Шар подвешен на невесомой нерастяжимой нити длиной l = 0,5 м. Какую минимальную горизонтально направленную скорость vo надо сообщить шару, чтобы он сделал полный оборот в вертикальной плоскости?
Эта задача была размещена посетителями в разделе Решаем вместе 25 мая 2007 года.
Решение:
Воспользуемся законом сохранения механической энергии при переходе шарика из нижнего положения в верхнее:
mvo2 | = mg • 2l + | mv2 | (1), |
2 | 2 |
где l — длина подвеса или нерастяжимой нити.
В верхней точке на шарик будут действовать 2 силы: сила тяжести mg (направлена вниз) и сила натяжения нити T (также направлена вниз). Эти силы сообщают шарику центростремительное ускорение, направленное вниз — к точке подвеса:
maц = mg + T
Поскольку шарик достиг верхней точки (T = 0, условие задачи), то
отсюда
v2 = gl (2).
Сделаем подстановку (2) в (1), получим
vo2 = g4l + gl = 5gl.
vo = √(5gl)
Выполнив вычисления, получим: vo = √(5×10×0,5) = 5 (м/с).
Ответ: если шарик подвешен на нерастяжимой нити, его скорость должна составлять не менее 5 м/с.
Примечание: если шар подвешен на жестком стержне, то в верхней точке скорость v может обратиться в нуль, тогда из (1)
vo2 = 4gl,
vo = √(4gl) = 2√(gl)
Сообщения без ответов | Активные темы | Избранное
|
найти минимальную скорость движения тела 26.01.2019, 17:02 |
14/09/16 |
|
|
|
Pphantom |
Posted automatically 26.01.2019, 17:06 |
||
09/05/12 |
|||
|
|||
Pphantom |
Posted automatically 26.01.2019, 19:26 |
||||
09/05/12 |
— 26.01.2019, 19:27 — Что в этой задаче скорость тела?
|
||||
|
|||||
Ivan 09 |
Re: найти минимальную скорость движения тела 26.01.2019, 19:38 |
14/09/16 |
Pphantom если я правильно понимаю, скорость- это производная от заданного закона движения. — 26.01.2019, 19:44 — подумав немного, пришла мысль что надо брать вторую производную и уже её приравнивать к нулю
|
|
|
Pphantom |
Re: найти минимальную скорость движения тела 26.01.2019, 20:06 |
||
09/05/12 |
подумав немного, пришла мысль что надо брать вторую производную и уже её приравнивать к нулю Именно.
|
||
|
|||
Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей |
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |
Одним из наиболее практичных применений дифференцирования является нахождение максимальных или минимальных значений функции реального мира, например, максимальной и минимальной скоростей движущегося объекта.
Вы можете думать о скорости как о более технической версии скорости .
Вот пример. Йо-йо движется прямо вверх и вниз. Его высота над землей как функция времени определяется функцией H ( t ) = t 3 — 6 t 2 + 5 t + 30, где t — в секундах, а H ( t ) — в дюймах. В момент времени t = 0 йо-йо находится на 30 дюймов над землей, а через 4 секунды он находится на высоте 18 дюймов, как показано на этом рисунке.
Высота йо-йо от 0 до 4 секунд.
Чтобы определить общее расстояние, которое проходит йо-йо, вам нужно сложить расстояния, пройденные на каждом участке пути йо-йо: верхняя нога, нижняя нога и вторая верхняя нога.
Во-первых, йо-йо поднимается с высоты 30 дюймов до 31, 1 дюйма (где находится первая точка поворота). Это расстояние около 1, 1 дюйма. Затем он снижается с 31, 1 до 16, 9 (высота второй точки разворота). Это расстояние 31, 1 минус 16, 9 или около 14, 2 дюймов. Наконец, йо-йо снова поднимается с 16, 9 дюйма до конечной высоты 18 дюймов. Это еще 1, 1 дюйма. Добавьте эти три расстояния, чтобы получить общее пройденное расстояние:
Примечание. Сравните этот ответ с общим смещением — 12, которое вы получите, вычитая конечную высоту йо-йо, 18 дюймов, из ее первоначальной высоты в 30 дюймов. Смещение отрицательно, потому что чистое движение вниз. И положительная величина смещения (а именно 12) меньше пройденного расстояния в 16, 4, потому что при смещении верхние ноги поездки йо-йо компенсируют часть расстояния вниз ногами. Проверьте математику:
Средняя скорость йо-йо определяется как общее пройденное расстояние, деленное на прошедшее время. Таким образом,
Допустим, вы определили, что максимальная скорость йо-йо составляет 5 дюймов в секунду, а ее минимальная скорость составляет –7 дюймов в секунду. Скорость –7 — это скорость 7, так что это максимальная скорость йо-йо. Его минимальная скорость равна нулю в двух точках разворота.
Хороший способ анализа максимальной и минимальной скорости состоит в рассмотрении функции скорости и ее графика. (Или, если вы испытываете жажду наказания, ознакомьтесь со следующим фетишем.) Скорость равна абсолютному значению скорости.
Скорость, V ( t ), является производной от положения (высота, в этой задаче). Таким образом:
Так, для проблемы йо-йо, функция скорости,
Посмотрите на график S ( t ) на следующем рисунке.
S ( t ) »/> Функция скорости йо-йо S ( t )
Глядя на этот график, легко увидеть, что максимальная скорость йо-йо происходит при t = 2
и что минимальная скорость равна нулю в двух x- точках пересечения.
