Как найти медиану треугольника абс

Медиана равна половине гипотенузы прямоугольного треугольника!

Почему??? При чём тут прямой угол?

Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.

Ты заметил, что наш треугольник ( displaystyle ABC) – ровно половина этого прямоугольника?

Проведём диагональ ( displaystyle BD):

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?

Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, ромб…»

Но одна из диагоналей – ( displaystyle AC) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы ( displaystyle Delta ABC).

Она называлась у нас ( displaystyle M).

Значит, половина второй диагонали – наша медиана ( displaystyle BM). Диагонали равны, их половинки, конечно же, тоже. Вот и получим ( displaystyle BM=MA=MC)

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.

Более того, так бывает только в прямоугольном треугольнике!

Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.

Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?

Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.

Решение задач на свойства медианы в прямоугольном треугольнике

Давай посмотрим, как это свойство помогает решать задачи.

Задача №1:

В ( displaystyle Delta ABC) стороны ( displaystyle AC=5); ( displaystyle BC=12). Из вершины ( displaystyle C) проведена медиана ( displaystyle CN).

Найти ( displaystyle AB), если ( displaystyle AB=2CN).

Рисуем:

Сразу вспоминаем, это если ( displaystyle CN=frac{AB}{2}), то ( displaystyle angle ACB=90{}^circ )!

Ура! Можно применить теорему Пифагора!

Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

( A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}})

( A{{B}^{2}}={{5}^{2}}+{{12}^{2}}=169)

Ответ: ( AB=13)

А в следующей задаче пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?

Запомни очень важный факт:

Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении ( 2:1), считая от вершины.

Сложно? Смотри на рисунок:

Медианы ( displaystyle AM), ( displaystyle BN) и ( displaystyle CK) пересекаются в одной точке.

Запомни:

  • ( displaystyle AO) – вдвое больше, чем ( displaystyle OM);
  • ( displaystyle BO) – вдвое больше, чем ( displaystyle ON);
  • ( displaystyle CO) – вдвое больше, чем ( displaystyle OK).

Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении ( displaystyle 2:1 ), считая от вершины.

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

1. Медианы треугольника пересекаются в одной точке.

2. Точкой пересечения медианы делятся в отношении ( displaystyle 2:1 ), считая от вершины.

Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.

Доказательство теоремы о трех медианах треугольника

Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой ( displaystyle E).

Соединим точки ( displaystyle N) и ( displaystyle K). Что получилось?

Конечно, ( displaystyle NK) – средняя линяя ( displaystyle triangle ABC). Ты помнишь, что это значит?

  • ( displaystyle NK) параллельна ( displaystyle AC);
  • ( displaystyle NK=frac{AC}{2}).

А теперь проведем ещё одну среднюю линию: отметим середину ( displaystyle AE) – поставим точку ( displaystyle F), отметим середину ( displaystyle EC) — поставим точку ( displaystyle G).

Теперь ( displaystyle FG) – средняя линия ( displaystyle triangle AEC). То есть:

  • ( displaystyle FG) параллельна ( displaystyle AC);
  • ( displaystyle FG=frac{AC}{2}).

Заметил совпадения? И ( displaystyle NK) , и ( displaystyle FG) – параллельны ( displaystyle AC). И ( displaystyle NK=frac{AC}{2}), и ( displaystyle FG=frac{AC}{2}).

Что из этого следует?

  • ( displaystyle NK) параллельна ( displaystyle FG);
  • ( displaystyle NK=FG)

Посмотри теперь на четырехугольник ( displaystyle NKGF). У какого четырехугольника противоположные стороны (( displaystyle NK) и ( displaystyle FG)) параллельны и равны?

Конечно же, только у параллелограмма!

Значит, ( displaystyle NKGF) – параллелограмм. Ну и что?

А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

Получилось что:

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике по треугольникам

Лучше всего смотреть это видео с ручкой и тетрадкой в руках. То есть ставьте видео на паузу и решайте задачи самостоятельно.

Помните, понимать и уметь решать — это два, совершенно разных навыка. Очень часто вы понимаете как решить задачу, но не можете это сделать. Или допускаете ошибки, или просто теряетесь и не можете найти ход решения.

Как с этим справиться?

Нужно решать много задач. Другого способа нет. Вы должны совершить свои ошибки, чтобы научиться их не допускать.

ЕГЭ №6 Равнобедренный треугольник, произвольный треугольник

В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и «обычные» треугольники.

ЕГЭ №6 Прямоугольный треугольник, теорема Пифагора, тригонометрия

Большинство задач в планиметрии решается через прямоугольные треугольники. Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.

Но на уроках этой темы мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше.

И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.

В этом видео мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.

ЕГЭ №16. Подобие треугольников. Задачи н доказательство

Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!

Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.

В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.

Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.

Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

  • Определение медианы треугольника

  • Свойства медианы

    • Свойство 1 (основное)

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

  • Примеры задач

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

  • BF – медиана, проведенная к стороне AC.
  • AF = FC

Медиана треугольника

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

Пересечение медиан треугольника (центр тяжести)

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

  • AO = 2OE
  • BO = 2OF
  • CO = 2OD

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Деление треугольника медианой на 2 равновеликих треугольника

S1 = S2

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Деление треугольника тремя медианами на 6 равновеликих треугольников

S1 = S2 = S3 = S4 = S5 = S6

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

Медианы в треугольнике

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Длина медианы через длины сторон треугольника

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Длина медианы через длины сторон треугольника (формула)

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см2. Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см2 ⋅ 6 = 30 см2.

