Как найти математическое ожидание дифференциальной функции

Решение типовых примеров:

Пример
1
. Случайная
величина Х задана плотностью распределения:

Определить
математическое ожидание, дисперсию и
среднее квадратическое отклонение
величины Х.

Решение:
Согласно
определениям математического ожидания
и дисперсии имеем:

.

И,
наконец,

Ответ:

Пример
2
. Случайная
величина Х задана функцией распределения:

Определить
начальный и центральные моменты третьего
порядка случайной величины Х.

Решение:
Найдем
дифференциальную функцию Х:

Согласно
определению математического ожидания
имеем:

Начальный
момент третьего порядка находим по
формуле :

И,
наконец, центральный момент третьего
порядка равен:

Ответ:

;
.

Пример
3
. Случайная
величина Х задана дифференциальной
функцией

в интервале

; вне этого интервала
.
Найти математическое ожидание функции

(не находя предварительно дифференциальной
функции Y)
.

Решение:
Воспользуемся формулой для вычисления
математического ожидания функции
от
случайного аргумента:

Интегрируя
по частям, окончательно получим

.

Ответ:
.

Пример
4.
Случайная
величина X задана дифференциальной
функцией
в интервале
;
вне этого интервала
.
Найти:
а) моду;
б) медиану величины Х.

Решение:
а) легко убедиться, что функция

в интервале
не
имеет максимума, поэтому Х моды не имеет.

б)
Найдем медиану Ме
Х , исходя из определения:
.
Учитывая, что по условию возможные
значения Х положительны, перепишем это
равенство так,
или
.
Отсюда
.
Следовательно,
искомая медиана равна
.

Ответ:
а) Х не имеет
моды; б) медиана равна
.

Пусть
(X,Y)
двумерная случайная величина.
Коэффициент ковариации

(X,Y)
определяется следующим образом:


или


.

Коэффициент
ковариации находится по формулам:

,

если
X
и Y
дискретные случайные величины , и

,
если X
и Y
непрерывные случайные величины и f(x,y)
— плотность их совместного распределения.

Для
характеристики связи между величинами
X
и Y
служит коэффициент
корреляции

.

Для
любых двух случайных величин
.
Если случайные величины X
и Y
независимы, то
.
Случайные величины называются
некоррелированными, если
.
Две некоррелированные случайные величины
также и зависимы. Из некоррелированности
двух случайных величин следует их
зависимость, но из зависимости еще не
вытекает коррелированность.

Пусть
(X,Y)
двумерная случайная величина, где Х и
Y
— зависимые случайные величины. Представим
одну из величин как линейную функцию
другой
.

Линейная
средняя квадратическая регрессия

(или просто линейная регрессия) Y
на Х имеет вид:

,

где
MX,
MY
— математические ожидания,

— средние квадратичные отклонения,

коэффициент корреляции случайных
величин X
и Y.

Коэффициент

называют коэффициентом
регрессии

Y
на Х , а прямую

называют
прямой
регрессии.
Величину

называют остаточной
дисперсией

случайной величины Y
относительно случайной величины Х; она
характеризует величину ошибки, которую
допускают при замене Y
линейной функцией
.
При

остаточная дисперсия равна нулю и
величины Y
и Х связаны линейной функциональной
зависимостью.

Аналогично
можно получить прямую регрессии Х на Y
:

(
коэффициент регрессии Х на Y)
и остаточную дисперсию

величины Х относительно Y.

Если
,
то обе прямые регрессии

и

совпадают. Из уравнений регрессии
следует, что обе прямые регрессии
проходят через точку (MX,MY)
— центр рассеивания двумерной случайной
величины (Х,Y).

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi
M(X) = ∑ xi × pi
Где:
М — математическое ожидание,
X — случайная величина,
p — вероятность появления случайной величины.

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет «1» — 1/6, «2» — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx
M(X) = ∫ f(x) × x.dx
Где:
М — математическое ожидание
f (x) — функция (которая будет предоставлена в условии задачи)
x — случайная величина
dx — элемент интегрирования

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

Кратко:

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Узнайте больше про Интегралы.

