Как найти матрицу по формуле гаусса

Матричный определитель

Это многочлен от элементов квадратной матрицы (если матричные элементы являются числами, то матричный определитель также будет числом).

Есть много способов вычислить определитель квадратной матрицы. Наш онлайн-калькулятор рассчитывает определитель, используя метод Гаусса, или путем разложения определителя на элементы любой строки или столбца.

Онлайн-калькулятор

Чтобы вычислить определитель по методу Гаусса, начальная матрица приведена к верхней треугольной форме с помощью элементарных преобразований, а определитель исходной матрицы не изменяется и равен произведению элементов на главной диагонали верхняя треугольная матрица.

vfnhbwf3.jpg

Чтобы вычислить определитель, развернув его на элементы строки или столбца, сначала выберите строку или столбец, по которым определитель будет разложен. Удобнее всего расположить определитель по строке (или столбцу) с максимальным количеством нулевых элементов. Если в исходной матрице нет таких строк (или столбцов), вы можете выбрать любую строку (или столбец).

Результирующее разложение представляет собой линейную комбинацию определителей, порядок которых на единицу меньше исходного. Каждый из этих определителей вычисляется снова путем расширения выбранной строки или столбца.

Таким образом, рассмотренный метод расчета определителя является рекурсивным процессом.

Разберем данный метод на конкретных примерах.

Пример 1

Дано:

A=(1514126715457)A= begin{pmatrix} 15 & 14 & 12 \ 6 & 7 & 1 \ 54 & 5 & 7 end{pmatrix}

Решение:

Делим 1 строку на 15, получаем:

(114150.86715457)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 6 & 7 & 1 \ 54 & 5 & 7 end{pmatrix}

Делим 2 строку на 6, получаем:

(114150.8176165457)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 1 & {7 over 6} & {1 over 6} \ 54 & 5 & 7 end{pmatrix}

Делим 3 строку на 54, получаем:

(114150.8176161554754)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 1 & {7 over 6} & {1 over 6} \ 1 & {5 over 54} & {7 over 54} end{pmatrix}

Вычитаем 1-ю строку из последующих

(114150.80730−19300−227270−181270)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 0 & {7 over 30} & -{19 over 30} \ 0 & -{227 over 270} & -{181 over 270} end{pmatrix}

Делим 2 строку на 7/30, получаем:

(114150.801−1970−227270−181270)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 0 & 1 & -{19 over 7} \ 0 & -{227 over 270} & -{181 over 270} end{pmatrix}

Делим 3 строку на -227/270, получаем:

(114150.801−19701181227)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 0 & 1 & -{19 over 7} \ 0 & 1 & {181 over 227} end{pmatrix}

Вычитаем 2-ю строку из последующих

(114150.801−1970055801589)begin{pmatrix} 1 & {14 over 15} & 0.8 \ 0 & 1 & -{19 over 7} \ 0 & 0 & {5580 over 1589} end{pmatrix}

Умножаем первые числа каждой строки (которые использовались при сокращении):

det=15⋅6⋅54⋅730⋅(−227270)⋅55801589=−3348det = 15 cdot 6 cdot 54 cdot {7 over 30} cdot left(-{227 over 270}right) cdot {5580 over 1589} = -3348

∣A∣=(1514126715457)=−3348|A| = begin{pmatrix} 15 & 14 & 12 \ 6 & 7 & 1 \ 54 & 5 & 7 end{pmatrix} = -3348

Ответ будет равен ∣A∣=−3348|A| = -3348

В следующем примере разберем случай дробных узлов матрицы, как более сложный вариант:

Пример 2

Дано:

A=(2718141512131425217)A= begin{pmatrix} {2 over 7} & {1 over 8} & {14 over 15} \ {1 over 2} & {1 over 3} & 1 \ {4 over 2} & {5 over 2} & {1 over 7} end{pmatrix}

Решение:

Делим 1 строку на 2/7, получаем:

(1716491512131425217)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ {1 over 2} & {1 over 3} & 1 \ {4 over 2} & {5 over 2} & {1 over 7} end{pmatrix}

Делим 2 строку на 1/2, получаем:

(171649151232425217)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 1 & {2 over 3} & 2 \ {4 over 2} & {5 over 2} & {1 over 7} end{pmatrix}

Делим 3 строку на 4/2, получаем:

(171649151232154114)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 1 & {2 over 3} & 2 \ 1 & {5 over 4} & {1 over 14} end{pmatrix}

Вычитаем 1-ю строку из последующих

(1716491501148−191501316−671210)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 0 & {11 over 48} & -{19 over 15} \ 0 & {13 over 16} & -{671 over 210} end{pmatrix}

Делим 2 строку на 11/48, получаем:

(1716491501−3045501316−671210)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 0 & 1 & -{304 over 55} \ 0 & {13 over 16} & -{671 over 210} end{pmatrix}

Делим 3 строку на 13/16, получаем:

(1716491501−3045501−53681365)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 0 & 1 & -{304 over 55} \ 0 & 1 & -{5368 over 1365} end{pmatrix}

Вычитаем 2-ю строку из последующих

(1716491501−30455002394415015)begin{pmatrix} 1 & {7 over 16} & {49 over 15} \ 0 & 1 & -{304 over 55} \ 0 & 0 & {23944 over 15015} end{pmatrix}

Умножаем первые числа каждой строки (которые использовались при сокращении):

det=27⋅12⋅42⋅1148⋅1316⋅2394415015=299335280det = {2 over 7} cdot {1 over 2} cdot {4 over 2} cdot {11 over 48} cdot {13 over 16} cdot {23944 over 15015} = {2993 over 35280}

∣A∣=(2718141512131425217)=299335280|A| = begin{pmatrix} {2 over 7} & {1 over 8} & {14 over 15} \ {1 over 2} & {1 over 3} & 1 \ {4 over 2} & {5 over 2} & {1 over 7} end{pmatrix} = {2993 over 35280}

Ответ будет определен следующим образом: ∣A∣=299335280|A| = {2993 over 35280}

Не получается понять, как правильно вычислять с помощью матрицы? В таком случае, советуем вам заказать решение задачи по алгебре на Студворк!

