Как найти металл титан

Как добывают титан

Массовое производство титана началось в 40-е годы XX века. Главной особенностью металла является его прочность, а из-за высокой температуры плавления он широко используется в военной и химической промышленности. По сравнению с другими металлами, титан добывается сравнительно в небольших количествах, что связано с высокой стоимостью работ по его обработке.

Как добывают титан

Инструкция

Для получения титана добываются руды с его содержанием – ильменит, рутил и титанит. Рутил имеет меньшее количество посторонних примесей, а потому он чаще служит в качестве исходного материала для добычи. Часто металл добывается из шлака – расплав, оставшийся после обработки ильменитовых руд.

Если извлечение происходит из шлака, титан получается в губчатом виде. После этого материал переплавляется на слитки в вакуумных печах с добавлением легирующих добавок, если изготавливается сплав. Легирование – добавление примесей, улучшающих свойства материала.

Другой способ получения титана – магниетермический. Сначала добываются титаносодержащие руды, перерабатываемые в диоксид. При очень высокой температуре добавляются хлор и магний. Полученный состав нагревается в вакуумных печах, где происходит испарение ненужных элементов и остается лишь металл.

Гидридно-кальциевый метод состоит в том, что сначала химическим способом получается гибрид титана, а затем полученный состав разделяется на титан и водород. Процесс также проходит в вакуумных печах. При электролизном методе получение металла производится при помощи тока высокой силы.

Для получения материала иодидным способом применяется химическое взаимодействие вещества, из которого получается материал, с парами йода. После этого полученное вещество разогревается при высокой температуре и получается нужный металл. Данный способ является наиболее дорогостоящим и эффективным. При иодидном разложении получается чистый титан, не содержащий примесей.

В промышленности чаще всего применяется магниетермический метод, который позволяет получить больше материала за минимальное количество времени и небольшие финансовые затраты.

Видео по теме

Обратите внимание

Высокая стоимость получения металла объясняется тем, что в свободном виде он не встречается нигде, а потому требует проведения химических реакций для отсоединения от других элементов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Продолжаю серию кратких публикаций на тему «титан», где я буду рассказывать об истории, областях его применения, о том, как изготавливаются изделия из титана, и много чём ещё интересном.

Итак, ещё немного истории.

Как открывали титан?

Тита́н (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета.

История .

Титан открыли не сразу как элемент. Всё началось с открытия оксида титана (TiO2), и это открытие сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой.

Затем наука на этом не успокоилась, и эта странная субстанция продолжила полошить мозги, и вот, в 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные окислы титана.

А вот первый образец металлического титана как элемента получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы Антон Эдуард ван Аркель и Ян де-Бур в 1925 году термическим разложением паров иодида титана TiI4. До сих пор чистый титан, или йодидный титан, производится в очень ограниченном количестве, область его применения очень мала, а сам такой титан стоит очень дорого. В ювелирной промышленности в связи с этим практически не применяется, за редчайшим исключением. Одно такое изделие мы делали, оно было очень простым и стало очень дорогим.

История открытия титана непредсказуема и весьма увлекательна. Как думаете, кто открыл титан? Варианты:

  1. Ученый.
  2. Опытный минералог.
  3. Лесник.
  4. Священник.

Титан открыл и нашел британский священник в 1791 году в долине Менакин (ниже место нахождения показано на Гугл карте):

история открытия металла титан

Содержание:

  • Как священник Улильям Грегор открыл титан?
  • Кто дал название металлу Титану?
    • Почему титан так назвали?

Как священник Улильям Грегор открыл титан?

Минералогия не была профессией пастора. Скорее это было хобби, увлечение. Открытие титана – большая удача и самый выдающийся поступок в жизни Грегора. Добыл он титан благодаря темному песку, который обнаружил у местного моста в долине Менакин. Грегора заинтересовал магнитизм песка, похожего на антрацит, и тот решил провести эксперимент над находкой в своей мини-лаборатории.
Священник погрузил пробу найденного песка в соляную кислоту. В результате светлая часть пробы растворилась и остался только темный песок. Тогда Уильям долил в песок серную кислоту, которая растворила остаток пробы. Решив продолжить эксперимент, Грегор нагрел раствор и тот начал мутнеть. В результате вышло что-то наподобие известкового молока:

как открыли титан

Грегора удивил оттенок суспензии, но не настолько, чтобы делать дерзкие выводы об открытии нового элемента Ti. Он решил добавить еще кислоты H2SO4, но помутнение не исчезало. Тогда пастор продолжил нагрев суспензии, пока жидкость полностью не испарилась. На ее месте остался белый порошок:

порошок ильменита

Тут-то Уильям Грегор решил, что имеет дело с неизвестным ему видом извести. Он тут же передумал после прокаливания порошка (нагрев до 400 градусов Цельсия и выше) – вещество пожелтело. Не в силах идентифицировать открытие, он позвал на помощь своего друга, который в отличии от пастора, занимался минералогией профессионально. Его друг, ученый Хавкинс подтвердил открытие – это новый элемент!
Далее пастор подал заявку об открытии элемента. в «Физический журнал» Найденную породу он назвал «менаканитом», добытый оксид «менакином». Но сам элемент тогда названия так и не получил…
В честь открытия титана на месте возле моста, где Уильям Грегор нашел «странный» темный песок, в апреле 2002 года установили мемориальную доску в честь открытия. Позже священник решил углубиться в изучение минералов и открыл собственное Геологическое общество в родном городе Корнуэлле. Он также нашел титан в тибетском корунде и олове в родном округе.
Мемориальная доска:

мемориальная доска в честь открытия титана

Кто дал название металлу Титану?

Мартин Генрих Клапрот скептически принял статью из «Физического журнала» об открытии менакина. Тогда много чего открывали. Сам ученый открыл Уран и Цирконий! Он решил проверить правдивость слов священника на деле. Во время исканий обнаружил некий «венгерский красный шерл» и решил разложить его до элементов. В результате получил аналогичный «Грегоровскому» порошок белого цвета. После сравнения плотностей оказалось, что это одинаковое вещество.

Клапрот
Священник и именитый ученый открыли один и тот же минерал – это был не менакин и не шерл, а рутил. Порода, в которой Грегор нашел черный песок ныне называется ильменитом. Клапрот знал, что пастор первым обнаружил диоксид и не претендовал на открытие (тем более, что он уже открыл Уран и Цирконий). Но научное сообщество больше приняло старания ученого, чем священника. Сейчас считается, что и Грегор и Клапрот одинаково в этом участвовали и «вместе» открыли Титан в 1791 году (хоть пастор и сделал это первым).

Почему титан так назвали?

В 18 веке огромное влияние оказывала французская школа химика Лавуазье. Согласно принципам школы, новые элементы называли исходя из их ключевых особенностей. По такому принципу назвали Оксиген (порожденный воздухом), Гидроген (порожденный водой) и Азот («безжизненный). Но Клапрот критически отнесся к этому принципу Лавуазье, хоть и поддерживал другие его учения. Он решил пойти по своему принципу: Мартин называл элементы мифическими именами, планетами и другими названиями, не имеющими отношения к свойствам вещества.
Генрих Клапрот назвал добытый из рутила элемент Титаном в честь первых обитателей планеты Земля. Титан Прометей дал людям огонь, а открытый металл титан ныне дает авиации, судо- и ракетостроению сырье для новых открытий!

Титановые руды: свойства, способы добычи и промышленное применение

Титановые руды – это природные минералы, содержащие в своём составе титан (в скобках указано максимальное процентное содержание):

Содержание

  • Способы добычи
    • Карьерный
    • Шахтный
  • Методы обогащения
    • Мокрое и сухое разделение по удельному весу
    • Флотация
    • Магнитная и электрическая сепарация
    • Металлургический метод
  • Промышленное применение
  • Месторождения в России и мире
  • Мировые запасы
  • Страны, добывающие титановые руды
  • рутил, модификациями которого являются анатаз и брукит (свыше 99%),
  • лейкоксен (более 97%),
  • ильменит (почти 93%),
  • перовксит (до 57,8%),
  • лопарит (доходит до 41%),
  • сфен (почти 41%).

Титан – девятый в списке самых распространённых элементов земной коры, его присутствие обнаружено в 70 минералах, но наиболее интересными в плане переработки являются перечисленные выше.

Способы добычи

Более половины титана добывают из россыпей. Добыча в песчаных месторождениях не представляет никакой сложности. Процесс достаточно прост и не требует дробления и измельчения, осуществляется он драгами, земснарядами, экскаваторами, скреперами и другими гидравлическими устройствами.

Карьерный

Иное дело, когда руды залегают жилами на небольшой глубине. В зависимости от твёрдости вскрышных пород, приходится прибегать к их удалению с помощью землеройных механизмов или посредством проведения предварительных буровзрывных работ. После чего, вынутую руду забирают и подвергают дроблению и измельчению для дальнейшей переработки.

Шахтный

Шахтный способ применим при разработке коренных месторождений. Это наиболее затратный и трудоёмкий способ, требующий строительства целого комплекса сложных подземных сооружений, затраты на который окупаются получением целого набора полезных ископаемых, находящихся в составе титаносодержащих руд.

Методы обогащения

Так как процентное содержание диоксида титана (основного минерала титановых руд) изменчиво в зависимости от месторождения, то извлечённую породу подвергают обогащению, подразделяемому на две стадии: отделение пустой массы и выделение индивидуальных минералов.

Мокрое и сухое разделение по удельному весу

Благодаря различной плотности титаносодержащей породы и массы, не обладающей этим природным минералом, становится возможным их разделение в водной или воздушной среде под воздействием физических сил, созданных внутри специальных технических агрегатов. Это – так называемые гравитационные методы обогащения добытого материала.

Флотация

Способность разнообразных материалов удерживаться или не удерживаться на границе сред, пребывающих обычно в жидком и газообразном состоянии, нашла широкое применение в обогащении титановых руд.

В зависимости от первоначального минерала, используют свои специфические свойства химические вещества – образователи флотационной среды. Так, для ильменита в качестве таких сред выступают собиратели в виде жирных кислот. Рутил хорошо флотируется олеиновой кислотой или сульфированными производными углеводородов. Перовскит перед флотацией жирными кислотами необходимо обработать серной кислотой. Существует множество методов и технологий флотации, кроме того, они варьируются в зависимости от месторождений.

В последнее время широкое распространение в качестве флотационного материала получило талловое масло. Впрочем, переработчики руководствуются соображениями стоимости, доступности, минимума токсичности, при выборе материала для флотации. 

Титановые руды

Магнитная и электрическая сепарация

Отличие магнитных и электрических свойств титана от других минералов положено в основу соответствующих сепараций – технологий отделения нужного материала от пустой породы под воздействием электрических и магнитных полей в специальных аппаратах. В их список входят: сепараторы, железоотделители, намагничиватели и размагничиватели. А принцип действия этих устройств основан на изменении траектории движения в силовом магнитном или электрическом поле.

Металлургический метод

Завершающей стадией получения титанового шлака является плавка концентрата в виде прессованных брикетов в электродуговых печах при температуре 1500-17000 C. Образующиеся в результате металлургического метода отливки содержат до 80% титана. 

Промышленное применение

С момента своего открытия в конце XVIII века, титан был оценён специалистами как металл, обладающий лёгкостью, прочностью, жаростойкостью, устойчивостью к коррозии и при этом хорошо поддающийся механической обработке.

Технический титан и его сплавы широко используется в целом ряде отраслей народного хозяйства:

  • Химическая индустрия не может обходиться без титановых изделий, обладающих высокой стойкостью к агрессивному воздействию. Это – специальная арматура, ёмкости, трубы, части машин и механизмов, активно используемых в этой отрасли.
  • Транспорт активно применяет этот материал, в качестве альтернативы другим металлам, благодаря его низкому удельному весу. Что существенно снижает затраты при перемещении грузов в более лёгких и компактных вагонах и поездах. Используется титан и в автомобилестроении для изготовления витых пружин и систем отвода уходящих газов.
  • Незаменим этот материал и в области военной техники. Броня и трубы, глушители и теплообменники, пропеллеры и турбины, являющиеся важными элементами самоходных орудий, танков, самолётов, военно-морских судов и подводных лодок, не обходятся без использования этого минерала.

Химически чистый титан отличается очень высокой жаропрочностью и устойчивостью к механическим воздействиям. Учитывая его лёгкий вес, металл нашёл своё применение в авиации, ракетостроении, космонавтике; при изготовлении электровакуумных приборов и криогенной техники.

Отдельно можно упомянуть медицинские, спортивные и декоративные направления использования этого уникального по своим свойствам материала. Медицинские инструменты и протезы, спортивные снаряды и амуниция, разнообразные декоративно-художественные изделия, известные скульптуры – всё это вместе объединяет между собой такой удивительный материал, как титан.

Месторождения в России и мире

Территория России обладает порядка 20-ью месторождениями титановых руд, расположенными в 9-и металлогенических провинциях, крупнейшими из которых являются:

  • Оклемо-Становская,
  • Тиманская,
  • Уральская.

Также значительными запасами обладают месторождения магматического происхождения Баладекского, Джугджурского, Коларского массивов и находящееся в Амурской области месторождение Большой Сейм. Древние морские россыпи, богатые титановыми рудами размещены на Русской плите и в Сибири. Значительные запасы имеются и на территории Карелии.

За рубежом крупные месторождения докембрийского периода обнаружены в США (Тегавус), Канаде (Лейк-Тио), Норвегии (Тельнес). Запасы ильменита присутствуют на территории Канады, Норвегии, Индии, ЮАР; рутила – в ЮАР, Индии и Австралии. Также титановыми рудами в значительном количестве обладают Бразилия, Мексика и Китай.

Титановая руда

Мировые запасы

Подтверждённые мировые запасы диоксида титана составляют:

  • Китай – 232,9 млн. тонн.
  • Украина – 184 млн. тонн.
  • Россия – 177 млн. тонн.
  • Бразилия – 123 млн. тонн.
  • Индия – 100 млн. тонн.
  • Норвегия – 57 млн. тонн.
  • Канада – 51,4 млн. тонн.
  • ЮАР – 34,1 млн. тонн.
  • Австралия – 21,4 млн. тонн.
  • Остальные страны – 59,1 млн. тонн.