Основные свойства математического ожидания

  1. Математическое ожидание постоянной равно самой постоянной: М(c)=c.
  2. Математическое ожидание сложения/вычитания двух случайных величин равно сумме/вычитанию их математических ожиданий: пусть X и Y — две случайные величины, значит М (X ± Y) = М (X) ± М (Y).
  3. Если умножить случайную величину X на c, её среднее значение также умножается на эту константу (c): М (cX) = cМ (X).
  4. Если добавить или вычесть c из случайной величины X, то произойдёт та же операция (сложение или вычитание константы) с её средним значением: М (X ± c) = М (X) ± c.
  5. Если X и Y — две независимые случайные величины, значит: М(XY)=М(X)×М(Y).

Узнайте больше про Теорию вероятностей.

План лекции

2.3.3  Дифференциальная функция распределения непрерывных

Случайных величин

2.4  Числовые характеристики случайных

2.4.1 Математическое ожидание и его свойства.

2.4.2 Дисперсия случайных величин и ее свойства

2.3.3  Дифференциальная функция распределения непрерывных

Случайных величин f(x) и ее свойства

Способ, когда закон распределения непрерывной случайной величины задают с помощью интег­ральной функции, не является единственным. Гораздо чаще его задают с по­мощью дифференциальной функции распределения вероятностей, которую обозначают f(x). Эту функцию также называют плотностью распределения вероятностей.

Дифференциальной функцией распределения называется 1-я производная от интегральной функции распределения

.

Для дискретной случайной величины функция распределения будет иметь разрывы, и поэтому она не применяется для дискретных величин.

Теорема: Вероятность того, что непрерывная случайная величина Х примет значение на интервале (а, b) равна определенному интегралу от дифференциальной функции, взятому в этих пределах

Доказательство: Будем исходить из известного: P(a <Х < b) = F(b)–F(a)

Отсюда , если

где z – переменная интегрирования.

Свойства дифференциальной функции распределения

1. , т. к. это производная от неубывающей функции.

2. , следует из доказательства теоремы,

F (X) Dx элемент вероятности.

3. .

Пример: Найти выражение для дифференциальной функции F(X), если интегральная функция описывается выражением

;

Полученное выражение описывает функцию f(x) на интервале (,) ; вне этого интервала она равна 0 как производная от констант 0 и 1.

2.4  Числовые характеристики случайных величин

Рассмотренные интегральная и дифференциальная функции распределения однозначно и в полной мере определяют характер случайной величины. Однако не всегда есть возможность определить закон распределения вероятностей. Кроме того, часто этого и не требуется, так как используют числовые характеристики случайной величины, которые описывают случайную величину не в деталях, а суммарно. К числу таких характеристик случайной величины относятся:

1. Мо — модуль ;

2. Ме — медиана;

3. М[X] — математическое ожидание;

4. D[X] — дисперсия;

5.M[Xk] — момент k-го порядка;

6. E[X] — эксцесс;

7. S[X] — коэффициент асимметрии (асимметрия ).

Числовые характеристики случайных величин – это не случайные числа.

Модулем дискретной случайной величины называется то ее возможное значение, которое имеет наибольшую вероятность появления.

Для непрерывной случайной величины модуль соответствует значению, для которого функция Имеет максимальное значение

Медианой непрерывной случайной величины называется то ее значение, для которого интегральная функция принимает значение равное 0.5 . Это означает, что с равной вероятностью случайная величина может быть больше и меньше ее медианного значения.

2.4.1 Математическое ожидание и его свойства.

Математическим ожиданием дискретной случайной величины называют сумму произведений возможных значений случайной величины на вероятности их появления

Математическое ожидание случайной величины – это такое число, вокруг которого колеблются (бывают больше или меньше) значения случайной величины в каждом из опытов. Используют и другие обозначения:

M(x) = Mx = mx = m

Частный случай:

Если , то математическое ожидание такой случайный величины равно его среднему арифметическому

Пример с игральной костью

.

— для непрерывной случайной величины.

Свойства математического ожидания.

1.  .

Математическое ожидание постоянной величины равно самой величине.

2.

Постоянный множитель можно выносить за скобки .

3.

Математическое ожидание суммы случайной величины и постоянной равно сумме математического ожидания случайной величины и постоянной

4. .

Для любых двух случайных величин математическое ожидание их суммы равно сумме их математических ожиданий

4’.

5. При условии, что — независимые случайные величины

Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий.