Карл Фридрих Гаусс - немецкий математик, основатель одноименного метода решения СЛАУ

Карл Фридрих Гаусс – немецкий математик, основатель одноименного метода решения СЛАУ

Карл Фридрих Гаусс – был известным великим математиком и его в своё время признали «королём математики». Хотя название «метод Гаусса» является общепринятым, Гаусс не является его автором: метод Гаусса был известен задолго до него. Первое его описание имеется в китайском трактате «Математика в девяти книгах», который составлен между II в. до н. э. и I в. н. э. и представляет собой компиляцию более ранних трудов, написанных примерно в X в. до н. э.

Метод Гаусса – последовательное исключение неизвестных. Этот метод используется для решения квадратных систем линейных алгебраических уравнений. Хотя уравнения при помощи метода Гаусса решаются легко, но всё же студенты часто не могут найти правильное решение, так как путаются в знаках (плюсы и минусы). Поэтому во время решения СЛАУ необходимо быть предельно внимательным и только тогда можно легко, быстро и правильно решить даже самое сложное уравнение.

У систем линейных алгебраических уравнений есть несколько преимуществ: уравнение не обязательно заранее на совместность; можно решать такие системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равняется нулю; есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычислительных операций.

Определения и обозначения

Как уже говорилось, метод Гаусса вызывает у студентов некоторые сложности. Однако, если выучить методику и алгоритм решения, сразу же приходит понимание в тонкостях решения.

Для начала систематизируем знания о системах линейных уравнений.

СЛАУ в зависимости от её элементов может иметь:

  1. Одно решение;
  2. много решений;
  3. совсем не иметь решений.

В первых двух случаях СЛАУ называется совместимой, а в третьем случае – несовместима. Если система имеет одно решение, она называется определённой, а если решений больше одного, тогда система называется неопределённой.

Метод Крамера и матричный способ не подходят для решения уравнений, если система имеет бесконечное множество решений. Вот поэтому нам и нужен метод Гаусса, который поможет нам в любом случае найти правильное решение. К элементарным преобразованиям относятся:

  • перемена мест уравнений системы;
  • почленное умножение обеих частей на одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами;
  • сложение к обеим частям одного из уравнений определённых частей другого уравнения.

Итак, когда мы знаем основные правила и обозначения, можно приступать к решению.

Теперь рассмотрим, как решаются системы методом Гаусса на простом примере:

    [left{ begin{aligned} a_{1}x + b_{1}y + c_{1}z = d_{1}\ a_{2}x + b_{2}y + c_{2}z = d_{2}\ a_{3}x + b_{3}y + c_{3}z = d_{3} end {aligned} right.]

где а, в, с  – заданные коэффициенты, d – заданные свободные члены, x, y, z – неизвестные. Коэффициенты и свободные члены уравнения можно называть его элементами.

Если d_1 = d_2 = d_3 = 0, тогда система линейных алгебраических уравнений называется однородной, в другом случае – неоднородной.

Множественные числа x_0, y_0, z_0 называются решением СЛАУ, если при подстановке x=x_0, y=y_0, z=z_0 в СЛАУ получим числовые тождества.

Система, которую мы написали выше имеет координатную форму. Если её переделать в матричную форму, тогда система будет выглядеть так:

A = begin{pmatrix} a_{11}&a_{12}&a_{31}\ a_{12}&a_{22}&a_{32}\ a_{13}&a_{23}&a_{33} end{pmatrix} right

– это основная матрица СЛАУ.

X = begin{pmatrix} x\ y\ z end{pmatrix} right

– матрица столбец неизвестных переменных.

B = begin{pmatrix} b_{1}\ b_{2}\ b_{3} end{pmatrix} right

– матрица столбец свободных членов.

Если к основной матрице A добавить в качестве (n + 1) – ого столбца матрицу-столбец свободных членов, тогда получится расширенная матрица систем линейных уравнений. Как правило, расширенная матрица обозначается буквой T, а столбец свободных членов желательно отделить вертикальной линией от остальных столбцов. То есть, расширенная матрица выглядит так:

T = begin{pmatrix} a_{11}&a_{12}&a_{31}vert{b_{1}}\ a_{12}&a_{22}&a_{32}vert{b_{2}}\ a_{13}&a_{23}&a_{33}vert{b_{3}} end{pmatrix} right

Если квадратная матрица равна нулю, она называется вырожденная, а если |A|neq{0} – матрица невырожденная.

Если с системой уравнений:           A = begin{pmatrix} a_{11}&a_{12}&a_{31}\ a_{12}&a_{22}&a_{32}\ a_{13}&a_{23}&a_{33} end{pmatrix} right

Произвести такие действия:

тогда получается эквивалентная система, у которой такое же решение или нет решений совсем.

Теперь можно перейти непосредственно к методу Гаусса.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Простейшие преобразования элементов матрицы

Мы рассмотрели основные определения и уже понимаем, чем нам поможет метод Гаусса в решении системы. Теперь давайте рассмотрим простую систему уравнений. Для этого возьмём самое обычное уравнение, где и используем решение методом Гаусса:

left{ begin{aligned} 2x - y = -4\ 6x + y = -6 end {aligned} уравненияright.

Из уравнения запишем расширенную матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Из данной матрицы видно, по какому принципу она записана. Вертикальную черту не обязательно ставить, но просто так удобнее решать систему.

Матрица системы – это матрица, которая составляется исключительно с коэффициентами при неизвестных. Что касается расширенной матрицы системы, так, это такая матрица, в которой кроме коэффициентов записаны ещё и свободные члены. Любую из этих матриц называют просто матрицей.

На матрице, которая написана выше рассмотрим, какие существуют элементарные преобразования:

1. В матрице строки можно переставлять местами. Например, в нашей матрице спокойно можно переставить первую и вторую строки:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right.to begin{pmatrix} 6&1&vert{-6}\ 2&-1&vert{-4} end{pmatrix} right

2. Если в матрице имеются (или появились) пропорциональные строки (одинаковые), тогда необходимо оставить всего лишь одну строку, а остальные убрать (удалить).

3. Если в ходе преобразований в матрице появилась строка, где находятся одни нули, тогда такую строку тоже нужно удалять.

4. Строку матрицы можно умножать (делить) на любое число, которое отличное от нуля. Такое действие желательно проделывать, так как в будущем проще преобразовывать матрицу.

5. Сейчас рассмотрим преобразование, которое больше всего вызывает затруднение у студентов. Для этого возьмём изначальную нашу матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Для удобства умножаем первую строку на (-3):

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right to begin{pmatrix} -6&3&vert{12}\6&1&vert{-6}end{pmatrix}right

Теперь ко второй строке прибавляем первую строку, которую умножали на -3. Вот что у нас получается:

begin{pmatrix} -6&3&vert{12}\ 6&1&vert{-6} end{pmatrix} right

В итоге получилось такое преобразование:

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

Теперь для проверки можно разделить все коэффициенты первой строки на те же -3 и вот что получается:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6} end{pmatrix} right

В матрице верхняя строка преобразовалась:

begin{pmatrix} -6&3&vert{12}\ 6&1&vert{-6} end{pmatrix} right

Первую строку делим на -3 и преобразовалась нижняя строка:

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

И верхнюю строку поделили на то же самое число -3:

begin{pmatrix} 2&-1&vert{-4}\ 0&4&vert{6} end{pmatrix} right

Как вы можете убедиться, в итоге строка, которую мы прибавляли ни капельки не изменилась, а вот вторая строка поменялась. ВСЕГДА меняется только та строка, к которой прибавляются коэффициенты.

Мы расписали в таких подробностях, чтобы было вам понятно, откуда какая цифра взялась. На практике, например, на контрольной или экзамене матрица так подробно не расписывается. Как правило, в задании решение матрицы оформляется так:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right.to begin{pmatrix} 2&-1&vert{-4}\ 0&4&vert{6} end{pmatrix} right

Если в примере приведены десятичные дроби, метод Гаусса в этом случае также поможет решить систему линейных алгебраических уравнений. Однако, не стоит забывать, что следует избегать приближённых вычислений, так как ответ будет неверным. Лучше всего использовать десятичные дроби, а от них переходить к обыкновенным дробям.

Алгоритм решения методом Гаусса пошагово

После того, как мы рассмотрели простейшие преобразования, в которых на помощь пришёл метод Гаусса, можем вернуться к нашей системе, которую уже разложили по полочкам и пошагово распишем:

left{ begin{aligned} 2x - y = -4\ 6x + y = -6 end {aligned} уравненияright

Шаг 1. Переписываем систему в виде матрицы

Записываем матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Шаг 2. Преобразовываем матрицу: вторую строку в первом столбце приводим к нулю

Как мы привели вторую строку в первом столбце к нулю описано выше. Напомним, что первую строку умножали на -3 и вторую строку прибавили к первой , умноженной на -3.

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

Шаг 3. Приводим матрицу к ступенчатому виду

Теперь вторую строку можно поделить на 2 и получается:

begin{pmatrix} -6&3&vert{12}\ 0&2&vert{3} end{pmatrix} right

Верхнюю строку делим на -3 и приводим матрицу к ступенчатому виду:

Метод Гаусса

Когда оформляют задание, так и отчёркивают простым карандашом для упрощения работы, а также обводят те числа, которые стоят на “ступеньках”. Хотя в учебниках и другой литературе нет такого понятия, как ступенчатый вид. Как правило, математики такой вид называют трапециевидным или треугольным.

Шаг 4. Записываем эквивалентную систему

После наших элементарных преобразований получилась эквивалентная система:

left{ begin{aligned} 2x - y = -4\ 2y = 3 end {aligned} уравненияright

Шаг 5. Производим проверку (решение системы обратным путём)

Теперь систему нужно решить в обратном направлении, то есть обратным ходом, начиная с последней строки.:

находим y: 2y = 3,

{y} = {3over{2}},

y = 1.5.

После y находим x:

2x - 1.5 = -4,

x = -1,25.

Тогда:

2 * (-1,25) - 1,5 = -4 6 * (-1,25) + 1,5 = -6.

Как видим, уравнение решено правильно, так как ответы в системе совпадают.

Решение систем линейных уравнений методом Гаусса, в которых основная матрица невырожденная, а количество в ней неизвестных равняется количеству уравнений

Как мы уже упоминали, невырожденная матрица бывает тогда, когда |A|neq{0}. Разберём систему уравнений невырожденной матрицы, где уравнений по количеству столько же, сколько и неизвестных. Эту систему уравнений решим другим способом.

Дана система уравнений:

left{ begin{aligned} x - 2y + z = 0\ 2x + 2y - z = 3\ 4x - y + z = 5 end {aligned} right

Для начала нужно решить первое уравнение системы относительно неизвестной переменной x. Далее подставим полученное выражение сначала во второе уравнение, а затем в третье, чтобы исключить из них эту переменную.

left{ begin{aligned} x - 2y + z = 0\ 2x + 2y - z = 3\ 4x - y + z = 5 end {aligned} leftrightarrowleft{begin{aligned}x = 2y - z\2 * (2y - z) + 2y - z = 3\4 * (2y - z) - y + z = 5end {aligned} leftrightarrowleft{begin{aligned}x = 2y - z = 0\2x + 2y - z = 3\4x - y + z = 5end {aligned}rightleftrightarrowleft{                            begin{aligned}x = 2y - z\6y - 3z = 3\7y - 3z = 5end {aligned}

Теперь переходим ко второму уравнению системы относительно y и полученный результат подставим в третье уравнение.. Это нужно для того, чтобы исключить неизвестную переменную y:

left{begin{aligned}x = 2y - z = 0\6y - 3z = 3\7y - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\{y} = {1over{2}}z + {1over{2}}\7y - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\{y} = {1over{2}}z + {1over{2}}\7 * ({1over{2}}z + {1over{2}}) - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\y = {1over{2}}z + {1over{2}}\{1over{2}}z = {3over{2}}end {aligned}right

Из последнего, третьего уравнения мы видим, что z = 3. Из второго уравнения находим y = {1over{2}}x + {1over{2}} = {1over{2}} * 3 + {1over{2}} = 2. И последнее, находим первое уравнение x = 2y - z = 2 * 2 - 3 = 1.

Итак, мы нашли все три неизвестных при помощи последовательного исключения. Такой процесс называют – прямой ход метода Гаусса. Когда последовательно находятся неизвестные переменные, начиная с последнего уравнения, называется обратным ходом метода Гаусса.

