Как найти материал формула физика

Мы собрали основные формулы по физике с пояснениями в картинках. Более пятидесяти формул, разделенные по категориям физики: кинетика, динамика, статика, молекулярка, термодинамика, электричество, магнетизм, оптика, кинетика. Это не статья, а огромная шпаргалка по физике!

Основные формулы по физике: кинематика, динамика, статика

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Формулы по механике

Также давайте вспомним движение по кругу:

Формулы по кинематике

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Формулы по динамике

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

Формулы по статике

После статики можно рассмотреть и гидростатику:

Формулы по гидростатике

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Формулы по работе, энергии и мощности

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Основные формулы термодинамики и молекулярной физики

Последняя тема в механике – это “Колебания и волны”:

Формулы по колебаниям и волнам

Теперь можно смело переходить к молекулярной физике:

Формулы по молекулярной физике

Плавно переходим в категорию, которая изучает общие свойства макроскопических систем. Это термодинамика:

Формулы по термодинамике

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Формулы по электростатике

Переходим к постоянному электрическому току:

Формулы по постоянному электрическому току

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Формулы по магнитному полю электрического тока

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Формулы по электромагнитной индукции

Ну и, конечно, куда же без электромагнитных колебаний:

Формулы по электромагнитным колебаниям

Основные формулы оптической физики

Переходим к следующему разделу по физике – оптика. Здесь даны 8 основных формул, которые необходимо знать. Будьте уверены, задачи по оптике – частое явление:

Формулы по оптике 1

Формулы по оптике 2

Основные формулы элементов теории относительности

И последнее, что нужно знать перед экзаменом. Задачи по этой теме попадаются реже, чем предыдущие, но бывают:

Формулы по элементам теории относительности

Основные формулы световых квантов

Этими формулами приходится часто пользоваться в силу того, что на тему “Световые кванты” попадается немало задач. Итак, рассмотрим их:

Формулы по световым квантам

На этом можно заканчивать. Конечно, по физике есть ещё огромное количество формул, но они вам не столь не нужны.

Это были основные формулы физики

В статье мы подготовили 50 формул, которые понадобятся на экзамене в 99 случая из 100.

Совет: распечатайте все формулы и возьмите их с собой. Во время печати, вы так или иначе будете смотреть на формулы, запоминая их. К тому же, с основными формулами по физике в кармане, вы будете чувствовать себя на экзамене намного увереннее, чем без них.

Надеемся, что подборка формул вам понравилась!

P.S. Хватило ли вам 50 формул по физике, или статью нужно дополнить? Пишите в комментариях.

Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы  неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика, термодинамика и молекулярная физика, электричество. Их и возьмем!

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные формулы по физике динамика, кинематика, статика

Начнем с самого простого. Старое-доброе любимое  прямолинейное и равномерное движение.

Формулы кинематики:

Формулы, кинематика

 

Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

Формулы, динамика

 

После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

Формулы, статика

 

Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!

Формулы, работа и энергия

 

Основные формулы молекулярной физики и термодинамики

Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

Формулы, МКТ

 

Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Формулы, термодинамика

Формулы, термодинамика

Основные формулы по физике: электричество

Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

Формулы, электричество

 

Далее берем постоянный и переменный ток.

Формулы, постоянный ток

 

И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

Формулы, электромагнетизм

 

На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса. Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Формула массы через плотность и объем является одной из базовых формул физики, изучаемых в рамках школьной программы еще в седьмом классе. Она пригодится в решении многих задач.

Формула зависимости массы от объема и плотности

Для того, чтобы найти плотность жидкости или твердого вещества, существует базовая формула: плотность равна массе, поделенной на объем. 

Записывается это так:

ρ = m / V

Формула объема в физике

И из нее можно вывести еще две формулы.

Формулу для объема тела:

V = m / ρ

А также формулу для расчета массы:

m = V * ρ

Как видите, запомнить последнюю очень легко: это единственная формула, где две единицы нужно умножить.

Для запоминания этой зависимости можно использовать рисунок в виде «пирамидки», разделенной на три секции, в вершине которой находится масса, а в нижних углах – плотность и объем.

Несколько иначе обстоят дела с газами. Рассчитать их вес гораздо сложнее, так как у газов нет постоянной плотности: они рассеиваются и занимают весь доступный им объем. 

Для этого пригодится понятие молярной массы, которую можно найти, сложив массу всех атомов в формуле вещества при помощи данных из периодической таблицы.

Как найти массу газа

Вторая единица, которая нам понадобится – количество вещества в молях. Его можно вычислить по уравнению реакции. Подробнее об этом можно узнать в рамках курса химии. 

Другой способ нахождения мольного количества – через объем газа, который нужно поделить на 22,4 литра. Последнее число – это объемная постоянная, которую стоит запомнить. 

В итоге, зная две предыдущие величины, мы можем определить массу газа:

m = n * M,

где M – это молярная масса, а n – количество вещества.

Результат получится в граммах, поэтому для решения физических задач важно не забыть перевести его в килограммы, поделив на 1000. Числа в этой формуле часто могут оказываться достаточно сложными, поэтому для вычислений может понадобиться калькулятор.

Еще один нестандартный случай, с которым можно столкнуться – необходимость найти плотность раствора. Для этого существует формула средней плотности, построенная аналогично формулам других средних величин. 

Для двух веществ посчитать ее можно так:

(m1 + m2) / V1 + V2.