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Длина медианы через длины сторон треугольника (пример)

Все формулы медианы треугольника


Медиана — отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M — медиана, отрезок |AO|

c — сторона на которую ложится медиана

a, b — стороны треугольника

γ — угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними



Подробности

Автор: Administrator

Опубликовано: 08 октября 2011

Обновлено: 13 августа 2021

Медиана треугольника

— это отрезок, соединяющий вершину треугольника c серединой противоположной стороны. Прямая тоже может быть медианой. Треугольник имеет три стороны, поэтому у него всегда ровно три медианы, каждая из которых выходит из вершины к середине противоположной стороны треугольника.

Если мы проведем медиану к основанию в равнобедренном треугольнике, то увидим что она также является и высотой:

Все медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2 к 1.

Медиана — это значение, которое делит упорядоченный набор данных на две равные части, то есть 50% значений находятся выше медианы, а 50% — ниже. Вот некоторые свойства медианы:

  1. Медиана не зависит от выбросов в данных. Это означает, что если в наборе данных есть несколько значений, которые являются выбросами (то есть существенно отличаются от остальных значений), то медиана останется той же самой.

  2. Медиана может быть использована для измерения центральной тенденции. В отличие от среднего значения, медиана более устойчива к выбросам и не будет искажена ими.

  3. Если набор данных имеет четное количество значений, то медианой будет среднее значение двух средних элементов. Если же набор данных имеет нечетное количество значений, то медианой будет средний элемент.

  4. Медиана может быть использована для определения дисперсии. Дисперсия — это мера распределения данных вокруг центральной тенденции. Медиана может быть использована для определения интерквартильного размаха, который является мерой разброса данных вокруг медианы.

  5. Медиана может быть использована для определения выбросов. Если значение в наборе данных существенно отличается от медианы, то оно может быть классифицировано как выброс.

  6. Медиана может быть использована для проверки симметричности распределения. Если медиана равна среднему значению, то распределение является симметричным. Если же медиана смещена вправо или влево от среднего значения, то распределение считается асимметричным.

Задача 1:

В равнобедренном треугольнике медиана, исходящая из вершины, которая не является вершиной угла с наименьшей мерой, равна 12 см. Найдите боковую сторону треугольника.

Ответ: 

Ответ: 12 см. В равнобедренном треугольнике медиана, исходящая из вершины, которая не является вершиной угла с наименьшей мерой, равна половине основания треугольника, т.е. равна боковой стороне треугольника.

Задача 2

В треугольнике ABC медиана, проведенная из вершины А, равна 8 см, а медиана, проведенная из вершины B, равна 6 см. Найдите длину медианы, проведенной из вершины C.

Ответ: 10 см. В треугольнике ABC медиана, проведенная из вершины А, делит сторону BC пополам, а медиана, проведенная из вершины B, делит сторону AC пополам. По свойству медиан треугольника, точка их пересечения делит каждую медиану в отношении 2:1. Значит, медиана, проведенная из вершины C, делит сторону AB в отношении 2:1, т.е. длина медианы из вершины C равна 10 см.

Задача 3

В треугольнике ABC медиана, проведенная из вершины А, равна 6 см, а медиана, проведенная из вершины B, равна 8 см. Известно, что периметр треугольника равен 30 см. Найдите длину стороны AB.

Ответ: 8 см. Рассмотрим треугольник ABC. По свойству медиан треугольника, медиана, проведенная из вершины А, делит сторону BC пополам, а медиана, проведенная из вершины B, делит сторону AC пополам. Значит, длины сторон BC и AC равны соответственно 2 * 6 = 12 см и 2 * 8 = 16 см. Так как периметр треугольника равен 30 см, то длина стороны AB равна 30 — 12 — 16 = 2 см. Таким образом, сторона AB равна 2 см, а медиана, проведенная из вершины C, делит эту сторону пополам, значит, ее длина равна 8 см.

Часто задаваемые вопросы

Что такое медиана?

Медиана треугольника — это линия, которая соединяет вершину треугольника с серединой противолежащей стороны.

Какие свойства медианы треугольника?

Мы используем разнообразные материалы, такие как учебники, аудио и видео материалы, игры иМедиана треугольника соединяет вершину треугольника с серединой противолежащей стороны. В треугольнике каждая сторона имеет свою медиану. Медианы треугольника пересекаются в точке, называемой центром тяжести, которая делит каждую медиану в отношении 2:1. Медиана является высотой того треугольника, в котором она проходит через вершину. Длина медианы, исходящей из вершины, равна половине основания треугольника в равнобедренном треугольнике. Медиана является наибольшей из линий, проведенных из вершины треугольника, и ограниченных точками пересечения медиан с противолежащими сторонами. тесты. Все материалы выбираются исходя из возраста и уровня владения языком ученика.

Что такое высота треугольника?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую сторону или ее продолжение.

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Найти медиану треугольника по координатам вершин

Как найти медиану если даны координаты вершин треугольника?

Чтобы найти медиану треугольника по координатам его вершин, применим формулы координат середины отрезка и формулу расстояния между точками.

Рассмотрим нахождение медианы на конкретном примере.

Дано: ΔABC,

1) Так как AF — медиана треугольника ABC, то F — середина BC.

Медиана треугольника

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

Поскольку отрезок BD является медианой, то

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

источники:

Понравилась статья? Поделить с друзьями:
  • 5 класс биология пасечник как составить кроссворд учебник
  • Как найти длину медианы зная стороны треугольника
  • Как правильно составить претензию на некачественную услугу в сервисном центре образец
  • Как найти партнеров предприятия
  • Как найти панель управления реалтек