Когда выражается x через y и z в первом уравнении, а затем подставляется полученное выражение во второе или третье уравнения, тогда, чтобы привести в к такому же результату, необходимо проделать такие действия:

И действительно, благодаря такой процедуре у нас есть возможность исключать неизвестную переменную x со второго и третьего уравнения системы:

left{begin{aligned}x - 2y + z = 0\2x + 2y - z = 3\4x - y + z = 5end {aligned}leftrightarrowleft{begin{aligned}x - 2y + z = 0\2x + 2y - z + (-{2over{1}}) *  (x - 2y + x = 3 + (-{2over{1}}) * 0end {aligned}leftrightarrowleft{begin{aligned}x - 2y + z = 0\6x - 3y = 3\7x - 3y = 5end {aligned}right

Возникают нюансы с исключением неизвестных переменных тогда, когда в уравнении системы нет каких-либо неизвестных переменных. Рассмотрим такую систему:

left{ begin{aligned} 2y + z = -4\ x + y + 2z = -3\ 2x + 2z = 0 end {aligned} right

В этой системе в первом уравнении нет переменной x и поэтому у нас нет возможности решить первое уравнение системы относительно x, чтобы исключить данную переменную из остальных уравнений. В таком случае выход есть. Нужно всего лишь уравнения переставить местами.

Так как мы описываем уравнения системы, в которых определитель основных матриц отличен от нуля, тогда всегда есть такое уравнение, в котором есть необходимая нам переменная и это уравнение мы можем поставить туда, куда нам нужно.

В примере, который мы рассматриваем, достаточно всего лишь поменять местами первое и второе уравнение.

left{ begin{aligned} x + y + 2z = -3\ 2y + z = -4\ 2x + 2z = 0 end {aligned} right

Теперь мы можем спокойно разрешить первое уравнение относительно переменной x и убрать (исключить) из остальных уравнений в системе. Вот и весь принцип работы с такими, на первый взгляд, сложными системами.

Решение систем линейных уравнений методом Гаусса, в которых основная матрица вырожденная, а количество в ней неизвестных не совпадает с количеством уравнений

Метод Гаусса помогает решать системы уравнений, у которых основная матрица прямоугольная или квадратная, но основная вырожденная матрица может совсем не иметь решений, иметь бесконечное множество решений или иметь всего лишь одно единственное решение.

Рассмотрим, как при помощи метода Гаусса устанавливается совместность или несовместность систем линейных уравнений. В случае, если есть совместность определим все решения или одно решение.

В принципе, исключать неизвестные переменные можно точно так, как описано выше. Однако, есть некоторые непонятные ситуации, которые могут возникнуть в ходе решения:

1. На некоторых этапах в момент исключения неизвестных переменных некоторые уравнения могут обратиться в тождества 0 = 0. В данном случае такие уравнения лишние в системе и их можно смело полностью убирать, а затем продолжать решать уравнение методом Гаусса.

Например, вам попалась подобная система:

left{ begin{aligned} x + 2y - z + 3k = 7\ 2x + 4y - 2z + 6k = 14\ x - y + 3z + k = -1 end {aligned} right

У нас получается такая ситуация

left{begin{aligned}x + 2y - z + 3k = 7\2x + 4y - 2z + 6k = 14\x - y + 3z + k = -1end{aligned}leftrightarrowright

left{begin{aligned}x + 2y - z + 3k = 7\2x + 4y - 2z + 6k + (-2) * (x + 2y - z + 3k) = 14 + (-2) * 7\x - y + 3z + k + (-1) * (x + 2y - z + 3k) = -1 + (-1) * 7end{aligned}leftrightarrowright

left{begin{aligned}x + 2y - z + 3k = 7\0 = 0\-3y + 4z - 2k = -8end{aligned}right

Как видим, второе уравнение 0 = 0. Соответственно, данное уравнение мы можем из системы удалить, так как оно без надобности.

left{begin{aligned}x + 2y - z + 3k = 7\0 = 0\-3y + 4z - 2k = -8end{aligned}leftrightarrowrightleft{begin{aligned}x + 2y - z + 3k = 7\-3y + 4z - 2k = -8end{aligned}right

Дальше можно продолжать решение системы линейных алгебраических уравнений уравнений традиционным методом Гаусса.

2. При решении уравнений прямым ходом методом Гаусса могут принять не только одно, но и несколько уравнений такой вид: 0 = k, где k – число, которое отличное от нуля. Это говорит о том, что такое уравнение никогда не сможет превратиться в тождество даже при любых значениях неизвестных переменных. То есть, можно выразить по-другому. Если уравнение приняло 0 = k вид, значит система несовместна, то есть, не имеет решений. Рассмотрим на примере:

left{ begin{aligned} 2x - y + 3z = 1\ 2x - y - z = -2\ 4x - 2y + 6z = 0\ 6x + 8y - 7z = 2 end {aligned} right

Для начала необходимо исключить неизвестную переменную x из всех уравнений данной системы, начиная со второго уравнения. Для этого нужно прибавить к левой и правой частям второго, третьего, четвёртого уравнения части (левую и правую) первого уравнения, которые соответственно, умножаются на (-1), (-2), (-3). Получается:

left{begin{aligned}2x - y + 3z = 1\ 2x - y - z = -2\4x - 2y + 6z = 0\6x + 8y - 7z = 2end {aligned}leftrightarrowright

left{begin{aligned}2x - y + 3z = 1\2x - y - z + (-1) * (2x - y + 3z) = -2 + (-1) * 1\4x - 2y + 6z + (-2) * (2x - y + 3z) = 0 + (-2) * 1\6x + 8y - 7z  + (-3) *(2x - y + 3z) = 2 + (-3) * 1end {aligned}leftrightarrowright

left{begin{aligned}2x - y + 3z = 1\-4z = -3\0 = -2\11y - 16z = -1end {aligned} right

В третьем уравнении получилось равенство 0 = -2. Оно не подходит ни для каких значений неизвестных переменных x, y и z, и поэтому, у данной системы нет решений. То есть, говорится, что система не имеет решений.

3. Допустим, что при выполнении прямого хода методом Гаусса нам нужно исключить неизвестную переменную x_n, и ранее, на каком-то этапе у нас уже исключалась вместе с переменной x_j. Как вы поступите в таком случае? При таком положении нам нужно перейти к исключению переменной x_{n+1}. Если же x_{n+1} уже исключались, тогда переходим к x_{n+2}x_{n+3} и т. д.