2.4.2  Дисперсия случайных величин и ее свойства

Дисперсией называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

Дисперсия характеризует разброс случайной величины вокруг ее сред­него значения и определяется выражениями:

— для дискретной случайной величины;

— для непрерывной случайной величины.

Закон распределения случайной величины однозначно определяет все её числовые характеристики. Важнейшими являются математическое ожидание и дисперсия. Можно представить «анкету» случайной величины таким образом:

Ф И О

Закон распределения. Мат. ожидание. Дисперсия.

За меру разброса случайной величины принято брать величину

— среднеквадратичное отклонение (СКО);

СКО = .

Используют также нормированное СКО ; .

Свойства дисперсии

1) Дисперсия постоянной величины равна 0

2) Постоянный множитель выносится за знак дисперсии с возведением в квадрат.

3)  Дисперсия не изменяется, если к случайной величине прибавить или отнять случайное число.

4) Если — независимые случайные величины, то дисперсия суммы равна сумме дисперсий. Дисперсия разности так же равна сумме дисперсий.

;

;

.

5)  при . Дисперсия произведения независимых случайных величин с нулевым математическим ожиданием равна произведению дисперсий.

Полезное соотношение:

.

Дисперсия случайной величины равна математическому ожиданию квадрата этой величины за вычетом квадрата математического ожидания.

Доказательство:

.

Приложение к лекции

-Проведем доказательство свойства На примере дискретных случайных величин. В этом случае конкретные значения, которые может принимать случайная величина Z=X+Y Определяются выражением zij =( xi + yj), i = 1, 2, …, n; j = 1, 2, …, m

Положим, что появление значения yj Это событие А И применим к этому событию формулу Полной вероятности :

. *)

Событие А Может появиться с одним из событий гипотез и отметим, что согласно теореме умножения, которая была использована при выводе формулы *)

P(Hi)·P(A/Hi) = P(A·Hi)

События-гипотезы состоят в появлении значений х1, х2, . . .,хn. Тогда

.

Следовательно, сумма в Фигурных скобках второго слагаемого должна равняться Вероятности Появления yj — . Тогда можно написать:

Доказательства других свойств матожидания

+

Доказательства свойства дисперсии

D[X+Y] =M[(X+Y-mx+y)2]=M[(X-mx+Y-my)2]=+2M[X-mx]·M[Y-my]

< Предыдущая   Следующая >

Непрерывная случайная величина

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Случайная величина называется непрерывной, если ее функция
распределения

 непрерывно дифференцируема. В этом случае

 имеет производную, которую обозначим через

 – плотность распределения вероятностей.

Плотностью распределения вероятностей непрерывной случайной
величины

 называются функцию

 – первую производную от функции распределения

:

Из этого определения следует, что функция распределения является
первообразной для плотности распределения.

Заметим, что для описания распределения вероятностей дискретной
случайной величины плотность распределения неприменима.

Вероятность того, что непрерывная случайная величина

 примет значение, принадлежащее интервалу

 равна определенному интегралу от плотности
распределения, взятому в пределах от

 до

.

Зная плотность распределения

,
можно найти функцию распределения

 по формуле:

Числовые характеристики непрерывной случайной величины

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для
дискретных случайных величин, сохраняются и для непрерывных величин.

Дисперсия непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

или равносильным равенством:

В частности, если все возможные значения

 принадлежат интервалу

,
то

или

Все свойства дисперсии, указанные для дискретных случайных
величин, сохраняются и для непрерывных случайных величин.

Среднее квадратическое отклонение
непрерывной случайной величины определяется так же, как и для дискретной
величины:

При решении задач, которые выдвигает практика, приходится
сталкиваться с различными распределениями непрерывных случайных величин.

Основные законы распределения непрерывных случайных величин

  • Нормальный закон распределения СВ
  • Показательный закон распределения СВ
  • Равномерный закон распределения СВ

Примеры решения задач


Пример 1

Дана
функция распределения F(х) непрерывной случайной величины 
Х.

Найти плотность распределения вероятностей f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания X на отрезок [a,b]. Построить графики функций F(x) и f(x).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Плотность
распределения вероятностей:

Математическое
ожидание:

Дисперсию
можно найти по формуле:

Вероятность
попадания на отрезок:

Построим графики функций F(x) и f(x).

График плотности
распределения

График функции
распределения


Пример 2

Случайная величина Х задана плотностью вероятности

Определить константу c, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал [0;0,25].

Решение

Константу

 определим,
используя свойство плотности вероятности:

В нашем случае:

Найдем математическое
ожидание:

Найдем дисперсию:

Искомая дисперсия:

Найдем функцию
распределения:

для

:

для

:

для

:

Искомая функция
распределения: 

Вероятность попадания
в интервал

:


Пример 3

Плотность
распределения непрерывной случайной величины

 имеет вид:

Найти:

а)
параметр

;

б)
функцию распределения

;

в)
вероятность попадания случайной величины

 в интервал

г)
математическое ожидание

 и дисперсию

д)
построить графики функций

 и

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В нашем
случае эта формула имеет вид:

б)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем отметить,
что:

Остается
найти выражение для

, когда

 принадлежит
интервалу

:

Получаем:  

в)
Вероятность
попадания случайной величины

 в интервал

:

г)
Математическое ожидание находим по формуле:

Для
нашего примера:

Дисперсию
можно найти по формуле:

Среднее
квадратическое отклонение равно квадратному корню из дисперсии:

д) Построим графики

 и

:

График плотности вероятности f(x)

График функции распределения F(x)

Задачи контрольных и самостоятельных работ


Задача 1

НСВ на всей
числовой оси oX задана интегральной функцией:

Найти
вероятность, что в результате 2 испытаний случайная величина примет значение,
заключенное в интервале (0;4).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Дана
дифференциальная функция непрерывной СВ Х. Найти: постоянную С, интегральную
функцию F(x).


Задача 3

Случайная
величина Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х — f(x).

б) Построить графики
f(x), F(x).

в) Найти вероятность
попадания НСВ в интервал (0; 3).


Задача 4

Дифференциальная
функция НСВ Х задана на всей числовой оси ОХ:

Найти:

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -4<X<4;

г) построить
графики f(x), F(X).


Задача 5

Случайная величина
Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х — f(x).

б) Построить
графики f(x), F(x).

в) Найти
вероятность попадания НСВ в интервал (0;π⁄2).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 6

НСВ X имеет
плотность вероятности (закон Коши)

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -1<X<1;

г) построить
графики f(x), F(X).


Задача 7

Случайная
величина X задана интегральной F(x) или дифференциальной f(x)
функцией. Требуется:

а) найти
параметр C;

б) при
заданной интегральной функции F(x) найти дифференциальную
функцию f(x), а при заданной дифференциальной функции f(x) найти интегральную
функцию F(x);

в)
построить графики функций F(x) и f(x);

г) найти
математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение σ(X);

д)
вычислить вероятность попадания в интервал P(a≤x≤b);

е)
определить, квантилем какого порядка является точка xp;

ж)
вычислить квантиль порядка p


Задание 8

Дана
интегральная функция распределения случайной величины X. Найти дифференциальную
функцию распределения, математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение.


Задача 9

Случайная
величина X задана интегральной функцией распределения

Найти
дифференциальную функцию, математическое ожидание и дисперсию X.


Задача 10

СВ Х
задана функцией распределения F(x). Найдите вероятность
того, что в результате испытаний НСВ Х попадет в заданный интервал (0;0,5).
Постройте график функции распределения. Найдите плотность вероятности НСВ Х и
постройте ее график. Найдите числовые
характеристики НСВ Х, если

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Функции случайных величин

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин (X_1,X_2,ldots,X_n), закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Y=varphi(X_1,X_2,ldots,X_n).

(6.1)

Требуется определить закон распределения случайной величины Y, зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Y=varphi(X).

Пусть X — дискретная случайная величина, имеющая ряд распределения

begin{array}{|c|c|c|c|c|}hline{X}&x_1&x_2&cdots&x_n\hline{P}&p_1&p_2&cdots&p_n\hlineend{array}

Тогда Y=varphi(X) также дискретная случайная величина с возможными значениями y_1=varphi(x_1),y_2=varphi(x_2),ldots,y_n=varphi(x_n). Если все значения y_1,y_2,ldots,y_n различны, то для каждого k=1,2,ldots,n события {X=x_k} и {Y=y_k=varphi(x_k)} тождественны. Следовательно,

P{Y=y_k}=P{X=x_k}=p_k

и искомый ряд распределения имеет вид

begin{array}{|c|c|c|c|c|}hline{Y}&y_1=varphi(x_1)&y_2=varphi(x_2)&cdots&y_n=varphi(x_n)\hline{P}&p_1&p_2&cdots&p_n\hlineend{array}

Если же среди чисел y_1=varphi(x_1),y_2=varphi(x_2),ldots,y_n=varphi(x_n) есть одинаковые, то каждой группе одинаковых значений y_k=varphi(x_k) нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения f(x) случайной величины X, найти плотность распределения g(y) случайной величины Y=varphi(X). При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция y=varphi(x) является монотонно возрастающей, непрерывной и дифференцируемой на интервале (a;b), на котором лежат все возможные значения величины X. Тогда обратная функция x=psi(y) существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

g(y)=fbigl(psi(y)bigr)cdot |psi'(y)|.

(6.2)


Пример 1. Случайная величина X распределена с плотностью

f(x)=frac{1}{sqrt{2pi}}e^{-x^2/2}

Найти закон распределения случайной величины Y, связанной с величиной X зависимостью Y=X^3.

Решение. Так как функция y=x^3 монотонна на промежутке (-infty;+infty), то можно применить формулу (6.2). Обратная функция по отношению к функции varphi(x)=x^3 есть psi(y)=sqrt[LARGE{LARGE{3}}]{y}, ее производная psi'(y)=frac{1}{3sqrt[LARGE{LARGE{3}}]{y^2}}. Следовательно,

g(y)=frac{1}{3sqrt{2pi}}e^{-sqrt[LARGE{LARGE{3}}]{y^2}/2}frac{1}{sqrt[LARGE{LARGE{3}}]{y^2}}


Рассмотрим случай немонотонной функции. Пусть функция y=varphi(x) такова, что обратная функция x=psi(y) неоднозначна, т. е. одному значению величины y соответствует несколько значений аргумента x, которые обозначим x_1=psi_1(y),x_2=psi_2(y),ldots,x_n=psi_n(y), где n — число участков, на которых функция y=varphi(x) изменяется монотонно. Тогда

g(y)=sumlimits_{k=1}^{n}fbigl(psi_k(y)bigr)cdot |psi'_k(y)|.

(6.3)


Пример 2. В условиях примера 1 найти распределение случайной величины Y=X^2.

Решение. Обратная функция x=psi(y) неоднозначна. Одному значению аргумента y соответствуют два значения функции x

begin{gathered}x_1=psi_1(y)=+sqrt{y};\x_2=psi_2(y)=-sqrt{y}.end{gathered}

Применяя формулу (6.3), получаем:

begin{gathered}g(y)=f(psi_1(y))|psi'_1(y)|+f(psi_2(y))|psi'_2(y)|=\\=frac{1}{sqrt{2pi}},e^{-left(-sqrt{y^2}right)^2/2}!left|-frac{1}{2sqrt{y}}right|+frac{1}{sqrt{2pi}},e^{-left(sqrt{y^2}right)^2/2}!left|frac{1}{2sqrt{y}}right|=frac{1}{sqrt{2pi{y}}},e^{-y/2}.end{gathered}


Закон распределения функции двух случайных величин

Пусть случайная величина Y является функцией двух случайных величин, образующих систему (X_1;X_2), т. е. Y=varphi(X_1;X_2). Задача состоит в том, чтобы по известному распределению системы (X_1;X_2) найти распределение случайной величины Y.

Пусть f(x_1;x_2) — плотность распределения системы случайных величин (X_1;X_2). Введем в рассмотрение новую величину Y_1, равную X_1, и рассмотрим систему уравнений

left{!begin{gathered}y=varphi(x_1;x_2);hfill\y_1=x_1.hfillend{gathered}right.

Будем полагать, что эта система однозначно разрешима относительно x_1,x_2

left{!begin{gathered}x_2=psi(y;y_2);hfill\x_1=y_1.hfillend{gathered}right.

и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины Y

g_1(y)=intlimits_{-infty}^{+infty}f(x_1;psi(y;x_1))!left|frac{partialpsi(y;x_1)}{partial{y}}right|dx_1.