Если оценивать в процентном отношении залежи титановых руд, то ситуация будет несколько иная:

  • Китай – 38%.
  • Россия – 17%
  • Австралия – 10%.
  • Бразилия – 6%.
  • Норвегия – 4%.
  • Индия – 4%.
  • Канада – 3%.
  • Украина – 1%.
  • Другие страны – 17%.

Различия объясняются разнообразием месторождений и трудностью объективной оценки точного количества залежей этого минерала.

Страны, добывающие титановые руды

По состоянию на 2018 год ситуация на рынке титана выглядит следующим образом:

  • Крупнейшими добывающими странами являются Китай, Австралия, Индия, ЮАР.
  • Ведущие производители по переработке руды и выплавке титана выглядят следующим образом: США, Россия, Япония, Китай.

Хотя, ещё в 2005-2006 годах 70% мирового производства ильменитового концентрата обеспечивали Австралия, Норвегия и Украина. А 90% рутилового концентрата выпускали в Австралии, ЮАР и на Украине.

Ситуация с течением времени меняется коренным образом: Китай наращивает как добычу, так и переработку совместно с окончательным производством столь ценного продукта, каким является титан для промышленности.

А другие страны пользуются тем, что доля сырья в окончательной стоимости произведённого продукта (титана) составляет лишь 5%, активно закупают исходные материалы по всему миру, не затрудняя себя разработкой новых месторождений. И на то есть свои объективные причины. Гораздо проще и дешевле заниматься освоением прибрежных морских россыпей, как это делают Австралия, Индия (штаты Керала и Мадрас), США (полуостров Флорида), ЮАР (месторождение прибрежных песков Ричардс-Бей), чем заниматься освоением подземных месторождений, подчас не обещающих высокое содержание нужных полезных ископаемых.

Содержание

  1. Что представляет собой
  2. Сферы применения
  3. Особенности термообработки
  4. Нахождение в природе
  5. Литье титана
  6. Крупные месторождения
  7. ОПТИЧЕСКИЕ СВОЙСТВА
  8. История открытия
  9. Продукция из титана
  10. Происхождение названия
  11. Добыча и переработка
  12. Физико-химические характеристики
  13. Технология получения
  14. Месторождения, добыча
  15. Достоинства / недостатки
  16. Плюсы и минусы металла и его сплавов
  17. Присутствие в природе
  18. Где используется
  19. Промышленность
  20. Медицина
  21. Другие сферы
  22. Структура и состав
  23. Физические свойства
  24. Области применения
  25. Конструкционные высокопрочные ТС
  26. ПРИМЕНЕНИЕ
  27. Мировые запасы и производство титана
  28. Марки и сплавы
  29. Теплопроводность стали и титана
  30. Основные сведения о титане
  31. История открытия титана
  32. Свойства титана
  33. Марки титана и виды изделий
  34. Производство и изготовление
  35. Магниетермический процесс
  36. Гидридно-кальциевый метод
  37. Электролизный метод
  38. Йодидный метод
  39. КЛАССИФИКАЦИЯ

Что представляет собой

Титан – элемент периодической системы Менделеева №22. Международное обозначение – Titanium (Ti).

Это блестящий серебристый металл. Легок, прочен, устойчив к коррозии.

По составу представляет собой конгломерат пяти стабильных изотопов.

Сферы применения

Идеальный материал для многих отраслей, в которых требуется низкий вес, высокая прочность и длительный срок службы. Широко используются:

  • в авиации, ракетостроении и космической технике. В авиастроении из титана изготавливают изделия сложной пространственной конфигурации, места для высоконагруженных узлов и агрегатов, а также части двигателя. В космической индустрии особо распространен титановый сплав с никелем;
  • судостроении. Незаменим для обшивки, производства деталей насосов и трубопроводов. Малая плотность позволяет значительно снизить массу корабля, при этом улучшаются маневренность и дальность хода. Благодаря высокой коррозионной устойчивости обшивка не требует покраски, а корпус десятилетиями не ржавеет и не разрушается в соленой воде;
  • машиностроении — в химическом, тяжелом, энергетическом и транспортном, для легкой, пищевой промышленности и бытовых приборов. Выпускаемое оборудование условно делят на специализированное серийное и нестандартное (для нужд конкретного машиностроительного завода);
  • черной металлургии — оборудование для коксохимических, металлургических, сталеплавильных и ферросплавных производств;
  • цветной металлургии — занимает второе место среди гражданских отраслей промышленности. Наибольшее распространение получило на предприятиях кобальтово-никелевой и титано-магниевой промышленности, а также в производстве меди, цинка, свинца, ртути и других металлов;
  • целлюлозно-бумажной и пищевой промышленности. Материал обеспечивает надежную защиту от коррозии, а также отвечает высоким санитарно-гигиеническим требованиям пищевых производств;
  • медицинской промышленности. Коммерчески чистый титан и Тi6-4Eli используют в производстве хирургического инструмента, внутренних и внешних протезов, костылей и инвалидных колясок.