Также из этой формулы можно вывести несколько других в зависимости от того, какие из величин известны по условию задачи.

Таблица плотности некоторых веществ

Плотность многих веществ известна заранее и легко находится по соответствующей таблице. 

В работе с ней важно обращать внимание на размерности и не забывать о том, что все данные собраны при нормальных условиях: комнатной температуре в 20 градусов Цельсия, а также определенном давлении, влажности воздуха и так далее. 

Таблица плотностей веществ

Плотности других, более редких веществ можно найти онлайн.

Как минимум одно из значений плотности стоит запомнить, так как оно часто появляется в задачах. Это плотность воды – 1000 кг/м3 или 1 г/см3.

Примеры решения задач

Задача 1

Условие: имеется алюминиевый брусок со сторонами 3, 5 и 7 сантиметров. Какова его масса?

Решение:

Найдем объем бруска:

V = a * b * c;

V = 3 * 5 * 7 = 105 см3;

Табличное значение плотности алюминия: 2800 кг/м3 или 2,8 г/см3;

Вычислим массу бруска:

m = V * ρ;

m = 105 * 2,8 = 294 г.

Ответ: m = 294 г. 

Алюминиевый брусок

Задача 2 

Задача по смежной теме.

Условие: сколько энергии потребуется для того, чтобы довести воду комнатной температуры (20 градусов Цельсия) из стакана (ёмкость 200 мл) до температуры кипения?

Решение:

Найдем недостающую информацию: температура кипения воды t2 = 100 градусов Цельсия, удельная теплоемкость воды с = 4200 Дж/кг * С, плотность воды 1 г/см3, 1 мл воды = 1 см3;

Найдем массу воды:

m = V * ρ;

m = 200 * 1 = 200 г = 0,2 кг;

Найдем энергию:

Q = c * m * (t2 – t1);

Q = 4200 * 0,2 * (100 – 20) = 67200 Дж = 67,2 кДж.

Ответ: Q = 67,2 кДж.

Кипяток в стакане

Задача 3

Задача с молярной массой.

Условие: найдите массу CO2 при объеме в 5,6 л.

Решение:

Найдем молярную массу CO2 :

M = 12 + 16 * 2 = 44 г/моль;

Найдем количество вещества через объем:

n = 5,6 / 22,4 = 0,25 моль;

Найдем массу:

m = n * M;

m = 0,25 * 44 = 11 г.

Ответ: m = 11 г.

Пожалуй, ни один современный учебник по молекулярной физике, и тем более по химии не обойдется без таких понятий как: количество вещества, моль, молярная масса, число Авогадро. Давайте попробуем разобраться что же это такое, и заодно посчитаем сколько молекул в стакане воды.

Когда речь заходит о атомах и молекулах, из которых состоят вещества, следует понимать две вещи:

  1. Мы имеем дело с чем-то очень «маленьким».
  2. Этого «маленького» очень, и очень много.

Все это, естественно, вносит свои коррективы. К примеру, для измерения массы атомов и молекул использовать привычные нам граммы и килограммы будет не совсем удобно.

Так, по современным расчетам, атом водорода имеет массу около 1,6726• 10-27  кг. а атом углерода 1,995 • 10-26 . это конечно в 12 раз больше, но все равно очень мало. И понятно, что для работы с такими числами понадобиться хороший инженерный калькулятор и железные нервы. Ну а для тех, кто не обладает ни тем, ни другим была введена специальная величина, которая свела все расчеты на уровень арифметики начальной школы.

Что это такое?

Прежде чем приводить формулы массы в физике, дадим ей определение. Этим термином называется физическая величина, которая пропорциональна количеству материи, заключенной в данном теле. Следует не путать ее с количеством вещества, которое выражается в молях. Масса в СИ вычисляется в килограммах. Другими ее единицами являются тонны и граммы.

Вам будет интересно:Слово «кворум». Значение и происхождение термина. Нюансы определения

Масса бывает двух важных видов:

  • инерционная;
  • гравитационная.

Первый вид рассматриваемой физической величины характеризует инерционные свойства тела, то есть способность некоторой силы изменять скорость тела, а также кинетическую энергию, которой оно обладает.

Гравитационная масса связана с интенсивностью притяжения между любыми телами. Она играет важную роль в космосе, поскольку благодаря притяжению между звездами и планетами существует наша галактика и наша Солнечная система. Однако гравитационная масса проявляет себя и в повседневной жизни в виде наличия у всех тел некоторого веса.

Расчет нормальной массы тела по возрасту и росту

Как таковой формулы нормального веса в зависимости от возраста и роста не существует. Здесь идет речь о таблице готовых значений. В ней указываются рост, возраст и пол. Достаточно отыскать сначала свой рост, затем — возраст и пол, и найти значение на пересечении нужных строки и столбца. Это и будет оптимальной массой тела. Далее в таблице представлен нормальный вес человека по годам возраста и росту.

По такой формуле можно рассчитать вес для большинства людей, за исключением:

  • профессиональных спортсменов;
  • беременных женщин;
  • людей, страдающих отеками и другими нарушениями, приводящими к превышению нормы веса.

Формулы для инерции

Инерционная масса

В физике формула нахождения массы инерционной имеет следующий вид:

m = F / a

Здесь F — сила, которая на тело действует и вызывает появление у него ускорения a. Формула показывает, что чем больше будет действующая сила и чем меньше она сообщит ускорение телу, тем больше инерционная масса m.

Помимо записанного выражения, следует привести еще одну формулу нахождения массы в физике, которая связана с явлением инерции. Эта формула имеет вид:

m = p / v

Здесь p — количество движения (импульс), v — скорость тела. Чем большим количеством движения обладает тело и чем меньше его скорость, тем большую инерционную массу оно имеет.

Расчет по индексу массы тела

Еще один популярный способ, как определить нормальный вес человека, требует вычисления индекса массы тела (ИМТ). Но эта методика устроена немного иначе — по ней не вычисляют конкретное значение массы тела, а определяют, соответствует ли она норме. ИМТ позволяет оценить, какая масса тела: избыточная, нормальная или недостаточная.

Формула расчета нормального веса здесь выглядит следующим образом:

ИМТ = Вес (кг)/Рост2 (м).

При весе 75 кг и росте 180 см ИМТ составит 75/1,8 · 1,8 = 23,15.

Полученное по формуле число остается сравнить со следующими значениями:

  • менее 15 — острый недостаток веса;
  • 15-20 — недостаточная масса тела;
  • 20-25 — нормальный вес;
  • 25-30 — избыточная масса тела;
  • 30-35 — ожирение 1 степени;
  • 35-40 — ожирение 2 степени;
  • более 40 — ожирение третьей степени.

Советуем изучить: «Топ-5 протеиновых батончиков для похудения».

Оптимальным считается вес, который соответствует ИМТ, равному 23. Именно расчет по индексу массы тела на сегодня выступает самым точным. Он разработан для обычных людей с учетом современных условий их жизни, достижений медицины и последних наблюдений. Метод с ИМТ также рекомендован ВОЗ.

Но рассчитанное значение опять же получается усредненным. К примеру, у спортсменов и тяжелоатлетов ИМТ может быть выше, но их масса тела не будет относиться к ожирению. Кроме того, многие, у кого по ИМТ вес соответствует норме, считают себя полными. Это возможно, поскольку методика не учитывает тип телосложения.

При одном и том же ИМТ количество жира и мышц может быть разным. Поэтому тем, кого даже при нормальном ИМТ не устраивает своя фигура, рекомендуют просто заняться фитнесом и начать соблюдать правильное питание. Для тех, кто решит улучшить свою фигуру, могут быть полезны спортивное питание и диетические продукты.

Советуем изучить: «Самые простые рецепты с протеином».

Формула для гравитации

Масса и гравитация

Математическое описание явления гравитации стало возможным благодаря многочисленным наблюдениям за движением космических тел. Результаты всех этих наблюдений в XVII веке обобщил Исаак Ньютон в рамках закона всемирного тяготения. Согласно этому закону, два тела, которые имеют массы m1 и m2, друг к другу притягиваются с такой силой F:

F = G * m1 * m2 / r2

Где r — расстояние между телами, G — некоторая постоянная.

Если в данное выражение подставить значение массы нашей планеты и ее радиус, тогда мы получим следующую формулу массы в физике:

m = F / g

Здесь F — сила тяжести, g — ускорение, с которым тела падают на землю вблизи ее поверхности.

Как известно, наличие силы тяжести обуславливает то, что все тела имеют вес. Многие путают вес и массу, полагая, что это одна и та же величина. Обе величины действительно связаны через коэффициент g, однако вес — величина изменчивая (она зависит от ускорения, с которым движется система). Кроме того, вес измеряется в ньютонах, а масса в килограммах.

Весы, которыми человек пользуется в быту (механические, электронные), показывают массу тела, однако измеряют его вес. Перевод между этими величинами является лишь вопросом калибровки прибора.

Весы для определения массы

Расчет по росту

Метод расчета нормального веса по росту больше известен как формула Брока — французского антрополога. Она наиболее популярна, поскольку самая простая из всех. Считается, что формула подходит для расчета нормальной массы тела у людей ростом от 155 до 185 см.

Как вычислить нормальный вес с учетом роста по формулам:

  1. Для мужчин: рост (см) — 110.
  2. Для женщин: рост (см) — 100.

К примеру, рост мужчины составляет 185 см. В таком случае нормой для него будут считаться 185 — 110 = 75 кг. Для женщины с ростом 165 см здоровая масса тела составит 165 — 100 = 65 кг.

Советуем изучить: «Для чего девушкам нужен протеин».

При расчете по этим формулам необходимо учесть следующее:

  1. Для людей 20-30 лет вычисленное значение нужно уменьшить на 11%, а для тех, кто старше 50 лет — увеличить на 6%.
  2. Тип телосложения. Оно может быть астеническим, нормостеническим и гиперстеническим. Для астенического необходимо уменьшить вычисленную норму на 10%, а для гиперстенического, наоборот, увеличить на 10%.

Критерием для определения типа телосложения выступает обхват запястья рабочей руки:

  1. Астенический: у женщин — менее 16 см, у мужчин — менее 17 см.
  2. Нормостенический: у женщин — 16-18 см, у мужчин — 17-20 см.
  3. Гиперстенический: у женщин — более 18 см, у мужчин — более 20 см.

Формула Лоренца

Есть еще один способ, как рассчитать нормальный вес женщины или мужчины, в котором учитывается только рост. Здесь расчет ведется по формуле Лоренца:

Масса (кг) = (Рост (см) — 100) — (Рост (см) — 150)/2.

К примеру, для мужчины ростом 190 см оптимальны:

(190 — 100) — (190 — 150)/2 = 70 кг.

