 1 1 0,0563135 0,0000000 0 0,0000000
1 10 3 0,1877117 0,1877117 1 0,1877117
2 45 9 0,2815676 0,5631351 4 1,1262703
3 120 27 0,2502823 0,7508469 9 2,2525406
4 210 81 0,1459980 0,5839920 16 2,3359680
5 252 243 0,0583992 0,2919960 25 1,4599800
6 210 729 0,0162220 0,0973320 36 0,5839920
7 120 2187 0,0030899 0,0216293 49 0,1514053
8 45 6561 0,0003862 0,0030899 64 0,0247192
9 10 19683 0,0000286 0,0002575 81 0,0023174
10 1 59049 0,0000010 0,0000095 100 0,0000954
Σ 1 2,5 8,125

Получаем: begin{gather*} mathrm{ M(X)=sum_{i=0}^{10} x_ip_i=2,5 }\ mathrm{ D(X)=sum_{i=0}^{10} x_i^2p_i-M^2(X)=8,125=2,5^2=1,875 }\ mathrm{ sigma(X)=sqrt{D(X)}=sqrt{1,875}approx 1,37 } end{gather*} Пример 5
Интервал оценки «три сигмы»: begin{gather*} mathrm{ M(X)-3sigma(X) lt Xlt M(X)+3sigma(X) }\ mathrm{ 2,5-3cdot 1,37lt X lt 2,5+3cdot 1,37 }\ mathrm{ -1,61lt Xlt 6,61 }\ mathrm{ 0leq Xleq 6 } end{gather*} Скорее всего (по расчетам – 99,65%), вы угадаете от 0 до 6 ответов.

Вероятность угадать хотя бы один ответ: begin{gather*} mathrm{ P(Xgeq 1)=1-p_0approx 1-0,0563=0,9437 }end{gather*} Очень хорошие шансы – 94,37%.
Вероятность угадать хотя бы 5 ответов: begin{gather*} mathrm{ P(Xgeq 5)=1-left(sum_{i=0}^{4}{p_i} right)approx 1-(0,0563+0,1877+…+0,1460)=0,0781 }end{gather*} Шансов мало – 7,81%. Т.е. «средний балл» при сдаче тестов мало достижим методом научного тыка.
Вероятность угадать все 10 ответов: p10≈ 0,000001. Шанс – один из миллиона.

Понравилась статья? Поделить с друзьями:
  • Как найти фотку на рабочем столе
  • Как найти специалистов по натяжным потолкам
  • Как найти ссылку в переписке
  • Как найти ошибки васей диагностом
  • Как найти спутник для телевизора