Особенности термообработки

Проводится для повышения эксплуатационных качеств. В зависимости от химического состава и назначения сплавы подвергают:

  • отжигу. Является одним из самых распространенных видов термообработки и при образовании гетерофазных структур обеспечивает достаточную прочность. Различают несколько видов отжига:
    • рекристаллизационный — температура 520–850 °С. Ее показатели увеличиваются для легирующих элементов. Также на температуру влияет вид полуфабриката — более высокая для прутков, поковок, штамповки и более низкая для листов;
    • с фазовой перекристаллизацией — температура нагрева зависит от сплава и составляет 750–950 °С. Таким образом, снижают твердость, повышают пластичность, добиваются измельчения зерна и устранения структурной неоднородности;
  • закалке и старению. Первое проводят с целью фиксации метастабильных фаз (β, α», α’) при быстром охлаждении. Основными технологическими параметрами этого процесса являются t нагрева, время выдержки и скорость охлаждения, которая должна быть высокой. Для сплавов с преобладанием α-фазы закалка не эффективна. Чтобы полученные при закалке метастабильные фазы распались, производят старение. Оно состоит из нагрева до t ниже ТПП и охлаждения на воздухе;
  • химико-термической обработке. Чтобы повысить антифрикционные свойства, выполняют азотирование и оксидирование. Процессы очень ограниченно применяются в промышленном масштабе. Азотирование в десятки раз увеличивает износостойкость и жаростойкость, но в несколько раз снижает пластичность, относительное удлинение и поперечное сужение. Во время оксидирования, если образуется слой небольшой толщины при не очень высокой температуре окисления, удается добиться повышения износостойкости деталей без существенной потери механических и служебных свойств.

Нахождение в природе

Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе характеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое — приблизительно 0,001 мг/л. Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений. Для практического использования наибольшее значение имеют следующие минералы:

  1. Ильменит (FeTiO3).
  2. Рутил (TiO2).
  3. Титанит (CaTiSiO5).
  4. Перовскит (CaTiO3).
  5. Титаномагнетит (FeTiO3+Fe3O4) и т. д.

Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма характерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.

химический элемент титан

Литье титана

Во время нагрева до температуры плавления титан активно реагирует с компонентами воздуха.

Чтобы этого не происходило, воздух в печах откачивали, создавали вакуум. Остатки воздуха стали вытеснять инертными газами: смесью аргона и гелия. На промышленных литейных установках остаточное давление инертных газов колеблется от 1,33 до 0,13 Па.

Разработано несколько технологий:

В вакуумной камере металл расплавляют, разливают по формам. Охлаждают до температуры, когда металл теряет химическую активность, образует кристаллическую структуру.

Метод вакуумного литья (МВЛ) по выплавляемым моделям заключается в использовании выплавляемых или выжигаемых форм. На поверхности модели создают огнеупорную оболочку. Отливки получаются максимально приближенной формы.

Читайте также: 

Технология оболочечного литья предусматривает использование тонкостенных разъемных форм. Их устанавливают на разогретую модельную плиту, чтобы покрыть термоактивной смолой. Заливка производится вертикально и горизонтально.

Специально разрабатывается температурный режим остывания отливок. Предусмотрено равномерное структурирование по всему объему, чтобы в литье не возникали внутренние напряжения.

Крупные месторождения

Лидирующее место занимает Китай, далее следует Российская Федерация, Северная Америка (Канада). Самое крупное месторождение, где добывают титан в РФ, расположено на территории республики Коми и называется Ярегское нефтяное месторождение.

Залежи титана в мире

В десятку стран лидеров по добыче титана входят:

  • США;

  • Индия;

  • Австралия;

  • ЮАР;

  • Швеция;

  • Норвегия;

  • Южная Корея.

ОПТИЧЕСКИЕ СВОЙСТВА

Люминесценция в ультрафиолетовом излучении не флюоресцентный

История открытия

История открытия металла связана с именами нескольких ученых:

  • В конце 18 века немец Мартин Клапрот и англичанин Уильям Грегор одновременно открыли диоксид вещества.
  • Через десять лет их компанию пополнил француз Луи-Николя Воклен.
  • К середине 19 века Иенс Берцелиус получил металлический титан.
  • Еще через сто лет материал повышенной чистоты выделили голландцы.

Стержень, состоящий из титановых кристаллов высокой чистоты
Стержень, состоящий из титановых кристаллов высокой чистоты

Название нового вещества предложил Клапрот: по учрежденной им традиции химик назвал открытый элемент именем персонажа греческой мифологии.

Титаны – это дети главных богов греческого пантеона Зевса и Геи. То есть второе поколение богов.

Продукция из титана

В строительных магазинах можно найти разнообразные товары, изготовленные из этого металла. Из него производят проволоку, ленту и фольгу, прутья, трубы. Также можно приобрести титан в цельных листах.