Плотность и объем

Как было отмечено, масса — это неотъемлемое свойство материи, поэтому ее можно вычислить с помощью других физических характеристик тел. Этими характеристиками являются объем и плотность.

Объем представляет собой некоторую часть пространства, которая ограничена поверхностью тела. Измеряется он в кубических единицах длины, например, в м3.

Плотность — это свойство вещества, которое отражает количество материи, помещенной в единице объема.

Формула массы вещества через объем и плотность записывается так:

m = ρ * V

Чем больше объем тела и чем выше его плотность, тем большей массой оно обладает. В связи с этим фактом полезно вспомнить знаменитую загадку про то, что имеет большую массу: 1 тонна пуха или 1 тонна железа. В отсутствии выталкивающей архимедовой силы массы обоих веществ равны. Пух имеет гораздо меньшую плотность, чем железо, однако разница в плотности компенсируется аналогичной разницей в объеме.

Применение, значение

В химии при написании химических уравнений, после знакомства законом постоянства массы веществ, становится понятно как использовать величину количества вещества и понятно ее значение. Например, в реакции горения водорода, его требуется 2 к 1 значению кислорода. Зная массу водорода, можно получить количества вещества кислорода, участвующего в реакции горения.

В реальных опытах вместо количества вещества «в штук» используют единицу измерения [моль]. Это сокращает соотношение исходных реактивов и упрощает вычисления. Фактически в 1 моле количество единиц вещества содержится 6 ·1023 моль−1 , что называться число Авогадро [N

A]
.
Для вычисления количества вещества на основании его массы пользуются понятием молярная масса, т.е отношение массы вещества к количеству к количеству молей этого вещества:

n = m/M,

где m — масса вещества, M — молярная масса вещества.

Молярная масса измерятся в [ г/моль].

Также молярная масса может быть найдена произведением молекулярной массы этого вещества на количество молекул в 1 моле — на число Авогадро.

Количество вещества газообразного определяют на основе его объема:

n = V / Vm,

где где V — объём газа при нормальных условиях, а Vm — молярный объем газа при тех же условиях, равный 22,4 л/моль по закону Авогадро.

Подводя итоги всех расчетов, можно вывести общую формулу для количества вещества:

Относительная

Понятие об относительной массе применяется в атомной физике и в химии. Поскольку массы атомов и молекул имеют очень маленькие значения (≈10-27 кг), то оперировать ими на практике при решении задач оказывается крайне неудобно. Поэтому сообществом ученых было решено использовать так называемую относительную массу, то есть рассматриваемая величина выражается в единицах массы по отношению к массе известного эталона. Этим эталоном стала 1/12 массы атома углерода, которая равна 1,66057*10-27 кг. Соответствующая относительная величина получила название атомной единицы (а. е. м.).

Массы атомов

Формулу относительной массы M можно записать так:

M = ma / (1 / 12 * mC)

Где ma — масса атома в килограммах, mC — масса атома углерода в килограммах. Например, если в это выражение подставить значение массы атома кислорода, то его а. е. м. будет равна:

M = 26,5606 * 10-27 / (1,66057 * 10-27) = 15,9949.

Поскольку а. е. м. является относительной величиной, то она не имеет размерности.

Удобство применения этого термина на практике заключается не только в небольших и целых значениях этой единицы измерения. Дело в том, что значение а. е. м. совпадает по величине с молярной массой, выраженной в граммах. Последняя представляет собой массу одного моль вещества.

Как найти массу вещества

Окружающее нас пространство наполнено разными физическими телами, которые состоят из разных веществ с различной массой. Школьные курсы химии и физики, ознакомляющие с понятием и методом нахождения массы вещества, прослушали и благополучно забыли все, кто учился в школе. Но между тем теоретические знания, приобретенные когда-то, могут понадобиться в самый неожиданный момент.

1

Вычисление массы вещества с помощью удельной плотности вещества. Пример – имеется бочка на 200 литров. Нужно заполнить бочку любой жидкостью, скажем, светлым пивом. Как найти массу наполненной бочки? Используя формулу плотности вещества p=m/V, где p – удельная плотность вещества, m – масса, V – занимаемый объем, найти массу полной бочки очень просто:

  • Меры объемов – кубические сантиметры, метры. То есть бочка на 200 литров имеет объем 2 м³.
  • Мера удельной плотности находится с помощью таблиц и является постоянной величиной для каждого вещества. Измеряется плотность в кг/м³, г/см³, т/м³. Плотность пива светлого и других алкогольных напитков можно посмотреть на сайте. Она составляет 1025,0 кг/м³.
  • Из формулы плотности p=m/V => m=p*V: m = 1025,0 кг/м³* 2 м³=2050 кг.

Бочка объемом 200 литров, полностью наполненная светлым пивом, будет иметь массу 2050 кг.

2

Нахождение массы вещества с помощью молярной массы. M (x)=m (x)/v (x) – это отношение массы вещества к его количеству, где M (x) – это молярная масса X, m (x) – масса X, v (x) – количество вещества X. Если в условии задачи прописывается только 1 известный параметр – молярная масса заданного вещества, то нахождение массы этого вещества не составит труда. Например, необходимо найти массу йодида натрия NaI количеством вещества 0,6 моль.

  • Молярная масса исчисляется в единой системе измерений СИ и измеряется в кг/моль, г/моль. Молярная масса йодида натрия – это сумма молярных масс каждого элемента: M (NaI)=M (Na)+M (I). Значение молярной массы каждого элемента можно вычислить по таблице, а можно с помощью онлайн-калькулятора на сайте: M (NaI)=M (Na)+M (I)=23+127=150 (г/моль).
  • Из общей формулы M (NaI)=m (NaI)/v (NaI) => m (NaI)=v (NaI)*M (NaI)= 0,6 моль*150 г/моль=90 грамм.

Масса йодида натрия (NaI) с массовой долей вещества 0,6 моль составляет 90 грамм.

3

Нахождение массы вещества по его массовой доле в растворе. Формула массовой доли вещества ω=*100%, где ω – массовая доля вещества, а m (вещества) и m (раствора) – массы, измеряемые в граммах, килограммах. Общая доля раствора всегда принимается за 100%, иначе будут погрешности в вычислении. Несложно из формулы массовой доли вещества вывести формулу массы вещества: m (вещества)=[ω*m (раствора)] /100%. Однако есть некоторые особенности изменения состава раствора, которые нужно учитывать при решении задач на эту тему:

  • Разбавление раствора водой. Масса вещества растворенного X не изменяется m (X)=m’(X). Масса раствора увеличивается на массу добавленной воды m’ (р)=m (р)+m (H2O).
  • Выпаривание воды из раствора. Масса растворенного вещества X не изменяется m (X)=m’ (X). Масса раствора уменьшается на массу выпаренной воды m’ (р)=m (р)-m (H2O).
  • Сливание двух растворов. Массы растворов, а также массы растворенного вещества X при смешивании складываются: m’’ (X)=m (X)+m’ (X). m’’ (р)=m (р)+m’ (р).
  • Выпадение кристаллов. Массы растворенного вещества X и раствора уменьшаются на массу выпавших кристаллов: m’ (X)=m (X)-m (осадка), m’ (р)=m (р)-m (осадка).

4

Алгоритм нахождения массы продукта реакции (вещества), если известен выход продукта реакции. Выход продукта находится по формуле η=*100%, где m (x практическая) – масса продукта х, которая получена в результате практического процесса реакции, m (x теоретическая) – рассчитанная масса вещества х. Отсюда m (x практическая)=[η*m (x теоретическая)]/100% и m (x теоретическая)=[m (x практическая)*100%]/η. Теоретическая масса получаемого продукта всегда больше практической, в связи с погрешностью реакции, и составляет 100%. Если в задаче не дается масса продукта, полученного в практической реакции, значит, она принимается за абсолютную и равна 100%.

Варианты нахождение массы вещества – небесполезный курс школьного обучения, а вполне применяемые на практике способы. Каждый сможет без труда найти массу необходимого вещества, применяя вышеперечисленные формулы и пользуясь предлагаемыми таблицами. Для облегчения задания прописывайте все реакции, их коэффициенты.

физика формулыВсе основные формулы по школьной физике, которые помогут  для подготовке к ЕГЭ, а также для решения задач в  7, 8, 9, 10 и 11 классах.  Все формулы структурированы, что позволит из запомнить гораздо быстрее.

Равномерное движение

S= U∙t,  U= S/t,  t=S/U Уравнение движения при равномерном движении?

где U-скорость, t-время, S-расстояние

x=x0+U0t Координата при равномерном прямолинейном движении

Равномерное движение по окружности

T=t/N,   T=1/v,   Т=2π/ω
T=2πR/U,   T=2π ∙√(R/a)
T – период
N – количество оборотов
v=1/T,   v=ω/2π,   v=U/2πR,
v=1/2π ∙√(a/R),   v=N/t,   v=L/t
v – частота
R – радиус окружности
ω=2π/Т,  ω=2πv,  ω=φ/t
ω=U/R,     ω=√(a/R)
ω – угловая скорость
t – время
υ=2πR/Т,  υ=2πvR,   U=ωR
U=√(a/R),   U=L/t
U – линейная скорость тела

a=υ2/R,   a=ω2R,   a=Uω
a=4π2R/T2

a – центростремительное ускорение
 L=φR L – длина дуги окружности (φ – угол поворота (в радианах))

Равноускоренное движение

X=X00∙t+(a∙t2)/2  Уравнение прямолинейного равноускоренного движения
S=U0t+a∙t2/2
S= (υ202) /2а 
S= (υ+υ0) ∙t /2 = Uср∙t
Расстояние при равноускоренном  движении
υ=υ0+a∙t Rонечная скорость тела при равноускоренном движении
a=(υ-υ 0)/t       Ускорение
U=√(2gh)
tпадения=√(2h/g)
S=U∙√(2h/g)
— Падение тела с высоты
— Горизонтальный бросок
(h-высота падения, g – ускорение свободного падения 9,8м/с2, t-время падения, S-расстояние)
hmax=U02/2g Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной
скоростью U0
tподъема=U0/g Время подъема тела на максимальную высоту
tполета=2U0/g Полное время полета (до возвращения в исходную точку)
Sторм=U02/2a Тормозной путь тела двигавшегося до начала торможения со скоростью U0 , а затем тормозившего с ускорением а
U = √(U02+(gt)2)
tgβ = Uy/Ux = gt/U0
Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости
к горизонту
hmax=(U0∙sinα)2/2g
tподъема=(U0∙sinα)/g
Бросок с земли на землю под углом к горизонту равным α. Время подъема до высшей точки и
максимальная высота

Sx=Ux∙tполета
S=U0∙cosα∙tполета   
S=U02∙sin2α/g   
tполета=2U02∙sinα/g   

Полное время и дальность полета при броске под углом к горизонту

Импульс

p=mυ

Импульс тела  

Ft=∆p

Импульс силы 

F=∆p/∆t

Второй закон Ньютона в импульсной форме

pk=pn

Закон сохранения импульса: в случае если на систему тел не
действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется

Энергия

A=F∙S∙cosα

Механическая работа (F – сила, S – путь,  – угол между направлением движения и силой)

P=A/t=F∙υ

Мощность (если мощность переменная, то рассчитывается средняя мощность)

Eп=mgh

Потенциальная энергия тела, поднятого над землей

Eп=kx2/2

Потенциальная энергия упруго деформированного тела

η=Aп/Аз

Коэффициент полезного действия

Ek=mυ2/2

Кинетическая энергия тела

Молекулярная физика

ρ=m/V

Плотность (ρ – его плотность,  m – масса вещества, V – объем)

ν=N/ Na = m/M

Количество вещества (N – число частиц вещества, содержащееся в массе вещества m, Na – число Авогадро, m0 – масса одной молекулы вещества, M – молярная масса)

М=m/ν

Молярная масса

m0=m/N=M/Na

Масса одной молекулы вещества

P=nkT=1/3nm0υ2
pV=NkT

Основное уравнение молекулярно-кинетической теории идеального газа (p – давление газа, n = N/V – концентрация его молекул, m0 – масса одной молекулы, Uкв – средняя квадратичная скорость)

Uкв=√(3kT/m0), Uкв=√(3RT/M)

Cредняя квадратичная скорость

Ek=3/2∙kT

Средняя кинетическая энергия поступательного движения одной молекулы (k – постоянная Больцмана, T – абсолютная температура)

kNa=R

Связь универсальной газовой постоянной и постоянной Авогадро

PV=m/M∙RT

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)

PV=const (m=const и T= const)

Газовые законы. Закон Бойля-Мариотта (изотермический процесс)

V/T=const (m=const и p= const)

Газовые законы. Закон Гей-Люссака (изобарный процесс)

P/T =const (m=const и V= const)

Газовые законы. Закон Шарля (изохорный процесс) 

PV/T=const (m=const )

Газовые законы. Универсальный газовый закон (Клапейрона)

V=Vo(1+λt)

Тепловое расширение газов описывается законом Гей-Люссака. (V – объем жидкости при 0 °С, V – при температуре t , λ – коэффициент объемного расширения жидкости)

l=lo(1+αt)
S=So(1+2αt)
V=Vo(1+3αt)

Изменение линейных размеров, площади и объема тела (lo, So , Vo – соответственно длина, площадь поверхности и объем тела при 0 °С, α – коэффициент линейного расширения тела)

Динамика

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения

F=ma

Второй закон Ньютона (F – сила, m – масса, а – ускорение).

F1-2 = — F2-1 

Третий закон Ньютона (сила действия равна силе противодействия)

Fупр = kx

Сила упругости (k – жесткость пружины, х – величина растяжения (или сжатия) пружины, оно равно разности между
конечной и начальной длиной деформируемой пружины)

Fy=-kx

Закон Гука 

Fтр.скольжения=Fтр.макс = μТ

Сила трения скольжения ( μ– коэффициент трения, N – сила реакции опоры.) 

F=mg
F=G∙M∙m/r2
g=G∙M/Rn2 

Сила тяжести — Закон Всемирного тяготения  (G – гравитационная постоянная, F – сила с которой притягивается тело массой m к телу или планете массой M, r – расстояние между центрами этих тел)

gh = GM/(Rn+h)2 =
gh = gRn2/(Rn+h)2     

Ускорение свободного падения на некоторой высоте от поверхности планеты (h – высота над поверхностью планеты)

U = √(GM/(Rn+h)) 
U = √(gRn2/(Rn+h))

Скорость спутника на круговой орбите радиусом r = Rn + h

U=√(gRn)

Первая космическая скорость (скорость движения спутника по орбите вблизи поверхности планеты)

T12/T22 = R13/R23 

Закон Кеплера для периодов обращение T1 и T2 двух тел, вращающихся вокруг одного притягивающего
центра на расстояниях R1 и R2 соответственно

Р=m(g+a)
Р=m(g-a)

Вес тела, движущегося с ускорением а↑ 
Вес тела, движущегося с ускорением а↓   

Термодинамика

Q=cm(T2-T1)
C=cm
Q=C(T2-T1)

Количество теплоты (энергии) необходимое на нагревания некоторого тела (C-теплоемкость, c-удельная теплоемкость, m- масса, t- температура) 

Q=λm

Количество теплоты при плавлении (λ – удельная теплота плавления, m – масса расплавившегося тела или кристаллизовавшейся жидкости)

Q=rm

Количество теплоты при парообразовании (r – удельная теплота парообразования, m – масса испарившейся жидкости или конденсировавшегося пара)

Q=qm

Количество теплоты при сгорании топлива (q – удельная теплота сгорания топлива, m – масса сгоревшего топлива)

A=P∙ΔV = m/M∙ R∙ΔT, p = const

Работа идеального газа

U=3/2∙M/µ∙RT

Внутренняя энергия идеального одноатомного газа

ΔU=A+Q

Первый закон (начало) термодинамики (ЗСЭ) (Q – теплота полученная (отданная) газом)

η= (Q1 — Q2)/ Q1

КПД тепловых двигателей

η= (Т1 — Т2)/ Т1 

КПД идеальных двигателей (цикл Карно) 

ρ=pM/RT

Абсолютная влажность (ρ — абсолютная влажность, р – парциальное давление водяного пара, М – молярная масса, R – универсальная газовая постоянная, Т – абсолютная температура)

φ=ρ/ρ0∙100%
φ=P/P0∙100%

Относительная влажность
(ρ — абсолютная влажность, ρ0 -количество водяного пара, которое необходимо для насыщения 1 м3 воздуха при данной температуре)
(P — давление водяного пара, Pо — давление насыщенного пара при данной температуре)

Ep = σS

Поверхностное натяжение (σ – коэффициент поверхностного натяжения данной жидкости)

Fн= σL

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L

Статика и Гидростатика

M=F∙ℓ

Момент силы (F – сила, ℓ – плечо силы, т.е. кратчайшее расстояние между точкой опоры, относительно которой происходит вращение и линией действия силы)

Р=F/S

Давление (F – сила, S – площадь на которую распределено действие силы)

P=ρ∙g∙h
P=P0+ρ∙g∙h

Давление на глубине жидкости (p0 – атмосферное давление, ρ – плотность жидкости, g – ускорение свободного падения, h – высота столба жидкости)

Fa=ρж∙g∙V

Закон (сила) Архимеда (V – объем погруженной части тела, который иногда также называют объемом вытесненной жидкости)

Электростатика

q = Ne

Электрический заряд (N – количество элементарных зарядов, е – элементарный заряд)

λ=q/L,  σ=q/S,  ρ=q/V

Линейная, поверхностная и объемная плотность заряда 

F=k∙q1∙q2/R2
F=k∙q1∙q2/εr2

Закон Кулона (сила электростатического взаимодействия двух зарядов величиной q1 и q2, находящихся на расстоянии r друг от друга в веществе с диэлектрической проницаемостью ε):

E=1/(4πεε0)

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра

E= σ/(2εε0)

Напряженность электрического поля, которую создает заряженная плоскость

ε=E0/E

Диэлектрическая проницаемость

E=F/q

Напряженность электрического поля

E=k∙q/R2

Напряженность электрического поля точечного заряда

E=2πkσ

Напряженность электрического поля бесконечной плоскости

W= k∙q1q2/R = k∙q1q2/εr

Потенциальная энергия взаимодействия двух электрических зарядов

U=Ed,  Δφ=E∙ Δl

Cвязь между напряженностью поля и напряжением

A=qU,  U=A/q

Работа электрического поля, Напряжение

A= qEd, U=E∙d

Работа электрического поля  в однородном поле при перемещении заряда вдоль его силовых линий, Напряжение для однородного электрического поля

φ=W/q

Потенциал

φ=k∙q/R

Потенциал точечного заряда

C=q/U

Электроемкость

C=S∙εε0/d

Электроемкость плоского конденсатора

q=CU

Заряд конденсатора

E = U/d = σ/εε0

Напряженность поля внутри конденсатора

F=qE/2

Сила притяжения пластин конденсатора

W=qU/2=q²/2С=CU²/2

Энергия заряженного конденсатора

Электрический ток

I=q/t

Сила тока (q – заряд, протекший через некоторое поперечное сечение проводника за время t)

R=ρ∙ℓ/S

Сопротивление проводника (l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала
проводника)

R=R0(1+αt)

Сопротивление проводника

I=U/R

Закон Ома для участка цепи (U – электрическое напряжение)

I1=I2=I, U1+U2=U, R1+R2=R

Законы последовательного соединения

U1=U2=U, I1+I2=I, 1/R1+1/R2=1/R

Законы параллельного соединения

ε=Aст/q

Электродвижущая сила источника тока, ЭДС (Aст – работа сторонних сил по перемещению заряда q)

I=ε/(R+r)

Закон Ома для полной цепи

I=ε/r

Сила тока короткого замыкания (R=0)

Q=A=I2Rt

Работа электрического тока (закон Джоуля-Ленца). Работа А электрического тока, протекающего по проводнику, обладающему сопротивлением преобразуется в теплоту Q выделяющуюся на проводнике

P=IU=U2/R=I2R

Мощность электрического тока

m = kQ = kIt

Электролиз. Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q,
прошедшему через электролит

Магнетизм

Fa=IBℓsinα

Сила Ампера (В – индукция магнитного поля, I – сила тока в проводнике, l – его длина, α – угол между
направлением силы тока (т.е. самим проводником) и вектором индукции магнитного поля)

M = NBIS∙sinα

Момент сил, действующих на рамку с током (N – количество витков, S – площадь рамки, α – угол между нормалью к рамке и вектором магнитной индукции)

Fл=Bqυ∙sinα

Сила Лоренца (q – электрический заряд частицы, υ – её скорость, α – угол между направлением движения частицы и вектором индукции магнитного поля)

R=mU/qB

Радиус траектории полета заряженной частицы в магнитном поле

B=Fmax/ℓ∙I

Вектор магнитной индукции

Ф=BSсos α Ф=LI

Магнитный поток Φ через площадь S

Ei=ΔФ/Δt

Закон электромагнитной индукции

Ei=Вℓυsinα

ЭДС индукции при движении проводника

Esi=-L∙ΔI/Δt

ЭДС самоиндукции

Wм=LI2/2

Энергия магнитного поля катушки

Колебания

a+ω02x=0

Уравнение описывает физические системы способные совершать гармонические колебания с циклической частотой ω0

x = A cos (ωt + φ0)

Уравнением движения для гармонических колебаний (x– координата тела в некоторый момент времени t, A – амплитуда колебаний, ω – циклическая частота колебаний, φ0 –начальная фаза колебаний).

Х=Хmax∙cos ωt

Уравнение гармонических колебаний

T=t/N,   v=N/t=1/T
ω=2πv=2π/T

Связь некоторых характеристик колебательного процесса (T – период, N – количество полных колебаний, v – частота колебаний, ω – циклическая частота)

υ = x'(t) = –Aω sin (ωt + φ0)

Скорость тела при колебательном движении 

υm = ωA

Максимальное (амплитудное) значение скорости

a = υ'(t) = x»(t)
a = –Aω2 cos (ωt + φ0)

Ускорение тела при колебательном движении

am = Aω2

Максимальное (амплитудное) значение ускорения

ω0=√(g/ℓ)
T=2π√ℓ/g

Циклическая частота и период колебаний математического маятника (l – длина маятника, g – ускорение свободного падения)

ω0=√(k/m)
T=2 π √m/k

Циклическая частота и период колебаний пружинного маятника (m – масса груза, k – коэффициент жесткости пружины маятника)

W=CU2/2+LI2/2
W=CUmax2/2=LImax2/2

Электрический контур

T=2π ∙√LC
ω=2π/T=1/(√LC)

Период колебаний кол. контура и циклическая частота

Iд=I0/√2,       Iд=Imax/√2
Uд=U0/√2,   Uд=Umax/√2

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин;  Действующее значение силы тока и напряжения 

P=UдIд =Iд2R=Uд2/R

Мощность в цепи переменного тока

U1/U2=n1/n2

Трансформатор: если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2

λ= υТ=υ/v

Волны. Длина волны (υ – скорость распространения волны, T – период, v – частота)

XL=ωL=2πLν

Индуктивное сопротивление

Xc=1/ωC

Емкостное сопротивление

Z=√(Xc-XL)2+R2

Полное сопротивление

Оптика

Lопт=Ln

Оптическая длина пути (L – геометрическая длина траектории, по которой «идет» луч света, n – показатель преломление среды, в которой это происходит)

x=mλL/d

Интерференционная схема Юнга (L – расстояние между
экраном и плоскостью в которой расположены две щели, d –
расстояние между этими щелями, λ – длина волны света, которым
освещаются щели).

d∙sin φ=k λ

Формула дифракционной решетки (d – период решетки, или расстояние между соседними штрихами, φ – угол под которым наблюдается очередной дифракционный максимум, k – номер (порядок) максимума, λ – длина волны света, падающего на дифракционную решетку)

n21=n2/n1= υ 1/ υ 2

Закон преломления света на границе двух прозрачных сред (α – угол падения, β – угол преломления, n1 – показатель преломления первой среды, из которой падает луч, n2 – показатель преломления второй среды, в которую проникает луч)

n21=sinα/sinβ

Показатель преломления

1/F=1/d + 1/f

Формула линзы (d – расстояние от линзы до предмета, f – расстояние от линзы до изображения, F – фокусное расстояние, D – оптическая сила линзы)

D=1/F

Оптическая сила линзы

Δd=kλ,  Δd=(2k+1)λ/2

max интерференции, min интерференции

Атомная и ядерная физика

E=hv=hc/λ

Энергия кванта света, т.е. фотона (h – постоянная Планка, λ – длина волны света, v – частота света)

P=mc=h/ λ=Е/с

Импульс фотона

hν=Aвых+(mU2/2)max
hν=Aвых+Ek, Ek=еUз
min=Aвых=hc/λ

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ) (Авых – работа выхода, слагаемое в скобках –максимальная кинетическая энергия вылетающих электронов, v – частота падающего света)

(mU2/2)max=еUз

Максимальная кинетическая энергия вылетающих электронов

νк = Aвых/h

Красная граница фотоэффекта

nm = |En – Em|

Второй постулат Бора (правило частот). При переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний

N=N0∙2t/T

Закон радиоактивного распада

ECB=(Zmp+Nmn-Mя)∙c2

Энергия связи атомных ядер

Основы СТО

ℓ=ℓ0∙√1-υ2/c2

Релятивистское сокращение длины. Длина тела, движущегося со скоростью V в инерциальной системе отсчета уменьшается в направлении движения до длины

t=t1/√(1-υ2/c2)

Релятивистское удлинение времени события. Время, за которое происходит некоторое событие в движущейся системе отсчета с точки зрения наблюдателя из неподвижной системы отсчета

υ=(υ12)/1+ υ1∙υ2/c2

Релятивистский закон сложения скоростей

Е = mс2

Связь энергии и массы тела. Наименьшей энергией Е0 тело обладает в инерциальной системе отсчета относительно которой оно покоится и называется собственной энергией тела (энергия покоя тела)

Понравилась статья? Поделить с друзьями:
  • Как составить пиктограмму по сказке
  • Как девушке найти клиентов
  • Покраска обоев на стенах как исправить
  • Окно не плотно прилегает к раме как исправить пластиковое
  • Как найти постоянных клиентов по грузоперевозкам