Как найти мгновенную скорость задачи

Определение

Скорость — это термин, который характеризует изменение заданной координаты в движении.

В ситуации, когда координаты изменяют свое положение относительно оси, следовательно, их материальная точка будет находится в процессе движения.

Средняя скорость — это величина векторного типа, которая имеет определенное числовое равенство относительно перемещения совершаемого  в конкретную единицу времени, и направлена совместно я с векторным  перемещением.

Средняя скорость – довольно простое понятие в разделе кинематика.

Определение

Следовательно, средняя скорость – это конкретная величина, которая равна отношению пройденного пути, к величине времени, за которое данный путь пройден телом.

[v_{mathrm{cp}}=frac{S}{t}]

Основные моменты, на которые следует уделить внимание при определении средней скорости:

  • Необходимое время, которое учитывается, когда тело в процессе движения может делать кратковременные остановки;
  • Определение правильной величины средней скорость тела, которое начинает движение в пункте А и оканчивает его в пункте В. Но в процессе движения, может повернуть несколько раз обратно, а затем снова продолжает движение в заданном направлении, двигаясь в пункт В.

Модуль для определения средней скорости движения вычисляется по следующей формуле: V=s/t.

Определение

Мгновенная скорость — это некий числовой предел, к которому стремится показатель средней скорости.

Мгновенная скорость, как правило, характеризует заданное движение точки в конкретный и определенный момент времени.

Для любой категории характерно бесконечное количество точек. Потому что каждый временной интервал включает в себя бесконечное количество мгновений.

Когда сам временной интервал стремится к нулевому значению, то он автоматически преобразуется в мгновение.

Формула

Мгновение скорости можно определить по следующей формуле: v=s/Δt
где:
v – скорость мгновения, м/с
s – движение, перемещение тела, м ( если Δt→0 )
Δt – временной интервал, который стремится к нулевому значению, с.

Стоит отметить, что мгновенная скорость – это величина, которая изображена как вектор. Она равняется отношению движения к временному интервалу. А именно: промежуток времени, за который данное перемещение происходит, при условии, что временной интервал стремится к нулевому значению.

Временной интервал движения тела –  это всегда скляр с положительным значением. Поэтому мгновенная скорость и ее векторное значение,  всегда сонаправлено с перемещением, которое имеет значение стремящееся к нулю.

Нет времени решать самому?

Наши эксперты помогут!

Направление и перемещение действия средней и мгновенной скорости относительно координатной оси

Средняя скорость всегда направлена вместе с перемещением:

Направление средней скорости

Для мгновенной скорости характерно движение в конкретный момент времени.

Направление векторной скорости, которая обозначается как: υ расположено по касательной, относительно криволинейной траектории.

Так как непрерывное малое перемещение однозначно совпадает с бесконечно малым элементом траектории.

Направление средней скорости 1

Примеры решения задач по определению мгновенной и средней скорости

Пример №1:

Имеет ли способность мгновенная скорость, изменять свое значение только относительно направления, при этом не меняя модульную величину.

Используя основные термины и формулы, решим данную задачу. При решении необходимо рассмотреть пример:

  • Движение тела происходит по криволинейной траектории. На ней необходимо обозначить начальный и конечный пункты, а именно: точки А и В.
  • Далее нужно обозначить основное направление мгновенной скорости в заданных ранее точках.
  • Следует помнить, что мгновенная скорость имеет направление относительно касательной по траектории.
  • Расстояние и скорость имеют одинаковые значения  по модулю и, следовательно, равны 5 м/с.

[left|vec{V}_{A}right|=left|vec{V}_{B}right|=5 frac{м}{c}]

Пример 1

Следующее равенство вида: [vec{V}_{A}=vec{V}_{B}] будет неверным. Так как скорость – является векторной величиной. Поэтому очень важно задать не только числовое значение, но направление по которому будет осуществляться движение.

В случае, когда [vec{V}_{A}=vec{V}_{B}] можно составить равенство следующего вида:[vec{V}_{A}-vec{V}_{B}=0] однако определив вектор разности значений [Delta vec{V}], можно сделать вывод, что его значение не равно нулевому.

Следовательно, [vec{V}_{A} neq vec{V}_{B}], другими словами мгновенная скорость может быть равна нулевому значению и быть равной по модулю. Однако, при этом различаться по основному направлению движения.

Пример №2:

Возможно ли изменение по модульному значению мгновенной скорости, но при этом направление остается неизменным.

Алгоритм решения:

движения мгновенной скорости

Рассмотрев рисунок, который приведен выше, можно сделать вывод, что:

  • в точке А и в точке В направление движения мгновенной скорости одинаково;
  • рассматриваемое тело, которое осуществляет   движение, делает это   с равным ускорением, следовательно:

[vec{V}_{A}=vec{V}_{B}]


Загрузить PDF


Загрузить PDF

Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]

  1. Изображение с названием Calculate Instantaneous Velocity Step 1

    1

    Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
    то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
    Например:

    s = -1.5t2 + 10t + 4

    • В этом уравнении:
      Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 — 7 = 3 м (а на 10 + 7 = 17 м).
      Время = t. Обычно измеряется в секундах.
  2. Изображение с названием Calculate Instantaneous Velocity Step 2

    2

    Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t2 + 10t + 4
      (2)-1.5t(2-1) + (1)10t1 — 1 + (0)4t0
      -3t1 + 10t0
      -3t + 10

  3. Изображение с названием Calculate Instantaneous Velocity Step 3

    3

    Замените «s» на «ds/dt», чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. Изображение с названием Calculate Instantaneous Velocity Step 4

    4

    В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
    Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 5

    1

    Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
    Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

    • По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
    • График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
  2. Изображение с названием Calculate Instantaneous Velocity Step 6

    2

    Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

    • Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
  3. Изображение с названием Calculate Instantaneous Velocity Step 7

    3

    Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ — yP)/(xQ — xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

    H = (yQ — yP)/(xQ — xP)
    H = (7 — 3)/(4 — 1)
    H = (4)/(3) = 1.33

  4. Изображение с названием Calculate Instantaneous Velocity Step 8

    4

    Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):

    Q = (2,4.8): H = (4.8 — 3)/(2 — 1)
    H = (1.8)/(1) = 1.8

    Q = (1.5,3.95): H = (3.95 — 3)/(1.5 — 1)
    H = (.95)/(.5) = 1.9

    Q = (1.25,3.49): H = (3.49 — 3)/(1.25 — 1)
    H = (.49)/(.25) = 1.96

  5. Изображение с названием Calculate Instantaneous Velocity Step 9

    5

    Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

    • В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
    • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 10

    1

    Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 — 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

    • Сначала вычислим производную этого уравнения:

      s = 5t3 — 3t2 + 2t + 9
      s = (3)5t(3 — 1) — (2)3t(2 — 1) + (1)2t(1 — 1) + (0)9t0 — 1
      15t(2) — 6t(1) + 2t(0)
      15t(2) — 6t + 2

    • Теперь подставим в уравнение производной значение t = 4:

      s = 15t(2) — 6t + 2
      15(4)(2) — 6(4) + 2
      15(16) — 6(4) + 2
      240 — 24 + 2 = 22 м/с

  2. Изображение с названием Calculate Instantaneous Velocity Step 11

    2

    Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 — t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.

    • Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.

      s = 4t2 — t

      t = 2: s = 4(2)2 — (2)
      4(4) — 2 = 16 — 2 = 14, so Q = (2,14)

      t = 1.5: s = 4(1.5)2 — (1.5)
      4(2.25) — 1.5 = 9 — 1.5 = 7.5, so Q = (1.5,7.5)

      t = 1.1: s = 4(1.1)2 — (1.1)
      4(1.21) — 1.1 = 4.84 — 1.1 = 3.74, so Q = (1.1,3.74)

      t = 1.01: s = 4(1.01)2 — (1.01)
      4(1.0201) — 1.01 = 4.0804 — 1.01 = 3.0704, so Q = (1.01,3.0704)

    • Теперь вычислим H:

      Q = (2,14): H = (14 — 3)/(2 — 1)
      H = (11)/(1) = 11

      Q = (1.5,7.5): H = (7.5 — 3)/(1.5 — 1)
      H = (4.5)/(.5) = 9

      Q = (1.1,3.74): H = (3.74 — 3)/(1.1 — 1)
      H = (.74)/(.1) = 7.3

      Q = (1.01,3.0704): H = (3.0704 — 3)/(1.01 — 1)
      H = (.0704)/(.01) = 7.04

    • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).

    Реклама

Советы

  • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
  • Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
  • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

Реклама

Об этой статье

Эту страницу просматривали 83 536 раз.

Была ли эта статья полезной?

Содержание:

  1. Средняя скорость изменения, мгновенная скорость изменения
  2. Средняя скорость
  3. Задача пример №82
  4. Средняя скорость изменения
  5. Мгновенная скорость
  6. Задача пример №83
  7. Мгновенная скорость изменения
  8. Задача пример №84
  9. Задача пример №85

Средняя скорость изменения, мгновенная скорость изменения

До настоящего времени, используя алгебраические правила, изученные нами, мы могли получать статистические данные, соответствующие реальной жизненной ситуации. Однако, во многих случаях, в производстве, медицине, а также в различных областях науки, возникает необходимость получить более динамическую информацию, другими словами, возникает надобность проследить как изменения одной переменной влияет на скорость изменения другой переменной.

Например, рекламный менеджер хочет знать, как изменяется прибыль при изменении затрат, врач — динамику изменения структуры печени при увеличении дозы лекарственного препарата и т.д. Рассмотрим следующий пример определения скорости изменения.

Средняя скорость

На рисунке показаны графики зависимости расстояния от времен при равномерном движении автомобиля по магистральной дороге и неравномерном движении по городу.

Средняя скорость изменения, мгновенная скорость изменения

При равномерном движении, за равные промежутки времени, длина пройденного пути одинакова и на графике движения угловой коэффициент прямой выражает скорость. При неравномерном движении длина пути на одинаковых временных участках может и не быть одинаковой. В этом случае используется значение средней скорости. Отношение пройденного телом пути к промежутку времени, за которое этот путь пройден, называется средней скоростью.

Средняя скорость изменения, мгновенная скорость изменения

Задача пример №82

Частица движется прямолинейно по закону Средняя скорость изменения, мгновенная скорость изменения. Найдите среднюю скорость на промежутке времени: а) [1; 3], b) [1; 2] ( здесь Средняя скорость изменения, мгновенная скорость изменения в метрах, Средняя скорость изменения, мгновенная скорость изменения — в секундах).

Решение:

а) Средняя скорость на промежутке времени Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость изменения

b) Средняя скорость на промежутке времени Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения

Для произвольной функции Средняя скорость изменения, мгновенная скорость изменения на промежутке Средняя скорость изменения, мгновенная скорость изменения средняя скорость равна Средняя скорость изменения, мгновенная скорость изменения

Это отношение равно углу наклона секущей графика функции, проходящей через точки Средняя скорость изменения, мгновенная скорость изменения.

Средняя скорость изменения, мгновенная скорость изменения

Мгновенная скорость

Исследуем понятие мгновенной скорости на следующем примере.

Задача пример №83

В таблице представлены результаты вычислений средней скорости частицы, движущейся прямолинейно по закону Средняя скорость изменения, мгновенная скорость изменения для некоторых малых значений Средняя скорость изменения, мгновенная скорость изменения за промежуток времени Средняя скорость изменения, мгновенная скорость изменения.

Средняя скорость изменения, мгновенная скорость изменения

По таблице можно установить, что при Средняя скорость изменения, мгновенная скорость изменения мгновенная скорость приблизительно равна 2 м/сек. Вообще, средняя скорость на интервале времени Средняя скорость изменения, мгновенная скорость изменения будет: Средняя скорость изменения, мгновенная скорость изменения

Устремляя Средняя скорость изменения, мгновенная скорость изменения к нулю путем сокращения временного интервала Средняя скорость изменения, мгновенная скорость изменения, найдем мгновенную скорость в предельном состоянии в момент Средняя скорость изменения, мгновенная скорость изменения.

Таким образом, при прямолинейном движении по закону Средняя скорость изменения, мгновенная скорость изменения, мгновенная скорость в любой момент времени Средняя скорость изменения, мгновенная скорость изменения будет:

Средняя скорость изменения, мгновенная скорость изменения

По аналогичному правилу, для любой функции мгновенную скорость изменения при Средняя скорость изменения, мгновенная скорость изменения находят по формуле:

Средняя скорость изменения, мгновенная скорость изменения

Мгновенная скорость изменения

Предел Средняя скорость изменения, мгновенная скорость изменения выражает мгновенное изменение скорости функции Средняя скорость изменения, мгновенная скорость изменения в точке Средняя скорость изменения, мгновенная скорость изменения.

Теперь пронаблюдаем, как при изменении положения секущей на кривой, средняя скорость превращается в мгновенную скорость. На графике точки Средняя скорость изменения, мгновенная скорость изменения Средняя скорость изменения, мгновенная скорость изменения показывают изменение положения точки Средняя скорость изменения, мгновенная скорость изменения в направлении точки Средняя скорость изменения, мгновенная скорость изменения Здесь, уменьшая значения Средняя скорость изменения, мгновенная скорость изменения путем приближения к 0, точка Средняя скорость изменения, мгновенная скорость изменения, меняя положение вдоль кривой, приближается к точке Средняя скорость изменения, мгновенная скорость изменения и, наконец, совпадает с ней.

Средняя скорость изменения, мгновенная скорость изменения

При приближении точки Средняя скорость изменения, мгновенная скорость изменения, остающейся на кривой, к точке Т, предельное положение секущей Средняя скорость изменения, мгновенная скорость изменения (если оно существует), называется касательной к кривой в точке Средняя скорость изменения, мгновенная скорость изменения При Средняя скорость изменения, мгновенная скорость изменения, предел углового коэффициента секущей, т.е. мгновенное изменение скорости функции Средняя скорость изменения, мгновенная скорость изменения в точке Средняя скорость изменения, мгновенная скорость изменения, равен угловому коэффициенту касательной к графику функции в точке Средняя скорость изменения, мгновенная скорость изменения.

Средняя скорость изменения, мгновенная скорость изменения

Задача пример №84

Найдем скорость свободного падения в момент Средняя скорость изменения, мгновенная скорость изменения сек.

Решение:

Зависимость между пройденным путем и временем Средняя скорость изменения, мгновенная скорость изменения при свободном падении имеет вид: Средняя скорость изменения, мгновенная скорость изменения. Здесь Средняя скорость изменения, мгновенная скорость изменения ускорение свободного падения и Средняя скорость изменения, мгновенная скорость изменения. Тогда можно написать Средняя скорость изменения, мгновенная скорость изменения. Через 2 секунды после начала движения в интервале Средняя скорость изменения, мгновенная скорость изменения средняя скорость будет Средняя скорость изменения, мгновенная скорость изменения.

В момент Средняя скорость изменения, мгновенная скорость изменения скорость равна значению предела

Средняя скорость изменения, мгновенная скорость изменения

Задача пример №85

Дана функция Средняя скорость изменения, мгновенная скорость изменения. Найдите: а) среднюю скорость изменения при Средняя скорость изменения, мгновенная скорость изменения; b) мгновенную скорость при Средняя скорость изменения, мгновенная скорость изменения.

Решение:

а) При Средняя скорость изменения, мгновенная скорость изменения, Средняя скорость изменения, мгновенная скорость изменения средняя скорость будет: Средняя скорость изменения, мгновенная скорость изменения

b) Найдем мгновенную скорость при Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость изменения Средняя скорость изменения, мгновенная скорость изменения

Средняя скорость изменения, мгновенная скорость измененияСредняя скорость изменения, мгновенная скорость изменения.

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Площадь поверхности шара
  • Площадь поверхности подобных фигур
  • Производная функции
  • Правила дифференцирования

Лекции:

  • Перпендикулярные прямые
  • Найти угол между векторами: пример решения
  • Как найти длину
  • Экстремум функции двух переменных
  • Как найти вероятность: пример решения
  • Найти определитель матрицы
  • Как привести к общему знаменателю
  • Геометрическое распределение
  • Замечательные пределы примеры решения
  • Применение определителей

ЗАДАЧИ на Прямолинейное равноускоренное
движение с решениями

Формулы, используемые в 9-11 классах по теме
«ЗАДАЧИ на Прямолинейное равноускоренное движение».

Название величины

Обозначение

Единица измерения

Формула

Время

t

с
Проекция начальной скорости

v0x  

м/с
Проекция мгновенной скорости

vx  

м/с
Проекция ускорения

ax 

м/с2
Проекция перемещения

Sx

м
Координата

x

м

1 мин = 60 с;   1 ч = 3600 с;   1 км = 1000 м;   1 м/с = 3,6 км/ч.



ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ


Задача № 1.
 Автомобиль, двигаясь с ускорением 0,5 м/с2, уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?


Задача № 2.
 При подходе к станции поезд начал торможение с ускорением 0,1 м/с2, имея начальную скорость 90 км/ч. Определите тормозной путь поезда, если торможение длилось 1 мин.


Задача № 3.
 По графику проекции скорости определите: 1) начальную скорость тела; 2) время движения тела до остановки; 3) ускорение тела; 4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости; 6) запишите уравнение координаты (начальную координату считайте равной нулю).

Решение:


Задача № 4.
 Движение двух тел задано уравнениями проекции скорости:
v1x(t) = 2 + 2t
v2x(t) = 6 – 2t
В одной координатной плоскости постройте график проекции скорости каждого тела. Что означает точка пересечения графиков?

ЗАДАЧИ на Прямолинейное равноускоренное


Задача № 5.
 Движение тела задано уравнением x(t) = 5 + 10t — 0,5t2.  Определите:  1) начальную координату тела;  2) проекцию скорости тела;  3) проекцию ускорения;  4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости;  6) определите значение координаты и скорости в момент времени t = 4 с.  Сравним уравнение координаты в общем виде с данным уравнением и найдем искомые величины.

Решение:




Задача № 6.
 Вагон движется равноускоренно с ускорением -0,5 м/с2. Начальная скорость вагона равна 54 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.


Задача № 7.
 Самолет, летевший прямолинейно с постоянной скоростью 360 км/ч, стал двигаться с постоянным ускорением 9 м/с2 в течение 10 с в том же направлении. Какой скорости достиг самолет и какое расстояние он пролетел за это время? Чему равна средняя скорость за время 10 с при ускоренном движении?


Задача № 8.
 Трамвай двигался равномерно прямолинейно со скоростью 6 м/с, а в процессе торможения — равноускоренно с ускорением 0,6 м/с2. Определите время торможения и тормозной путь трамвая. Постройте графики скорости v(t) и ускорения a(t).


Задача № 9.
 Тело, имея некоторую начальную скорость, движется равноускоренно. За время t = 2 с тело прошло путь S = 18 м, причём его скорость увеличилась в 5 раз. Найти ускорение и начальную скорость тела.


Задача № 10. (повышенной сложности)
 Прямолинейное движение описывается формулой х = –4 + 2t – t2. Опишите движение, постройте для него графики vx(t), sx(t), l(t).


Задача № 11.
  ОГЭ
 Поезд, идущий со скоростью v0 = 36 км/ч, начинает двигаться равноускоренно и проходит путь S = 600 м, имея в конце этого участка скорость v = 45 км/ч. Определить ускорение поезда а и время t его ускоренного движения.


Краткое пояснение для решения
ЗАДАЧИ на Прямолинейное равноускоренное движение.

Равноускоренным движением называется такое движение, при котором тело за равные промежутки времени изменяет свою скорость на одну и ту же величину. Движение, при котором скорость равномерно уменьшается, тоже считают равноускоренным (иногда его называют равнозамедленным).

Величины, участвующие в описании равноускоренного движения, почти все векторные. При решении задач формулы записывают обычно через проекции векторов на координатные оси. Если тело движется по горизонтали, ось обозначают буквой х, если по вертикали — буквой у.

Если векторы скорости и ускорения сонаправлены (их проекции имеют одинаковые знаки), тело разгоняется, т. е. его скорость увеличивается. Если же векторы скорости и ускорения противоположно направлены, тело тормозит.


Это конспект по теме «ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Свободное падение тел с решениями
  • Посмотреть конспект по теме КИНЕМАТИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике (онлайн-тесты).

15 мая 2014

Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:

[v={S}’={x}’left( t right)]

Точно так же мы можем посчитать и ускорение:

[a={v}’={{S}’}’={{x}’}’left( t right)]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

[v={S}’={x}’left( 2 right)]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

Нам требуется найти производную в точке 2. Давайте подставим:

[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]

[=-16+32-12+5=9]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]

[{x}’left( t right)={{t}^{2}}-8t+19]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

[{{t}^{2}}-8t+19=3]

[{{t}^{2}}-8t+16=0]

[{{left( t-4 right)}^{2}}=0]

[t-4=0]

[t=4]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:

  1. Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
  2. ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
  3. Схема Бернулли. Примеры решения задач
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачи про летающие камни?
  6. B4: счетчики на электричество

Понравилась статья? Поделить с друзьями:
  • Как составить диаграмму классов uml
  • Как найти медиану списка чисел
  • Как составить уравнение параболы по картинке
  • Как найти игру дикий запад
  • No mans sky как найти живой корабль