Происхождение названия

Свое наименование получил вследствие сравнения с титанами в древнегреческой мифологии М. Клапротом. При этом исследователь не был знаком в полной мере со свойствами элемента, на тот момент они практически не известны. 

При этом представители французской школы пытались найти название, соответствующее характеристикам металла. Однако Мартин остановился на мифологии (как было ранее с ураном).

Добыча и переработка

Титан получают из концентрата титансодержащих руд методами пирометаллургии или сернокислотной переработки.

Концентраты из ильменитовых руд плавят в электродуговых печах.

При необходимости черновой металл рафинируют.

Физико-химические характеристики

Свойства металла хорошо изучены:

  • Легко реагирует с кислотами даже малой концентрации.
  • Это тугоплавкий металл: температура плавления – 1670°C. Для вскипания требуется вдвое больше.
  • Пластичен, хрупкость обретает на морозе (-80°C).
  • На прочность влияет степень очистки, но не температура.
  • При комнатной температуре покрывается оксидной пленкой, что делает его устойчивым к коррозии (исключая щелочи).
  • При обычном давлении существует два вида титана с разными типами решеток: высоко- и низкотемпературный.

Легкость, почти невесомость – главное свойство, по которому титан легко отличить от других металлов.

Свойства атомаНазвание, символ, номер
Атомная масса

Тита́н / Titanium (Ti), 22
47,867(1) а. е. м. (г/моль)
[Ar] 3d2 4s2
147 пм
132 пм
(+4e)68 (+2e)94 пм
1,54 (шкала Полинга)
−1,63
2, 3, 4
 657,8 (6,8281) кДж/моль (эВ)
4,54 г/см³
1670 °C
1943 K
3560 K
18,8 кДж/моль
422,6 кДж/моль
25,1 Дж/(K·моль)
10,6 см³/моль
гексагональная
плотноупакованная (α-Ti)
a=2,951 с=4,697 (α-Ti)
1,587
380 K
(300 K) 21,9 Вт/(м·К)
7440-32-6

(молярная масса)
Электронная конфигурация
Радиус атома
Химические свойстваКовалентный радиус
Радиус иона
Электроотрицательность
Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)
Термодинамические свойства простого веществаПлотность (при н. у.)
Температура плавления
Температура кипения
Уд. теплота плавления
Уд. теплота испарения
Молярная теплоёмкость
Молярный объём
Кристаллическая решётка простого веществаСтруктура решётки
Параметры решётки
Отношение c/a
Температура Дебая
Прочие характеристикиТеплопроводность
Номер CAS

Из-за повышенной вязкости механическая обработка металла затруднена. Этот недостаток устраняют, смазывая инструмент специальными составами.

Технология получения

Технический прогресс частично отразился на способе получения металла.

Сегодня титан получают двумя методами:

  1. Процесс Кролла. Один из основных, предложен в 1940 году ученым из Люксембурга Гийомом Кроллом. Заключается в восстановлении металлического титана магнием при высоких температурах. Комбинаты, вырабатывающее такое сырье, именуются титано-магниевыми.
  2. FFC Cambridge. Новацией является электрохимическая технология. Она предполагает прямое восстановление металла из оксида в расплавленной смеси хлорида и оксида кальция. Процесс назван по именам разработчиков, сотрудников Кембриджского университета Фрэя, Фартинга, Чена.

Цена продукта доступна: титан разной степени очистки на мировых биржах торгуют по $5,7 – 6,1 за кг.

Месторождения, добыча

Месторождения равномерно распределены по планете. Российские залежи рассредоточены по всей территории страны (20 рудников). Крупнейшее – на севере, в Республике Коми.

Добыча ведется традиционным способом, но предполагает использование средств защиты от пыли.

Мировые резервы руды оцениваются триллионом тонн. При нынешних темпах добычи титанового сырья хватит на полтора столетия.

Достоинства / недостатки

    Достоинства:

  • малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
  • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
  • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
  • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
    Недостатки:

  • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
  • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
  • трудности вовлечения в производство титановых отходов;
  • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
  • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
  • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
  • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Достоинства титановых сплавов:

  1. Соотношение прочность-плотность у титановых сплавов почти в 2 раза лучше, чем у легированных сталей.
  2. Высокая механическая прочность.
  3. Отличная коррозионная стойкость, что позволяет изделиям работать в агрессивных средах.

Часы из титанового сплава
Часы из титанового сплава
Часы из титанового сплава

К недостаткам титановых сплавов можно отнести:

  1. Высокая цена (титан гораздо дороже многих цветных металлов).
  2. При обработке металла и его сплавов возникает проблема налипания, что грозит быстрым износом режущих инструментов.
  3. Сложности при сварке титановых изделий.

Присутствие в природе

В природе титан представлен оксидами разных химических элементов (более ста). В свободном виде не встречается.

Не считается редким металлом: содержание в породах исчисляется килограммами на тонну (от 2,3 до 9).

Это девятый по распространенности элемент земной коры – более полупроцента по массе.

Больше всего его в бокситах и морской осадочной глине.

Породы плохо выветриваются, образуя крупные россыпи.

Где используется

Титан так же прочен, как сталь, но вполовину легче. Он вдвое превосходит по прочности алюминий, но тяжелее всего на 60%. Этими достоинствами обусловлено использование человеком титана как металла.

Промышленность

Титановые сплавы – конструкционный материал номер один для строителей ракет, самолетов, океанских лайнеров. Чаще их выполняют из сплавов с другими металлами (особенно никелем и алюминием).

Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985

Титан легче других металлов, но способен работать при высоких температурах.

Есть и другие области применения металла:

  • Трубы, насосы, другое оборудование для работы с агрессивными жидкостями.
  • Военно-промышленный комплекс – бронированные жилеты, корпусы субмарин, детали ракет, самолетов.
  • Установки для опреснения воды, очистки воздуха.
  • Исходник при производстве целлюлозы, бумаги.
  • Детали автомобилей, сельхозтехники, оборудование пищепрома.
  • Спортивный инвентарь.

применение титана

Более половины соединений вещества забирают производители лаков и красок. Это, например, титановые белила.

Использование металла

Все больше продукции из титана припадает на IT-сферу: корпус, начинка мобильных телефонов, других гаджетов.

Медицина

Прочный металл дружелюбен к процессам, протекающим в организме человека. Поэтому его активно задействуют как материал протезов конечностей, зубных имплантов. Медицина ценит его свойство безболезненно сращиваться с костной тканью. Поэтому титан относится к металлам будущего.

Безопасность для тканей организма человека сделала возможным применение металла для пирсинга.

Другие сферы

Из титана изготавливают корпусы часов класса люкс. Это материал ювелирных изделий.

Часы из титанового сплава
Часы из титанового сплава

Нитридом вещества «золотят» купола храмов, предметы декора. Четырехвалентный хлорид «создает» дымовую завесу и дымчатость стекла.

Пищевая добавка Е171 – это белый диоксид титана (TiO2), пищевой краситель.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

О том, где можно найти и как сделать титан, расскажем ниже.

Данное видео посвящено описанию титана как металла:

Физические свойства

Титан – цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0С его плотность составляет 4,517 г/см3. Вещество имеет низкую удельную массу, что характерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные характеристики выше, чем у обоих элементов. Основными свойствами металлов, которые учитываются при определении сферы их применения, являются предел текучести и твердость. Титан прочнее алюминия в 12 раз, железа и меди — в 4 раза, при этом он значительно легче. Пластичность чистого вещества и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката. Отличительная характеристика титана – его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны. Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.

Области применения

Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.

Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.

Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Конструкционные высокопрочные ТС

Предел прочности σв > 1000 МПа марок ВТ6, ВТ14, ВТ3-1, ВТ22, ВТ23М. Отличаются удовлетворительной свариваемостью всеми видами сварки. Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах.

Кроме того, сферы применения всегда будут требовать повышения их эксплуатационных свойств за счет новых термических и термомеханических обработок. Среди наиболее перспективных можно назвать ВТ23М. Он сочетает в себе высокую прочность, трещиностойкость как основного материала, так и сварных соединений. Во многом превосходит зарубежные аналоги по свойствам и стоимости за счет уменьшенного содержания молибдена и ванадия, исключения олова и циркония. Из него изготавливают все виды прокатных, кованых, прессованных полуфабрикатов, а также монолитные, сварные и паяные конструкции.

ПРИМЕНЕНИЕ

Изделия из титана

Изделия из титана

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) – Ti

Молекулярный вес 47.88 г/моль
Происхождение названия Минерал получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи.
IMA статус подтвержден в 2010 году

Мировые запасы и производство титана

Представленные в Канаде около 1/5 мировой добычи приходится на ильменитовые руды. В Китае 1/10 часть выпуска обеспечивается месторождением Лак-Тико. 

Месторождения титана в России

РФ производит меньше 1% титанового концентрата. Однако месторождение в Коми признано вторым по масштабу после Китая. Также лопаритовые руды экспортируются преимущественно Россией (Ловозерск). Последние используют в производстве редкоземельных металлов (в том числе титана).

Марки и сплавы

Номенклатура титановых сплавов насчитывает десятки позиций.

Самый востребованный – с алюминием и ванадием, 6% и 4% соответственно. На его производство тратится половина добываемого сырья.

Второй по популярности – ферротитан (соотношение титан-железо – 1:3). В черной металлургии это средство для очистки стали от примесей.

Чаще всего выплавляются следующие марки титана:

  • ВТ1-0;
  • ВТ1-00;
  • ВТ1-00 св.

Это технический материал, без легирующих присадок. В нем минимум примесей: содержание Ti (%) – 99,24+.

Теплопроводность стали и титана

Титан

широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность
(s
в/r ×
g
), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик.