Рассмотрим систему уравнений на таком этапе, когда уже исключилась переменная x:

left{ begin{aligned} x + 2y + z + k + l + n = 7\ x + 2y + z + 2k + l - n = 1\ x + 2y + z - k + 5l - n = 2\ x+ 2y + z - k - 4l + 4n = -1 end {aligned} right

Такая система уравнений после преобразования выглядит так:

left{ begin{aligned} x + 2y + z + k + 3l + n = 7\ k - 2l - n = -6\ -2k + 2l - 2n = -5\ -3k - 7l + 3n = -8 end {aligned} right

Вы наверное уже обратили внимание, что вместе с x исключились y и z. Поэтому решение методом Гаусса продолжаем исключением переменной k из всех уравнений системы, а начнём мы с третьего уравнения:

left{begin{aligned} x + 2y + z + k + 3l + n = 7\ k - 2l - n = -6\ -2k + 2l - 2n = -5\ -3k - 7l + 3n = -8 end {aligned}leftrightarrowleft{begin{aligned} x + 2y + z + k + 3l + n = 7\k - 2l - n = -6\-2k + 2l - 2n + 2 * (k - 2l - 2n) = -5 + 2 * (-6)\-3k - 7l + 3n + 3 * (k - l - n) = -8 + 3 * (-6)  end {aligned}leftrightarrow  left{begin{aligned}x + 2y + z + k + 3l + n = 7\k - 2l - n = -6\-2l - 6n = -17\-13l - 3n = -26  end {aligned} right

Чтобы завершить уравнение прямым ходом метода Гаусса, необходимо исключить последнюю неизвестную переменную l из последнего уравнения:

Допусти, что система уравнений стала:

left{begin{aligned}x + y - 2z - k + l + n = 6\k + 7l + n = 1\l + n = 3end {aligned}  right

В этой системе нет ни одного уравнения, которое бы сводилось к 0. В данном случае можно было бы говорить о несовместности системы. Дальше непонятно, что же делать? Выход есть всегда. Для начала нужно выписать все неизвестные, которые стоят на первом месте в системе:

Система уравнений

В нашем примере это x, k и l. В левой части системы оставим только неизвестные, которые выделены зелёным квадратом а в правую перенесём известные числа, но с противоположным знаком. Посмотрите на примере, как это выглядит:

left{begin{aligned} x  -  k + l = 6 - y + 2z - 2n\ k + 7l = 1 - n\ l = 3 - n end {aligned} right

Можно придать неизвестным переменным с правой части уравнений свободные (произвольные) значения: y = delta_y, z = delta_z, n =  delta_n, где delta_ydelta_zdelta_n – произвольные числа.

left{begin{aligned} x  -  k + l = 6 - delta_y + 2delta_z - 2delta_n\ k + 7l = 1 - delta_n\ l = 3 - delta_n end {aligned} right

Теперь в правых частях уравнений нашей системы имеются числа и можно приступать к обратному ходу решения методом Гаусса.

В последнем уравнении системы получилось: l = 3 - delta_n, и теперь мы легко найдём решение в предпоследнем уравнении: k = 1 - delta_n - 7l = 1 - delta_n - 7(3 - delta_n) = -20 + 6delta_n, а из первого уравнения получаем:

x = 6 - delta_y + 2delta_z - 2delta_n + k - l = 6 - delta_y + 2delta_z - 2delta_n + (-20 + 6delta_n) - (3 - delta_n) =-17 - delta_y + 2delta_z + 5delta_n

В итоге, получился результат, который можно и записать.

Ответ

x = -17 - y + 2z + 5delta_n,

y = delta_y,

z = delta_z,

k = -20 + 6delta_n,

l = 3 - delta_n,

n = delta_n.

Примеры решения методом Гаусса

Выше мы подробно расписали решение системы методом Гаусса. Чтобы закрепить материал, решим несколько примеров, в которых опять нам поможет метод Гаусса. Соответственно, начнём с самой простой системы.

Задача 

Решить систему линейных алгебраических уравнений методом Гаусса:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ 5x_1 - 7x_2 = 3 end {aligned} right

Решение

Выписываем матрицу, куда добавляем столбец свободных членов:

begin{pmatrix} 3&4&vert{10}\ 5&-7&vert{3} end{pmatrix} right

Прежде всего мы смотрим на элемент, который находится в матрице в левом верхнем углу (первая строка, первый столбец). Для наглядности выделим цифру зелёным квадратом. На этом месте практически всегда стоит единица:

Метод Гаусса

Так как 3neq{0} мы должны использовать подходящее элементарное преобразование строк и сделать так, чтобы элемент, который находится в матрице под выделенной цифрой 3 превратился в 0. Для этого можно ко второй строке прибавить первую строку и умножить на -5over{3}.Однако, не сильно хочется работать с дробями, поэтому давайте постараемся этого избежать. Для этого нужно вторую строку умножить на 3 (разрешающий элемент данного шага).

Метод Гаусса

Соответственно, первая строка остаётся неизменной, а вторая поменяется:

begin{pmatrix} 3&4&vert{10}\ 15&-21&vert{9} end{pmatrix} right

Подбираем такое элементарное преобразование строк, чтобы во второй строке в первом столбце образовался 0. Для этого первую строку нужно умножить на -5 и только после этого ко второй строке прибавить изменённую после умножения на -5 вторую строку. Вот что получилось:

3 * -5 = -15. Теперь прибавляем со второй строки 15 первую строку -15. У нас получился 0, который записываем во вторую строку в первый столбец. Также решаем и остальные элементы матрицы. Вот что у нас получилось:

begin{pmatrix} 3&4&vert{10}\ 0&-41&vert{-41} end{pmatrix} right

Как всегда у нас первая строка осталась без изменений, а вторая с новыми числами.

Итак, у нас получился ступенчатый вид матрицы:

Системы методом Гаусса

Записываем новую систему уравнений:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ - 41x_2 = -41 end {aligned} уравненияright

Для проверки решаем систему обратным ходом. Для этого находим сначала x_2}:

-41x_2 = -41

x_2 = (-41)/(-41)

x_2 = 1

Так как x_2 найден, находим x_1:

3x_1 + 4 * 1 = 10

3x_1 + 4 = 10

3x_1 = 10 - 4

3x_1 = 6

x_1 = 6/3

x_1 = 2.

Подставляем в изначальную нашу систему уравнений найденные x_1 и x_2:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ 5x_1 - 7x_2 = 3 end {aligned} right

3 * 2 + 4 * 1 = 10 и 5 * 2 - 7 * 1 = 3.

Как видите из решения, система уравнений решена верно. Запишем ответ.

Ответ

x_1 = 2

x_2 = 1

Выше мы решали систему уравнений в двумя неизвестными, а теперь рассмотрим систему уравнений с тремя неизвестными.

Задача

Решить систему уравнений методом Гаусса:

left{ begin{aligned} x + 2y - 3z = -4\ 2x + 5y - 4z = 0\ -3x + y + 3z = 5 end {aligned} right

Решение

Составляем матрицу, куда вписываем и свободные члены:

begin{pmatrix} 1&2&-3&vert{-4}\ 2&5&-4&vert{0}\ -3&1&3&vert{5} end{pmatrix} right

Что нам надо? Чтобы вместо цифры 2 появился 0. Для этого подбираем ближайшее число. Например, можно взять цифру -2 и на неё перемножить все элементы первой строки. Значит, умножаем 1 * (-2), а потом прибавляем, при этом задействуем вторую строку: -2 +2. В итоге у нас получился нуль, который записываем во вторую строку в первый столбец. Затем 2 * (-2) = (-4), и -4 + 5 = 1. Аналогично, -3 * (-2) = 6 и 6 + (-4) = 2. И умножаем свободный член (-4) * (-2) = 8. Так и запишем следующую матрицу. Не забывайте, что первая строка остаётся без изменений:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ -3&1&3&vert{5} end{pmatrix} right

Дальше необходимо проделать те же самые действия по отношению к третьей строке. То есть, первую строку нужно умножать не на (-2), а на цифру 3, так как и в третьей строке нужно коэффициенты привести у нулю. Также первую строку умножаем на 3 и прибавляем третью строку. Получается так:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ 0&7&-6&vert{-7} end{pmatrix} right

Теперь нужно обнулить элемент 7, который стоит в третьей строке во втором столбце. Для этого выбираем цифру (-7) и проделываем те же действия. Однако, необходимо задействовать вторую строку. То есть, вторую строку умножаем на (-7) и прибавляем с третьей строкой. Итак, 1 * (-7) + 7 = 0. Записываем результат в третью строку. Такие же действия проделываем и с остальными элементами. Получается новая матрица:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ 0&0&-20&vert{-63} end{pmatrix} right

В результате получилась ступенчатая система уравнений:

left{ begin{aligned} x + 2y - 3z = -4\ y + 2z = 8\ -20z = -63 end {aligned} right

Сначала находим z: z = -63/-20 = 3,15,

y = 8 - 2 * 3,15 = 1,7

x = -4 - 2 * 1,7 + 3 * 3,15 = 2,05.

Обратный ход:

left{ begin{aligned} 2,05 + 2 * 3,4 - 3 * 3,15 = -4\ 2 * 2,05 + 5 * 1,7 - 4 * 3,15 = 0\ -3 * 2,05 + 1,7 + 3 * 3,15 = 5 end {aligned} right

Итак, уравнение системы решено верно.

Ответ

x = 2,05,

y = 1,7,

z = 3,15.

Система с четырьмя неизвестными более сложная, так как в ней легко запутаться. Попробуем решить такую систему уравнений.

Задача

Решите систему уравнений методом Гаусса:

left{ begin{aligned} x_1+2x_2 + 3x_3 - 2x_4=6\     2x_1 + 4x_2 - 2x_2 - 3x_4=18\  3x_1 + 2x_2 - x_3 + 2x_4 =4\ 2x_1 - 3x_2 + 2x_3 + x_4 =8 end{aligned} right

Решение                                                                

В уравнении a_1_1, то есть x_1 – ведущий член и пусть a_1_1 ≠ 0

Из данного уравнения составим расширенную матрицу:

 begin{pmatrix} 1&2 &3&2&vert{6}\ 2& 4& -2& -3&vert{18}\ 3& 2& -1& 2&vert{4}\  2& -3& 2& 1&vert{8} end{pmatrix} right

Теперь нужно умножить последние три строки (вторую, третью и четвёртую) на: -2, -3, -2. Затем прибавим полученный результат ко второй, третьей и четвёртой строкам исключаем переменную x_1 из каждой строки, начиная не с первой, а не со второй. Посмотрите, как изменилась наша новая матрица и в a_2_2 теперь стоит 0.

 begin{pmatrix} 1&2&3&-2&6\ 0&0&-8&1&6\ 0&-4&-10&8&-14\ 0&-7&-4&5&20 end{pmatrix} right

Поменяем вторую и третью строку местами и получим:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&-7&-4&5&20 end{pmatrix} right

Получилось так, что a^1_{22} = -4neq0 b и тогда, умножая вторую строку на (-7/4) и результат данной строки, прибавляя к четвёртой, можно исключить переменную x_2 из третьей и четвёртой строк:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&0&13,5&9&4,5 end{pmatrix} right

Получилась такая матрица:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&0&0&-{{117}over{16}}&{117}over{8} end{pmatrix} right

Также, учитывая, что a^3_{23} = -8neq0, умножим третью строку на: 13,5/8 = 27/16, и, полученный результат прибавим к четвёртой, чтобы исключить переменную x_3 и получаем новую систему уравнений:

left{ begin{aligned} x_1+2x_2 + 3x_3 - 2x_4=6\     - 4x_2 - 10x_3 + 8x_4=-14\  -8x_3 + x_4=6\ -{{117}over{16}} x_4 = {{117}over{8}} end{aligned} right

Теперь необходимо решить уравнение обратным ходом и найдём из последнего, четвёртого уравнения x_4 = -2,

из третьего: x_3 = {6-x_4}over{-8} = {6+2}over{-8} = -1

второе уравнение находим: x_2 = {-14-8x_4+10x_3}over{-4} = {-14-8(-2)+10(-1)}over{-4} = 2,

из первого уравнения: x_1 = 6+2x_4-3x_3-2x_2=6+2(-2)-3(-1)-2*2=1.

Значит, решение системы такое: (1, 2, -1, -2).

Ответ

x_1 = 1,

x_2 = 2,

x_3 = -1,

x_4 = -2.

Добавим ещё несколько примеров для закрепления материла, но без такого подробного описания, как предыдущие системы уравнений.

Задача

Решить систему уравнений методом Гаусса:

left{ begin{aligned} x + 2y + 3z = 3\ 3x + 5y + 7z = 0\  x + 3y + 4z = 1 end{aligned} right

Решение

Записываем расширенную матрицу системы:

begin{pmatrix} 1&2&3&vert{3}\ 3&5&7&vert{0}\ 1&3&4&vert{1} end{pmatrix} right

Сначала смотрим на левое верхнее число:

Метод Гаусса

Как выше уже было сказано, на этом месте должна стоять единица, но не обязательно. Производим такие действия: первую строку умножаем на -3, а потом ко второй строке прибавляем первую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 1&3&14vert{1} end{pmatrix} right

Производим следующие действия: первую строку умножаем на -1. Затем к третьей строки прибавляем вторую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 0&1&1vert{-2} end{pmatrix} right

Теперь вторую строку умножаем на 1, а затем к третьей строке прибавляем вторую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 0&0&-1&vert{-11} end{pmatrix} right

Получился ступенчатый вид уравнения:

left{ begin{aligned} x + 2y + 3z = 3\ -y - 2z = -9\  -z = -11 end{aligned} right

Проверяем:

-z = -11 = 11,

-y - 2 * 11 = -9,

-y - 22 = -9,

-y = 22 - 9,

y = -13.

x + 2 * (-13) + 3 * (11) = x + 7 = 3 = -4.

  Ответ

x = -4,

y = -13,

z = 11.

Заключение

Итак, вы видите, что метод Гаусса – интересный и простой способ решения систем линейных алгебраических уравнений. Путём элементарных преобразований нужно из системы исключать неизвестные переменные, чтобы систему превратить в ступенчатый вид. Данный метод удобен тем, что всегда можно проверить, правильно ли решено уравнение. Нужно просто подставить найденные неизвестные в изначальную систему уравнений.

Если элементы определителя не равняются нулю, тогда лучше обратиться к методу Крамера, а если же элементы нулевые, тогда такие системы очень удобно решать благодаря методу Гаусса.

Предлагаем ещё почитать учебники, в которых также описаны решения систем методом Гаусса.

Литература для общего развития:

pdf Умнов А. Е. Аналитическая геометрия и линейная алгебра, изд. 3: учеб. пособие – М. МФТИ – 2011 – 259 с.

pdf Карчевский Е. М. Лекции по линейной алгебре и аналитической геометрии, учеб. пособие – Казанский университет – 2012 – 302 с.

Высшая математика. Метод Гаусса для чайников

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее метода Крамера, он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

решение системы с помощью крамера

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

решение методом гаусса для чайников

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

решить систему способом гаусса

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн. Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь — пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

решить систему матрицы методом гаусса

Сначала запишем расширенную матрицу:

решить систему уравнений методом исключения неизвестных гаусса

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

исследовать и решить систему уравнений методом гаусса

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

метод гаусса как решать подробно

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

 Пример решения системы уравнений методом Гаусс

Вуаля — система приведена к соответствующему виду. Осталось найти неизвестные:

решить систему уравнений методом гаусса примеры

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набьете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! Заказать недорого  реферат вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Вычисление определителя методом Гаусса

Вычислим определитель методом Гаусса.

Суть метода состоит в следующем:
определитель приводится к треугольному
виду с помощью элементарных преобразований,
и тогда он равен произведению элементов,
стоящих на главной диагонали.

Идея метода состоит в следующем: пусть
дан определитель третьего порядка

(1)

элементдолжен быть равен,
для этого первую строку разделим на.

Получим определитель вида
(2)

Обнулим элементы, стоящие в первом
столбце, кроме первого. Для этого из
второй строки вычтем первую, умноженную
на
,
далее из третьей строки вычтем первую,
умноженную на.
Получим определитель вида.

Обозначим его элементы буквой с, тогда

(3)

Теперь надо обнулить элемент
.
Элементдолжен быть равен,
для этого вторую строку разделим на.
Получим определитель вида.

Далее из третьей строки вычтем вторую,
умноженную на
.

.

Обозначим его элементы буквой t,
тогда

(4)

Вот мы привели определитель к треугольному
виду, теперь он равен
.

Разберем теперь это на конкретном
примере.

Пример 4:Вычислить определительметодом Гаусса.

Решение: Поменяем местами первую и
третью строки (при замене двух столбцов
(строк) определитель меняет знак на
противоположный).

Получили

Из второй строки вычтем первую, умноженную
на 2, далее из третьей строки вычтем
первую, умноженную на 3. Получили

Далее из третьей строки вычтем вторую,
умноженную на 3.

Получили —

§2.Матрицы Виды матриц

Определение 7: Если в матрицеmстрок иnстолбцов, то она
называетсяразмерностьюmnи пишут.

Определение 8: Если,
то матрица называется квадратной.

Определение 9:Матрица, состоящая
лишь из одной строки (столбца) называется
матрицей-строкой (столбцом).

Определение 10:Матрица, состоящая
из нулей, называется нулевой матрицей.

Определение 11:Диагональной матрицей
называется квадратная матрица, у которой
все элементы, не принадлежащие главной
диагонали равны нулю.

Определение 12:Единичной матрицей
называется диагональная матрица, у
которой все элементы, стоящие на главной
диагонали равны единице.

Определение 13:Треугольной называется
квадратная матрица, у которой элементы,
расположенные по одну сторону от главной
диагонали равны нулю.

Действиянад матрицами.

Определение 14: Две матрицы считаются
равными, если они имеют одинаковое число
строк и столбцов и равные соответствующие
элементы.

Пример 5:

Матрицы А и В равны, т.е.

Определение 15: Суммой (разностью)
матриц А и В называется такая матрица
С, у которой каждый элемент равен.

Пример 6: Найти матрицу,
если

Решение:

Cвойства сложения

А+В=В+А(переместительное)

20А+О=А, где О-нулевая матрица

30 А+(В+С)=(А+В)+С (дистрибутивное)

40А+(-А)=О, где – А противоположная
матрица

(т.е. элементы имеют противоположные
знаки)

Определение 16: Произведением матрицы
А на число
называется матрица, полученная из
данной умножением всех ее элементов на
число.

Пример 7:

Умножение матиц

Это действие распространяется на так
называемые согласованные матрицы.

Определение 17: Матрица А называется
согласованной с матрицей В, если число
столбцов у матрицы А равно числу строк
у матрицы В.