Заметим, что рассуждения не изменяются, если введенную новую величину Y_1 положить равной X_2.


Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина Y является функцией случайного аргумента X с заданным законом распределения

Y=varphi(X).

Требуется, не находя закона распределения величины Y, определить ее математическое ожидание

M(Y)=M[varphi(X)].

Пусть X — дискретная случайная величина, имеющая ряд распределения

begin{array}{|c|c|c|c|c|}hline{x_i}&x_1&x_2&cdots&x_n\hline{p_i}&p_1&p_2&cdots&p_n\hlineend{array}

Составим таблицу значений величины Y и вероятностей этих значений:

begin{array}{|c|c|c|c|c|}hline{y_i=varphi(x_i)}&y_1=varphi(x_1)&y_2=varphi(x_2)&cdots&y_n=varphi(x_n)\hline{p_i}&p_1&p_2&cdots&p_n\hlineend{array}

Эта таблица не является рядом распределения случайной величины Y, так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины Y можно определить по формуле

M[varphi(X)]=sumlimits_{i=1}^{n}varphi(x_i)p_i,

(6.4)

так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции varphi(X), а содержит только закон распределения аргумента X. Таким образом, для определения математического ожидания функции Y=varphi(X) вовсе не требуется знать закон распределения функции varphi(X), а достаточно знать закон распределения аргумента X.

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

M[varphi(X)]=intlimits_{-infty}^{+infty}varphi(x)f(x),dx,

где f(x) — плотность распределения вероятностей случайной величины X.

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

M(X+Y)=M(X)+M(Y).

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

M(XY)=M(X)M(Y)+mu_{xy}.

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.


Дисперсия функции случайных величин

По определению дисперсии имеем D[Y]=M[(Y-M(Y))^2].. Следовательно,

D[varphi(x)]=M[(varphi(x)-M(varphi(x)))^2], где M(varphi(x))=M[varphi(X)].

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента Y=varphi(X) дисперсия выражается формулой

D[varphi(x)]=intlimits_{-infty}^{+infty}(varphi(x)-M(varphi(x)))^2f(x),dx,

(6.5)

где M(varphi(x))=M[varphi(X)] — математическое ожидание функции varphi(X); f(x) — плотность распределения величины X.

Формулу (6.5) можно заменить на следующую:

D[varphi(x)]=intlimits_{-infty}^{+infty}varphi^2(x)f(x),dx-M^2(X)

Рассмотрим теоремы о дисперсиях, которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

D!left[sumlimits_{i=1}^{n}X_iright]=sumlimits_{i=1}^{n}D[X_i]+2sumlimits_{i&lt;j}mu_{x_ix_j}

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

D!left[sumlimits_{i=1}^{n}X_iright]=sumlimits_{i=1}^{n}D[X_i]

Теорема 6.4. Дисперсия произведения двух независимых случайных величин вычисляется по формуле

D[XY]=D[X]D[Y]+M^2(X)D[Y]+M^2(Y)D[X].


Корреляционный момент функций случайных величин

Согласно определению корреляционного момента двух случайных величин X и Y, имеем

mu_{xy}=M[(X-M(X))(Y-M(Y))].

Раскрывая скобки и применяя свойства математического ожидания, получаем

mu_{xy}=M(XY)-M(X)M(Y).

(6.6)

Рассмотрим две функции случайной величины X

Y_1=varphi_1(X);qquad Y_2=varphi_2(X).

Согласно формуле (6.6)

mu_{y_1y_2}= M(Y_1Y_2)-M(Y_1)M(Y_2).

отсюда

mu_{y_1y_2}=M(varphi_1(X)varphi_2(X))-M(varphi_1(X))M(varphi_2(X)).

т.е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции.

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

|mu_{xy}|leqslantsqrt{D[X]cdot D[Y]}=sigma_xcdot sigma_y,

где sigma_x,sigma_y — средние квадратические отклонения величин X и Y.

Следствие 6.5. Для любых случайных величин X и Y абсолютная величина коэффициента корреляции не превосходит единицы:

|r_{xy}|leqslant1.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как найти электронный журнал моего ребенка
  • Как найти каспийское озеро на карте
  • Как найти вещь с помощью заговоров
  • Как найти нейтральные слова в тексте
  • Как найти пароль от wifi tp link