Основные сведения о титане

Титан

– химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза – железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана – существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан – парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила – его восприимчивость существенно увеличивается с температурой.

Характеристики физико-механических свойств титана (ВТ1-00)

Читайте также:  Азотирование стали

Плотность r , кг/м 3 4,5 × 10 –3
Температура плавления Т
пл
,
° С
1668± 4
Коэффициент линейного расширения a ×
10 –6 , град –1
8,9
Теплопроводность l , Вт/(м × град) 16,76
Предел прочности при растяжении s в, МПа 300–450
Условный предел текучести s 0,2,
МПа
250–380
Удельная прочность (s в/r × g
)× 10 –3 , км
7–10
Относительное удлинение d , % 25–30
Относительное сужение Y , % 50–60
Модуль нормальной упругости Е´
10 –3 , МПа
110,25
Модуль сдвига G´
10 –3 , МПа
41
Коэффициент Пуассона m , 0,32
Твердость НВ 103
Ударная вязкость KCU, Дж/см 2 120

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а

= 0,296 нм,
с
= 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом
а
= 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Особенно вреден водород, вызывающий водородную хрупкость

титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Марки титана и виды изделий

Виды выпускаемых титановых изделий:

  • плиты;
  • трубы;
  • проволока;
  • прутки;
  • порошок;
  • листы.
Марка титана Чистота (содержание чистого Ti)
ВТ1-0 99,24-99,7%
ВТ1-00 99,58-99,9%
ВТ1-00св 99,39-99,9%

Производство и изготовление

Благодаря распространённости в природе добывать руду, содержащую титан, не сложно. Самые распространённые виды руды, в которых содержится этот металл — брукит, ильменит, анатаз и рутил. Однако дальнейшие способы обработки титана (плавка, закалка и старение) считаются дорогостоящими. Существует несколько этапов получения чистого металла из руды:

  1. В первую очередь добывается титановый шлак, с помощью разогревания ильменита до 1650 градусов.
  2. Далее шлак проходит процесс хлорирования.
  3. После этого с помощью печей сопротивления производится титановая губка.
  4. Для получения чистого металла заключительным этапом обработки является процесс рафинирования.

Если нужно получить слитки титана, губку на его основе переплавляют в вакуумной печи.

Магниетермический процесс

Магниетермическое восстановление — популярный метод получения металла. Проведение технологического процесса:

  1. Расплавляется оборотный магниевый конденсат.
  2. Сливается конденсат хлористого магния.
  3. При температуре 800 градусов, жидкий тетрахлорид титана с жидким магнием подаются в форму для застывания. Скорость подачи — 2,1–2,3 г/ч см2.

Постепенно температура снижается до 600 градусов.

Гидридно-кальциевый метод

Это промышленный метод восстановления металла. Процесс проведения работ:

  1. При температуре 500 градусов Цельсия металлический кальций насыщается водородом.
  2. Далее его смешивают с двуокисью титана. Компоненты нагревают в реторте, постепенно повышая температуру до 1100 градусов.
  3. Спекшиеся компоненты вымывают из реторты.
  4. Далее проводится обработка соляной кислотой.
  5. Титановый порошок сушат, запекают в индукционных печах при температуре около 1400 градусов.

На спекшуюся массу должно воздействовать давление 10в-3 мм.

Электролизный метод

Способ получения сплава, основанный на применении электрического тока. Напряжение воздействует на ТiO2, ТiСl4. До этого их растворяют с помощью расплавленных солей фторидов.

Йодидный метод

Способ получения металла после термической диссоциации TiJ4. Изначально его получают при реакции паров йода с металлическим титаном.

Чтобы получить сплав высокой чистоты, необходимо применять последний способ получения соединения. Три первых метода позволяют быстро получать технический титан.

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.06-05
Dana (7-ое издание) 1.1.36.1
Nickel-Strunz (10-ое издание) 1.AB.05

Источники

  • https://jgems.ru/metally/titan
  • https://www.Mazprom.ru/stati/116451/
  • https://FB.ru/article/165275/titan—metall-svoystva-titana-primenenie-titana-marki-i-himicheskiy-sostav-titana
  • https://b2b-instrument.ru/obrabotka/temperatura-goreniya-titana.html
  • https://nauka.club/khimiya/titan.html
  • https://mineralpro.ru/minerals/titan/
  • https://metalloy.ru/splavy/titan-i-ego-splavy
  • https://TheMineral.ru/metally/titan
  • https://www.metotech.ru/titan-opisanie.htm
  • http://stroyres.net/metallicheskie/vidyi/tsvetnyie/titan/ponyatie-osobennost.html

Понравилась статья? Поделить с друзьями:
  • Как найти приложение по картинки
  • Бинар 5s ошибка 13 дизель как исправить
  • Как найти максимум функции распределения
  • Как найти средний балл по впр
  • Как найти песню по записи видео