Пример 8:и— согласованные

и— несогласованные

инесогласованные

Определение 18: Произведением двух
матриц А и В называется такая матрица
С, каждый элемент которой равен сумме
произведений элементовiстроки матрицы А на соответствующие
элементыj-го столбца
матрицы В.

Если матрица А имеет размерность
,
а матрица В,
то.

Пример 9: Умножить матрицы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Найти определитель матрицы методом Гаусса

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определитель матрицы – это число, являющееся её параметром-характеристикой. Через определитель выполняются многие действия, связанные с матрицами, например, поиск неизвестных из систем уравнений и не только.

В этой статье рассказано про получение определителя методом Гаусса, также иногда такой способ называют понижением порядка определителя. Помимо приведённого здесь способа также детерминант можно сосчитать через миноры или используя правила Саррюса и треугольников.

Свойства определителя квадратной матрицы

  1. Определитель транспонированной матрицы $A^T$ равен определителю матрицы $A$:
    $|A^T| = |A|$
  2. Определитель квадратной матрицы с нулевой строчкой или столбцом равен нулю.
  3. Перемещая какие-то строчки или столбцы матрицы на места друг друга, знак определителя изменится на противоположный.
  4. Наличие одинаковых строчек, или таких строчек, которые станут одинаковыми после вынесения коэффициента, делают её определитель нулевым.
  5. При умножении членов какой-то матричной строчки или столбца $A$ на некий коэффициент $k$, определитель новой полученной матрицы является определителем произведения $A$ и $k$.
  6. При сложении членов матрицы $A$, находящихся на одной строчке (или в одном столбце) с элементами другой её строчки или столбца, помноженными на некое число $k$, не равное нулю, определитель полученной матрицы будет иметь то же значение, что и определитель матрицы $A$.
  7. Определитель некой матрицы $A$ равен сумме произведений членов какой-либо строчки или столбца на её алгебраические дополнения.

Алгоритм для подсчёта детерминанта методом Гаусса

Чтобы найти определитель матрицы методом Гаусса, необходимо:

  1. Привести матрицу к верхнетреугольной или нижнетреугольной форме используя разрешённые над матрицей преобразования, называемые также элементарными.
  2. Сосчитать произведение всех членов матрицы, принадлежащих главной матричной диагонали полученной треугольной матрицы (эта диагональ проходит слева-направо сверху-вниз). При осуществлении подсчётов для вычисления определителя матрицы методом Гаусса нужно помнить, что при перестановке строчек или столбцов необходимо поменять знак детерминанта в конце решения на противоположный.

Замечание 1

Важно: не следует умножать или делить отдельные строчки матрицы на какие-либо числа во время процесса вычисления, так как это изменит итоговое значение. В случае же если всё же домножили строчку матрицы на какой-либо коэффициент, не забудьте вынести его обратное значение как множитель перед матрицей и домножить на это число итоговый ответ.

«Найти определитель матрицы методом Гаусса» 👇

Пример 1

Найти определитель матрицы методом Гаусса.

$A = left( begin{array}{ccc} 0 & 1 &2 \ 3 & 4 & 5 \ 1 & 1 & 3 \ end{array} right)$

Переставляем верхнюю и третью строчки и выносим знак минус после перестановки:

$A = — left( begin{array}{ccc} 1 & 1 & 3 \ 0 & 1 &2 \ 3 & 4 & 5 \ 0 & 1 &2 end{array} right)$

Затем умножаем первую строчку на $3$ и вычитаю из второй:

$A = — left( begin{array}{ccc} 1 & 1 & 3 \ 0& 1 & -4 \ 0 & 1 &2 \ end{array} right)$

Вычитаем из третьей строчки вторую:

$A = — left( begin{array}{ccc} 1 & 1 & 3 \ 0& 1 & -4 \ 0 & 0 &6 \ end{array} right)$

Полученная матрица является нижнетреугольной, следовательно, теперь можно сосчитать её детерминант:

$det(A) = — ( 1 cdot 1 cdot 6) = -6$

Пример 2

Примените метод Гаусса для вычисления определителя матрицы 4 порядка:

$A = left( begin{array}{cccc} 1 & 2 & 3 & 4 \ 2 & 0 & 2 & 3 \ 3 & 5 & 1 & 0 \ 4 & 1 & 0 & 0 \ end{array} right)$

Сделаем перестановку крайнего столбца с последним и третьего столбец со вторым. Это не изменит знак конечного значения определителя, так как смена позиций применяется дважды:

$A = left( begin{array}{cccc} 4 & 3 & 2 & 1 \ 3 & 2 & 0 & 2 \ 0 & 1 & 5 & 3 \ 0 & 0 & 1 & 4 \ end{array} right)$

Вычитаю из первой строчки вторую:

$A = left( begin{array}{cccc} 1 & 1 & 2 & -1 \ 3 & 2 & 0 & 2 \ 0 & 1 & 5 & 3 \ 0 & 0 & 1 & 4 \ end{array} right)$

Складываю умноженную на $3$ верхнюю строчку со второй:

$A = left( begin{array}{cccc} 1 & 1 & 2 & -1 \ 0 & -1 & -6 & 5 \ 0 & 1 & 5 & 3 \ 0 & 0 & 1 & 4 \ end{array} right)$

Прибавляю к предпоследней строке вторую:

$A = left( begin{array}{cccc} 1 & 1 & 2 & -1 \ 0 & -1 & -6 & 5 \ 0 & 0 & -1 & 8 \ 0 & 0 & 1 & 4 \ end{array} right)$

Прибавляю к нижней строчке предпоследнюю:

$A = left( begin{array}{cccc} 1 & 1 & 2 & -1 \ 0 & -1 & -6 & 5 \ 0 & 0 & -1 & 8 \ 0 & 0 & 0 & 12 \ end{array} right)$

Матрица стала треугольной, теперь найдём её детерминант:

$det(A) = 1 cdot (-1) cdot (-1) cdot 12 = 12$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 16.12.2022

Понравилась статья? Поделить с друзьями:
  • Ws 37338 4 что за ошибка как исправить
  • Fallout 76 как найти сокровища крейна
  • Как найти своего учителя на рэш
  • Шлюхи петропавловска как их найти петропавловске
  • Как найти периметр треугольника зная среднюю линию