Как найти матрицу леонтьева

Перейдем к построе­нию математической модели. Для этого введем понятие коэффициентов прямых материальных затрат:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image002.gif                                  (1)

Коэффициент aij показывает, какое количество i-го продукта затрачивается на производство единицы j-го продукта.

Поскольку продукция измеряется в стоимостных единицах, коэффици­енты прямых затрат являются величинами безразмерными. Кроме того, из (1) следует, что

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image004.gif                                 (2)

Считая коэффициенты прямых материальных затрат постоянными, запишем систему балансовых соотношений

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image006.gif

следующим образом:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image008.gif

Перенося yi в правую часть, а xi в левую и меняя знаки на противопо­ложные, получаем

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image010.gif

В матричной форме эта система уравнений выглядит следующим обра­зом:

X — AX = Y  или  (E — A) X = Y,

где Е — единичная матрица n-го порядка;

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image012.gif — матрица коэффициентов прямых материальных затрат.

Итак, мы получили систему уравнений межотраслевого баланса, кото­рую называют моделью Леонтьева. Используя эту модель, можно ответить на основной вопрос межотраслевого анализа — каким должно быть валовое производство каждой отрасли для того, чтобы экономическая система в целом произвела заданное количество конечной продукции?

Следует отметить одно важное свойство А — сумма элементов любого ее столбца меньше единицы:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image014.gif                                 (3)

Для доказательства разделим обе части балансового соотношения

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image016.gifhttps://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image018.gif

на хj и, выполнив простейшие преобразования, полу­чим

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image020.gif

где vj / xj=https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image022.gif — доля условно-чистой продукции в единице валового выпуска.

Очевидно, чтоhttps://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image024.gif >0, так как в процессе производства не может не создавать­ся новой стоимости. Из этого следует справедливость соотношения (3).

Свойства (2) и (3) матрицы А играют ключевую роль в доказательстве ее продуктивности, т. е. в доказательстве того, что при любом неотрицатель­ном Y система

X — AX = Y  или  (E — A) X = Y,

имеет единственное и неотрицательное решение Х=(Е-А)-1Y. Матрицу (Е-А)-1 обозначают через В и называют матрицей коэффициентов полных материальных затрат, или обратной матрицей Леонтьева. Коэф­фициент bij этой матрицы показывает, каким должен быть валовой выпуск i-й отрасли для того, чтобы обеспечить производство единицы конечного продукта j-й отрасли. Используя матрицу В, можем записать

Х = ВY

или в развернутом виде

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image026.gif

Преимущество такой формы записи балансовой модели состоит в том, что, вычислив матрицу В лишь однажды, мы можем многократно использовать ее для вычисления Х прямым счетом, т.е. умножением В на Y. Это гораздо проще, чем каждый раз решать систему линейных уравнений.

Обратную матрицу В можно вычислить, используя метод обращения с применением формулы разложения ее в матричный ряд:

В=Е+А+А2+…+Аk+…                                             (4)

Число членов ряда, необходимое для получения достаточно точного приближения, зависит от матрицы А, но в любом случае приемлемый результат достигается при k 30.

Формула (4) имеет строгое математическое доказательство. Но мы ограничимся тем, что попытаемся осмыслить ее, рассматривая Х как результат некоторого гипотетического процесса последовательного уточне­ния промежуточной продукции, необходимой для создания заданного конечного продукта.

Итак, вектор конечной продукции, которую должна произвести эконо­мическая система, равен Y. Будем считать, что это и есть первоначальное задание отраслям, т. е. Х0 =Y. Для выполнения собственного задания каждая отрасль нуждается в продукции других отраслей. Если бы все отрасли подсчитали потребности и подали заявки в некоторый центр, то оказалось бы, что суммарная потребность составляет X1 =АХ0=АY. Вектор X1 можно рассматривать как промежуточную продукцию, необходимую для производства Х0. Но под обеспечение производства X1 тоже нужна проме­жуточная продукция: X2 =АХ1 =А2Y. Рассуждая так и далее, мы приходим к выводу, что

Х=Х0+Х1+Х2+…+Хk+… = Y+АY+А2Y+…+AkY+… =

= (Е+А+А2+…+Аk+…)Y.

Полные затраты можно разложить на прямую и косвенную составля­ющие.  Прямые затраты осуществляются непосредственно при производстве данного продукта, а косвенные А2+А3+…+Аk+… относятся к предшествую­щим стадиям производства. Они осуществляются не прямо, а через посред­ство других ингредиентов, входящих в данный продукт. Элементы матрицы А2 представляют собой косвенные затраты первого порядка, элементы матрицы А3 — косвенные затраты второго порядка и т. д.

Пример 1. Рассматривается трехотраслевой МОБ. Известна матрица коэффициен­тов прямых материальных затрат и задан вектор конечного продукта:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image028.gif.

Определить валовое производство X, обеспечивающее заданный конеч­ный продукт.

Для ответа на поставленный вопрос необходимо составить и решить систему линейных уравнений (Е-А)Х = Y.

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image030.gif

Получим соответствующую систему уравнений

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image032.gif

Решим систему методом Крамера. Если определитель системы https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image034.gif отличен от нуля, то система имеет единственное решение, которое находится по формулам

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image036.gif

где https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image038.gif — определитель, который получается из https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image040.gif заменой j-го столбца столбцом свободных членов.

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image042.gif https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image044.gif

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image046.gif    https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image048.gif

Применяя формулы Крамера, получаем решение системы:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image050.gif https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image052.gif https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image054.gif

Пример 2. Вычислить изменение межотраслевых потоков, если известна матрица коэффициентов полных материальных затрат и задан вектор изменения ко­нечного продукта:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image056.gif

Изменение межотраслевых потоков вычисляется по формулам

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image058.gif

Вектор изменения валового производства определяется следующим образом:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image060.gif

Кроме того, нам необходимо знать матрицу А. Из формулы В=(Е-А)-1 следует, что

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image062.gif

Теперь, отвечая на поставленный вопрос, получаем:

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image064.gif https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image066.gif

https://lms2.sseu.ru/courses/eresmat/course2/razd10_2/par10_2k2.files/image068.gif и т.д.

Источник: https://lms2.sseu.ru

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Задача

Экономика
представлена двумя отраслями производства: промышленностью и сельским
хозяйством. За отчетный период получены следующие данные о межотраслевых
поставках

 и векторе объемов конечного использования

.

Требуется:

Указание:
При вычислениях производить округление с точностью до тысячных.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Матрица прямых затрат

Найдем
валовые выпуски отраслей, просуммировав в каждой строке межотраслевые поставки
и координату вектора

:

Найдем
матрицу прямых затрат. Ее элементы можно найти по формуле:

Подставляя
числовые значения, получаем:

Матрица «Затраты — выпуск»

Найдем матрицу
«Затраты — выпуск»

Вектор конечного использования Y для валового объема выпуска X

Вектор
конечного использования Y для валового объема выпуска X определим на основе
балансового соотношения: 

Для этого выполним умножение двух матриц

Матрица полных затрат

Найдем
матрицу коэффициентов полных материальных затрат

 -она будет равна обратной матрице

:

Определитель матрицы

:

Алгебраические
дополнения:

Обратная матрица:

Вектор валового объема выпуска X для конечного использования Y

Вектор валового объема выпуска

 для конечного продукта

 определим формуле:

Приросты валовых объемов выпуска

Найдем
приросты валовых объемов выпуска, если конечное потребление должно изменяться
на

 по сравнению с

:

Матрица полных затрат ресурсов S

Найдем
матрицу полных затрат ресурсов S для заданной матрицы ее прямых затрат M:

Суммарная потребность в ресурсах

Суммарная  потребность в ресурсах для вектора Y0:

Суммарная  потребность в ресурсах для вектора Yn:

Матрицы косвенных затрат и сумма затрат

Найдем
матрицы косвенных затрат первого, второго и третьего порядка

Сумма затрат:

Разность
матриц:

Вектор потребности в продукции

Найдем
вектор потребности в продукции всех отраслей материального производства bij
для получения единицы конечного продукта bj вида. Для этого
просуммируем столбцы матрицы полных затрат:

Это значит, что для производства
единицы конечного продукта в первой отрасли во всех отраслях надо расходовать
продукции на сумму 1,913 ден.ед., для производства единицы конечного продукта
во второй отрасли -на 2,021 ден.ед.

Продуктивные модели Леонтьева

Матрица

,
все элементы которой неотрицательны,
называется продуктивной, если для любого
вектора

с неотрицательными компонентами
существует решение уравнения (27) –
вектор

,
все элементы которого неотрицательны.

Для
уравнения типа (27) разработана
соответствующая математическая теория
исследования решения и его особенностей.
Укажем некоторые ее основные моменты.
Приведем без доказательства теорему,
позволяющую устанавливать продуктивность
матрицы.

Теорема.
Если для матрицы

с неотрицательными элементами и
некоторого вектора

с неотрицательными компонентами
уравнения (27) имеет решение

с неотрицательными компонентами, то
матрица

продуктивна.

Иными
словами, достаточно установить наличие
положительного решения системы (27) хотя
бы для одного положительного вектора

,
чтобы матрица

была продуктивной. Перепишем систему
(27) с использованием единичной матрицы

в виде


. (28)

Если
существует обратная матрица

,
то существует и единственное решение
уравнения (28)


. (29)

Матрица

называется матрицей
полных затрат
.

Существует
несколько критериев продуктивности
матрицы

.

Первый
критерий продуктивности
.
Матрица

продуктивна тогда и только тогда, когда
матрица

существует и ее элементы неотрицательны.

Второй
критерий продуктивности
.
Матрица

с неотрицательными элементами продуктивна,
если сумма элементов по любому ее столбцу
(строке) не превышает единицы:


, (30)

причем
хотя бы для одного столбца (строки) эта
сумма строго меньше единицы.

Рассмотрим
применение модели Леонтьева на несложном
примере.

Пример
1
.
Таблица 1 содержит данные баланса трех
отраслей промышленности за некоторый
период. Требуется найти объем валового
выпуска продукции, если конечное
потребление по отраслям увеличить
соответственно до 60, 70 и 30.

Таблица
1.

№ п/п

Отрасль

Потребление

Конечный
продукт

Валовой
выпуск

1

2

3

1

Добыча
и переработка углеводородов

5

35

20

40

100

2

Энергетика

10

10

20

60

100

3

Машиностроение

20

10

10

10

50

Решение.
Выпишем векторы валового выпуска и
конечного потребления и матрицу
коэффициентов прямых затрат. Согласно
формулам (24) и (26),

Матрица

удовлетворяет обоим критериям
продуктивности. В случае заданного
увеличения конечного потребления новый
вектор конечного продукта будет иметь
вид

Требуется
найти новый вектор валового выпуска

,
удовлетворяющий соотношениям баланса
в предположении, что матрица

не изменяется. В таком случае компоненты


,


,

неизвестного вектора

находятся из системы уравнений, которая,
согласно (25), имеет в данном случае вид

В
матричной форме эта система выглядит
следующим образом:


,
или
,

где
матрица

имеет вид

Отсюда
расчитывается новый вектор

как решение этого уравнения баланса:


.

Найдем
обратную матрицу (матрицу полных затрат)

,
с использованием формулы


(31)

Определитель
матрицы


,

так
что обратная матрица и решение указанной
системы уравнений существуют. Вычисление
обратной матрицы дается с точностью до
третьего знака:


.

Заметим,
что найденная обратная матрица
удовлетворяет первому критерию
продуктивности матрицы

.

Теперь
можно вычислить вектор валового выпуска

:


.

Таким
образом, для того чтобы обеспечить
заданное увеличение компонент вектора
конечного продукта, необходимо увеличить
соответствующие валовые выпуски: добычу
и переработку углеводородов на

,
уровень энергетики – на

и выпуск машиностроения – на

по сравнению с исходными величинами,
указанными в табл. 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Предположим, что рассматривается N отраслей промышленности, каждая из которых производит свою продукцию. Часть продукции, произведенной отраслью, идет на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая часть предназначена для целей конечного (вне сферы материального производства) личного и общественного потребления.

Рассмотрим процесс производства за некоторый период времени (например, за год). Введем следующие обозначения:

Xi – общий (валовой) объем продукции I-ой отрасли (I = 1, 2,… N);

Xij – объем продукции I-ой отрасли, потребляемой J-ой отраслью в процессе производства (I,J = 1, 2,… N);

Yi –объем продукции I-ой отрасли для непроизводственного (личного и общественного) потребления (I = 1, 2,… N).

Указанные величины можно свести в таблицу:

Производственное
потребление

Конечный продукт

Валовой выпуск

X11 X12 …… X1N

X21 X22 …… X2N

———————

Xn1 Xn2 …… Xnn

Y1

Y2

——

YN

X1

X2

——

XN

Так как валовой объем продукции любой I-ой отрасли равен суммарному объему продукции, потребляемой всеми N отраслями, и конечного продукта, то должно выполняться соотношение

(I = 1, 2,… N),

Или, в сокращенной форме

(I = 1, 2,… N). (3.1)

Уравнения (3.1) (их N штук) называются Соотношениями межотраслевого баланса. Единицы измерения содержащихся в уравнениях (3.1) величин могут быть натуральными и для каждого уравнения свои (кубометры, тонны, штуки и т. п.). Но они могут быть и универсальными (стоимостными). В зависимости от этого различают Натуральный И Стоимостной межотраслевые балансы. Для определенности рассмотрим далее стоимостной баланс (все величины, входящие в уравнения (3.1), выражены в рублях).

Введем Коэффициенты прямых затрат

(I = 1, 2,… N), (3.2)

Показывающие затраты I-ой отрасли на производство единицы продукции J-ой отрасли. То есть Aij – стоимость продукции отрасли I, вложенной в 1 рубль продукции отрасли J. Так как эти коэффициенты зависят в основном от существующей технологии производства в производящих отраслях, а эта технология меняется достаточно медленно и за рассматриваемый относительно короткий период времени может считаться неизменной, то их можно считать постоянными. Это означает линейную зависимость объема Xij продукции I-ой отрасли, потребляемой J-ой отраслью, от валового объема Xj J-ой отрасли:

(I = 1, 2,… N). (3.3)

Построенная на этом основании модель межотраслевого баланса получила название Линейной, или модели Леонтьева (американский экономист русского происхождения, лауреат Нобелевской премии по экономике).

С учетом линейных соотношений (3.3) равнения межотраслевого баланса (3.1) примут вид:

(I = 1, 2,… N). (3.4)

Введем обозначения:

; ; , (3.5)

Где А – так называемая матрица прямых затрат, X – матрица-столбец валового выпуска, Y – матрица-столбец конечного продукта. Тогда систему (3.4) N линейных уравнений с N неизвестными (X1; X2; …Xn) можно записать в матричном виде:

(3.6)

Система (3.6) представляет собой математическую формулировку модели Леонтьева межотраслевого баланса в матричной форме. А задача межотраслевого баланса состоит в отыскании такой матрицы-столбца валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор-столбец конечного продукта Y.

В соответствии с экономическим смыслом задачи искомые элементы столбца X должны быть неотрицательны при любых неотрицательных значениях YI и AIj (I = 1, 2,… N). В таком случае модель Леонтьева называется Продуктивной.

Существует несколько различных по форме Критериев продуктивности модели Леонтьева. Один из них формулируется так (доказательство опускаем): если максимум сумм элементов столбцов матрицы A прямых затрат не превосходит единицы, то есть если

(3.7)

И существует номер J такой, что эта сумма строго меньше единицы

, (3.8)

То модель Леонтьева (3.6) (или, что одно и то же, (3.4)) является продуктивной. Отметим, что условия (3.7) и (3.8) естественны, так как они имеют наглядный экономический смысл. Действительно,

– (3.9)

– это доля, которую составляет суммарная стоимость продукции всех отраслей, вложенная в продукцию J-ой отрасли, по отношению к общей стоимости продукции J-ой отрасли. И эта доля для любой отрасли, естественно, не должна превосходить единицу. А точнее, для рентабельной отрасли должна быть меньше единицы, ибо общая стоимость Xj продукции J-ой отрасли включает в себя и другие затраты – стоимость рабочей силы, амортизацию основных фондов и т. д., а также прибыль, получаемую отраслью от продажи продукции.

Пример 1. В таблице ниже содержатся данные баланса промышленности и сельского хозяйства в некотором регионе за некоторый период (в миллиардах рублей):

Отрасль
производства

Производственное
потребление

Конечный
продукт

Валовой
выпуск

Промышленность

Сельское
хозяйство

Промышленность

0,7

2,1

7,2

10

Сельское

Хозяйство

1,2

1,5

12,3

15

Требуется вычислить необходимый объем валового выпуска каждой отрасли, если конечный продукт промышленности увеличится вдвое, а сельского хозяйства останется на прежнем уровне.

Решение. Согласно таблицы имеем:

X11 = 0,7;

X12 = 2,1;

X21 = 1,2;

X22 = 1,5;

X1 = 10;

X2 = 15;

Y1 = 7,2;

Y2 = 12,3.

По формуле (3.2) находим коэффициенты прямых затрат:

; ; ;

Таким образом, матрица А Прямых затрат

Имеет неотрицательные элементы и, очевидно, удовлетворяет критерию продуктивности, выражаемому неравенствами (3.7) и (3.8), ибо

; .

По условию задачи, в измененных условиях производства конечный продукт промышленности Y1 должен составить млрд. рублей, а конечный продукт Y2 сельского хозяйства должен остаться неизменным и составить 12,3 млрд. рублей. Поэтому для определения соответствующих валовых объемов X1 и X2 этих отраслей получаем, согласно (3.4), следующую систему линейных уравнений 2-го порядка:

Ее главный определитель

Значит, система имеет единственное решение. Вычисляя еще два определителя неизвестных

И используя формулы Крамера (2.5), получим:

; .

< Предыдущая   Следующая >

Понравилась статья? Поделить с друзьями:
  • Как найти других людей в телеграм
  • Как найти вторую сторону основания параллелепипеда
  • Как найти марс в небеса
  • Как найти работу постоянной силы формула
  • Как найти новичков на ютубе