Минимальная и максимальная скорость: для функции непрерывной скорости минимальная скорость равна нулю, когда максимальная и минимальная скорости имеют противоположные знаки или когда одна из них равна нулю. Когда максимальная и минимальная скорости являются как положительными, так и отрицательными, то минимальная скорость является меньшей из абсолютных значений максимальной и минимальной скоростей. Во всех случаях максимальная скорость больше абсолютных значений максимальной и минимальной скоростей. Это глоток или что?
I. Механика
Тестирование онлайн
Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.
Угловая скорость
Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.
Период и частота
Период вращения T — это время, за которое тело совершает один оборот.
Частота вращение — это количество оборотов за одну секунду.
Частота и период взаимосвязаны соотношением
Связь с угловой скоростью
Линейная скорость
Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.
Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.
Центростремительное ускорение
При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.
Используя предыдущие формулы, можно вывести следующие соотношения
Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.
Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.
Вращение Земли
Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.
Связь со вторым законом Ньютона
Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.
Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой
Как вывести формулу центростремительного ускорения
Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.
Разница векторов есть . Так как , получим
Движение по циклоиде*
В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.
Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.
Мгновенная скорость определяется по формуле
Движение по окружности с постоянной по модулю скоростью
теория по физике 🧲 кинематика
Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.
Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.
Особенности движения по окружности с постоянной по модулю скоростью:
- Траектория движения тела есть окружность.
- Вектор скорости всегда направлен по касательной к окружности.
- Направление скорости постоянно меняется под действием центростремительного ускорения.
- Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.
Период, частота и количество оборотов
Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.
Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).
t — время, в течение которого тело совершило N оборотов
За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.
Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.
N — количество оборотов, совершенных телом за время t.
Период и частота — это обратные величины, определяемые формулами:
Количество оборотов выражается следующей формулой:
Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.
Линейная и угловая скорости
Линейная скорость
Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.
l — длина траектории, вдоль которой двигалось тело за время t
Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:
R — радиус окружности, по которой движется тело
Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:
Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:
Угловая скорость
Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).
ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ
Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.
За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:
Выражая угловую скорость через частоту, получим:
Выразив частоту через количество оборотов, формула угловой скорости примет вид:
Сравним две формулы:
Преобразуем формулу линейной скорости и получим:
Отсюда получаем взаимосвязь между линейной и угловой скоростями:
Полезные факты
- У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
- У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
- Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.
Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.
В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.
За каждую секунду Земля проходит расстояние, равное примерно 30 км.
Центростремительное ускорение
Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:
Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.
Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.
Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:
Алгоритм решения
- Записать исходные данные.
- Записать формулу для определения искомой величины.
- Подставить известные данные в формулу и произвести вычисления.
Решение
Записываем исходные данные:
- Радиус окружности, по которой движется автомобиль: R = 100 м.
- Скорость автомобиля во время движения по окружности: v = 20 м/с.
Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:
Подставляем известные данные в формулу и вычисляем:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?
а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза
Алгоритм решения
- Записать исходные данные.
- Определить, что нужно найти.
- Записать формулу зависимости центростремительного ускорения от частоты.
- Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
- Приравнять правые части формул и найти искомую величину.
Решение
Запишем исходные данные:
Центростремительное ускорение определяется формулой:
Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:
Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:
Произведем сокращения и получим:
Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Минимальная скорость при движении тела, брошенного под углом
Условие задачи:
Минимальная скорость при движении тела, брошенного под углом к горизонту, равна 5 м/с, а максимальная 10 м/с. Определить угол, под которым брошено тело.
Задача №1.6.4 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Решение задачи:
Сделаем изображение к задаче, смотрите его справа.
Для объяснения решения я буду использовать следующий факт, что в любой момент времени скорость тела можно разложить на составляющие, тогда самую разлагаемую скорость можно найти по теореме Пифагора:
Теперь вспомним тот факт, что при движении тела, брошенного под углом к горизонту, горизонтальная составляющая скорости (v_x) не изменяется, поскольку движение вдоль (x) является равномерным (вдоль этой оси не действуют силы), а вертикальная составляющая скорости (v_y) меняется от максимального в момент бросания до нуля в наивысшей точке, и обратно. Причем в момент падения на землю обе составляющие (а значит и сама скорость) будут такими же, как при бросании (если, конечно же, принимать поверхность земли плоской, как у нас на рисунке).
Получается, что если скорость определяется приведенной выше формулой, то минимальное значение она примет в наивысшей точке, когда (v_y=0) м/с, а максимальное – в момент бросания и падения обратно на поверхность земли.
Взглянув на рисунок, можно увидеть, что угол между векторами, соответствующими этим скоростям, и есть угол бросания тела. Для этого прямоугольного треугольника косинус угла (alpha) определяется по следующей формуле.
Подставим известные данные и получим ответ:
[alpha = arccos frac<5><<10>> = 60^circ ]
Ответ: 60°.
Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.
Если Вам понравилась задача и ее решение, то Вы можете поделитесь ею с друзьями с помощью этих кнопок.
http://easyfizika.ru/zadachi/kinematika/minimalnaya-skorost-pri-dvizhenii-tela-broshennogo-pod-uglom/
»
Статьи
» Физика » Задачи
Математический маятник (груз малых размеров налегком подвесе длиной l)
Условие задачи Математический маятник (груз малых размеров налегком подвесе длиной l) находится вположении равновесия. Определить какую минимальную скорость u надо сообщить грузу, чтобы он мог совершить полный оборот, для двух случаев: а) груз подвешен на жестком стержне; б) на нити. Решение задачи |
Категория: Задачи | Добавил: Creator (11.10.2014) |
Просмотров: 3752 | Рейтинг: 0.0/0 |
Всего комментариев: 0 | |
Войдите: