Как найти минимальную температуру между точками

Точка — минимальная температура

Cтраница 1

Точка минимальной температуры на кривой пересечения ( кривая представляет собой равновесие твердого UF6 плюс две жидкости) является также концом тройной критической кривой раствора.
 [1]

Первый, когда геометрическое место точек минимальных температур ( адиабатная поверхность) находится между двумя нагревателями, и второй, когда геометрическое место точек минимальных температур не находится между двумя нагревателями, а температура на поверхности n — го нагревателя меньше, чем температура, создаваемая на его поверхности ( п — 1) — м нагревателем.
 [2]

Точно так же определяется расстояние от этого геометрического места точек минимальных температур до нового нагревателя в зависимости от его мощности.
 [3]

Если термограммы расположены ниже геотермы, источник поступления флюида определяется по точке минимальной температуры В. Если минимум температуры находится внизу, то переток флюида происходит из нижнего пласта в верхний и нижний пласт является либо газоносным, либо обводненным нагнетаемыми водами с температурой ниже пластовой. Если положение минимума неопределенно, то источником перетока является либо газоносный, либо обводненный закачиваемыми водами пласт.
 [5]

Если термограммы расположены ниже геотермы, источник поступления флюида устанавливается по точке минимальной температуры В. Если минимум температуры находится внизу, то переток флюида происходит из нижнего пласта в верхний и нижний пласт является либо газоносным, либо обводненным нагнетаемыми водами с температурой ниже пластовой. Если положение минимума неопределенно, то источником перетока является либо газоносный, либо обводненный закачиваемыми водами пласт.
 [7]

Как видно из графика ( рис. 2), точки максимального количества фенола лежат против точек минимальной температуры.
 [9]

На рис. 42 6 показан довольно необычный, но и не редкий вариант двухкомгаонентной системы, в которой точка минимальной температуры лежит на обеих кривых: на верхней, линии линвидус и на нижней, линии солидус. Пример, показанный на рис. 42 6, представляет систему нафталин — ( 3-нафтиламин. Точки замерзания и плавления смесей этой системы не обязательно находятся между точками плавления чистых компонентов. Наблюдается три Особые точки плавления: 801С ( чистый нафталин), 1.10 C ( чистый р-мафтиламин) и 72 6 iC ( смесь М, содержащая 0 3 вес.
 [10]

Первый, когда геометрическое место точек минимальных температур ( адиабатная поверхность) находится между двумя нагревателями, и второй, когда геометрическое место точек минимальных температур не находится между двумя нагревателями, а температура на поверхности n — го нагревателя меньше, чем температура, создаваемая на его поверхности ( п — 1) — м нагревателем.
 [11]

Точки пересечения линии, проведенной на расстоянии А / 2 параллельно геотерме, с термограммой определяют интервал прохождения температурного фронта нагнетаемых вод. Обводнение пласта в интервале прохождения температурного фронта устанавливается по положению точки минимальной температуры.
 [13]

Пользуясь номограммой, также нетрудно определить и мощность каждого нагревательного элемента. Для этого необходимо общую поверхность пресс-формы разбить на составляющие, проводя границы по плоскостям геометрических мест точек минимальных температур между соседними нагревателями. Мощность каждого нагревателя может быть определена по формуле (IX.30), в которой поверхность F соответствует каждой выделенной теплообменной поверхности.
 [15]

Страницы:  

   1

   2

Амплитудой температур называют разность между самой высокой и самой низкой температурой.

Если знак самой высокой и самой низкой температуры одинаковые, нужно из большего значения вычесть меньшее значение. Например, Самая высокая температура +25, самая низкая +18. Из 25 – 18 = 7. Амплитуда составляет 7 градусов.

Самая высокая температура –3°, самая низкая – 18°. 18– 3 = 15, амплитуда 15 градусов.

Если самая высокая и низкая температура с разными знаками, значения нужно сложить. Например, самая низкая температура –3°, самая высокая +5°. 5+3=8. Амплитуда составляет 8 градусов.

Опубликовано 25 октября, 2019

17 февраля 2011

Пожалуй, самая простая задача из всех, которые встречаются в ЕГЭ. В ней проверяется умение интерпретировать графики, извлекать из них простейшую числовую информацию и делать необходимые выводы.

В задаче B3 используются данные, полученные в результате реальных измерений, наблюдений и опытов. Эти данные представлены в форме графиков, которые условно делятся на два типа:

  1. Непрерывные, в которых значение функции определено для каждой точки графика. Как правило, такие графики представляют собой плавные линии, описывающие постоянно меняющееся значение функции. Наиболее типичный пример — график изменения температуры.
  2. Дискретные, где функция определена лишь для конечного числа точек. В остальных точках функция не существует. Для наглядности эти точки могут быть соединены или представлены в виде столбцов.

Правильное определение типа графика позволит избежать классических ошибок при решении задания B3. Например, довольно часто на дискретных графиках рассматриваются лишние точки, которые не являются значениями функции.

Задача. Определить тип графиков, представленных на рисунке:

  1. Изменение температуры за три дня, начиная с 0:00.
  2. Количество изготовленных на станке деталей по дням, с 12 по 24 сентября.

Изменение температуры за три дня
Количество изготовленных деталей

Очевидно, первый график является непрерывным, т.к. в любой момент времени, отмеченный на горизонтальной оси, мы можем определить значение функции. И неважно, что это определение будет довольно приблизительным.

Второй график является дискретным, поскольку количество деталей можно определить лишь для нескольких конкретных дней. Например, 16 сентября было изготовлено 160 деталей, 17 сентября — 170, но любое значение между 16 и 17 сентября не имеет никакого смысла — точки соединены исключительно для наглядности.

Непрерывные графики

Работа с непрерывными графиками, как правило, не вызывает затруднений, поскольку существует эффективный метод решения таких задач: отсечь ненужную информацию.

Например, очень часто встречаются задачи, где требуется определить максимальное или минимальное значение температуры в заданный день. При этом на графике показано изменение температуры в течение сразу нескольких дней.

Чтобы решить подобную задачу, сначала необходимо удалить с графика все, что не относится к рассматриваемому дню. Например, закрыть рукой, линейкой или листом бумаги. Только не зачеркиваете график ручкой — в случае ошибки восстановить его первоначальный вид не получится!

Затем на оставшейся части графика выбираем требуемую точку. Минимальное значение достигается в нижней точке графика, а максимальное — наоборот, в самой высокой.

Задача. На графике показано изменение температуры воздуха в течение трех суток, начиная со вторника, 0:00. Определите, до какой наибольшей температуры прогрелся воздух в среду.

Изменение температуры за три дня

Для начала отсечем всю лишнюю информацию. Нас интересует только среда. Учитывая, что график начинается со вторника, закрасим серым цветом лишние дни:

График изменения температуры за среду

На оставшейся части графика надо отыскать наибольшую температуру. Очевидно, она равна 15 °C — такое значение достигается ближе к середине дня.

Некоторые преподаватели предлагают довольно эффективный способ поиска максимального и минимального значения на участке графика, который остается после отсечения ненужной информации. Для поиска минимального значения надо приложить горизонтальную полоску бумаги к нижней части картинки и двигать ее вверх до тех пор, пока полоска не пересечет график. Аналогично, для поиска максимального значения надо приложить полоску сверху и двигать вниз.

Дискретные графики

Но как решать задачу B3, если в ней встретился дискретный график? Для начала надо избавиться от соединительных линий, если они есть. Помните: дискретный график — это просто набор точек, остальная информация только мешает решению задачи.

Задача. На дискретном графике показано количество изготовленных на станке деталей в период 12—24 сентября. Очистить этот график от лишней информации.

Количество изготовленных деталей

Очевидно, значимой информацией являются только точки, лежащие на вертикальных линиях разметки. Они показывают, сколько деталей было изготовлено в конкретный день. Например, 17 сентября было изготовлено 170 деталей. Уберем отрезки, соединяющие эти точки, и получим следующую картинку:

Количество изготовленных деталей по дням

Обратите внимание на крайние точки графика: в самом начале (12 сентября) и конце (24 сентября). Многие забывают про них, однако на исходном графике эти точки были, и поэтому должны учитываться в решении.

Когда на графике останется только нужная информация, можно решать саму задачу. Здесь применяется уже знакомый метод отсечения, который для дискретных графиков имеет две формы:

  1. Вертикальное — указание диапазона точек, которые будут участвовать в решении. Например, если нас интересует только период с 16 до 20 сентября, то все другие точки надо «удалить». Этот прием аналогичен отсечению ненужной информации для непрерывных графиков.
  2. Горизонтальное — указание требуемого диапазона значений. Аналога в непрерывных графиках не имеет. Ограничения могут накладываться снизу, сверху или с обеих сторон. Точки, выпадающие из диапазона, не участвуют в дальнейшем решении.

Например, выясним по графику, приведенному выше, сколько раз на станке изготавливалось больше 150 деталей в день. Очевидно, требование «больше 150» — это ограничение снизу. Проведем горизонтальную черту на уровне 150 деталей и удалим все точки, которые оказались ниже. Остальные точки можно легко подсчитать — читателю предлагается сделать это в качестве упражнения.

Задача. На графике показано деталей, изготовленных на станке, в период 12—24 сентября. Определите, сколько раз на станке изготавливалось от 140 до 180 деталей в день.

Количество изготовленных деталей

Уберем отрезки, соединяющие отдельные точки, поскольку это лишняя информация. Затем проведем горизонтальное отсечение, для чего установим границы на уровнях 140 и 180 деталей. Нас интересует только то, что находится между этими границами. Получим следующую картинку:

Количество изготовленных деталей - от 140 до 180

Все, что выпадает из диапазона, закрашено серым цветом. Осталось лишь подсчитать количество «правильных» точек — очевидно, их шесть.

Дополнительные соображения

Условие задачи B3 с дискретным графиком всегда нужно понимать буквально. Если требуется найти, сколько раз значение функции находилось «в пределах от 2 до 7», то следует учитывать все числа из отрезка [2, 7]. Обратите внимание: границы отрезка, т.е. числа 2 и 7, тоже учитываются! Игнорирование это факта — очень частая ошибка на экзамене.

Задача. На рисунке изображен график среднесуточной температуры в Саратове в период с 6 по 17 октября 1969 г. На оси абсцисс откладываются числа, на оси ординат — температура в градусах Цельсия. Определить по графику, сколько дней из указанного периода средняя температура была не ниже 6,0 °C.

Среднесуточная температура в Саратове

Очевидно, это дискретный график. Избавимся от ненужной информации, убрав все соединительные линии. На полученном наборе точек выполним горизонтальное отсечение, проведя черту на уровне 6,0 °C. Все, что ниже этой границы, нас не интересует, поэтому закрашено серым цветом. Имеем:

Среднесуточная температура в Саратове по дням

Подсчитаем точки, попадающие в диапазон — их оказалось шесть. Обратите внимание, что 8 и 17 октября температура равна 6 °C. Эти дни тоже учитываются в итоговом расчете.

Еще раз напомним, что B3 — это самая простая задача ЕГЭ по математике. В ней проверяется умение извлекать из графика и обрабатывать числовую информацию. Требуются именно практические навыки, а не умение работать с формальными теоретическими построениями.

В этих задачах нет сложных и двусмысленных формулировок. Если требуется определить наивысшую точку графика, такая точка будет только одна. А если, например, просят найти минимальную ночную температуру, то по графику будет видно, что самая низкая температура была именно ночью. Не придется размышлять о том, когда именно заканчивается ночь и начинается день.

Задача. На графике показано изменение температуры воздуха на протяжении трех суток, начиная с 0 часов вторника. На оси абсцисс отмечается время суток в часах, на оси ординат — значение температуры в градусах. Определите по графику наименьшую температуру воздуха в ночь со среды на четверг.

Изменение температуры за три дня

Это непрерывный график. Для решения задачи необходимо отбросить всю лишнюю информацию, проведя вертикальные границы. Проблема в том, что фраза «ночь со среды на четверг» не дает четких границ.

Попробуем установить эти границы. Так, 12:00 среды — это точно еще не ночь, а 12:00 четверга — это уже не ночь. Чем ближе мы подходим к указанным моментам, тем выше температура. Очевидно, в этой задаче 12:00 среды и 12:00 четверга могут служить вертикальными границами. Проведем их и получим следующую картинку:

Изменение температуры в ночь со среды на четверг

То, что закрашено серым цветом, нас не интересует. На оставшейся части графика минимальная температура равна 10 °C. Это значение достигается как раз ночью — примерно в 0:00 — и поэтому является ответом.

Смотрите также:

  1. Введение системы координат
  2. Тест к уроку «Десятичные дроби» (2 вариант)
  3. Типичные задачи B12 с функциями
  4. Координаты вершин правильного тетраэдра

Определить точку росы в стене очень просто. Ниже будет приведен пример, как сделать расчет. Это может сделать каждый, кто заинтересован в вопросе правильного утепления.

Точка росы — это температура, при которой водяной пар начинает конденсироваться.

Что такое точка росы

Точка росы в стене может перемещаться по ее толщине при изменении температур внутри помещения и снаружи. Например, если внутри помещения стабильная температура, а на улице похолодало, то точка росы передвинется по толщине стены ближе к помещению.

Температура предмета, на котором начнет конденсироваться пар, т.е. точка росы, зависит в основном от двух параметров:

  • температуры воздуха;
  • влажности воздуха.

Например, при температуре внутри помещения +20 град и влажности 50%, температура точки росы будет (примерно) +12,9 градусов. Если в помещении появится предмет с такой температурой или ниже, то на нем образуется конденсат.

Например, когда открывается холодильник, то внутри него выпадает роса из поступающего теплого воздуха. Она выглядит как «туман идущий из холодильника».

Если на улице холодно, то где-то в стене будет температура, при которой начнется конденсация пара, и в этой точке будет увлажнение. Если стена тонкая, «холодная», и ее внутренняя поверхность охладится до 12,9 градусов или меньше (при указанных значениях температуры и влажности воздуха), то на ней выпадет роса, она станет мокрой, и очень быстро обзаведется плесенью.

При утеплении стен, конструкций дома, полезно сделать расчет точки росы для наибольших и наименьших значений влажности и температуры, чтобы знать в каких границах пространства будет перемещаться точка росы при изменении этих параметров.

Как выполняется расчет

В расчетах точки росы и толщины утепления не учитываются некоторые параметры, — давление, скорость движения воздуха, плотность материала… Поэтому говорить можно только о приближенных значениях. Но, это не критично, когда речь идет об определении толщины утеплителя.

Для определения точки росы в стене проще всего воспользоваться таблицами готовых примерных значений, и не пытаться самостоятельно заниматься расчетами. Тем более не стоит доверять самодельным программам из интернета, они часто не учитывают параметры и выдают ложные значения, а иногда — и по принципу случайных чисел.

Роса появляется везде при достаточном охлаждении
Ниже приведена таблица расчетных значений точки росы в зависимости от температуры воздуха и его влажности. Это примерные значения, так как не учитывается влияние других факторов.

Таблица определения точки росы. Расчет

Например, можно определить, что для помещения с температурой внутри +22 градуса, и влажностью 60%, температура при которой будет конденсироваться водяной пар (точка росы) составит 13,9 градусов.

Стена с утеплителем — как определить место конденсации

Решить задачу нахождения точки росы в стене очень просто.
Нужно знать:

  • коэффициент теплового сопротивления стены, ?1, Вт/(м•К);
  • коэффициент теплового сопротивления утеплителя, ?2, Вт/(м•К);
  • толщину стены, h1, м;
  • толщину утеплителя, h2, м;
  • температуру внутри помещения, t1,град. С;
  • влажность воздуха, который будет доходить до точки росы, %;
  • точку росы для данных температуры и влажности, град. С;
  • температуру снаружи, t2, град. С.

В грубом приближении принимается, что температура по толщине каждого слоя будет изменяться линейно.

Искомая величина — температура на границе слоев стены и утеплителя. Когда она будет найдена, можно построить график изменения температур в слое «стена-утеплитель» и по нему отыскать положение точки росы.

Для этого находится отношение теплового сопротивления стены к тепловому сопротивлению утеплителя, исходя из которого, определяется изменение температуры в одном из слоев, что даст возможность узнать температуру на границе.

Рассмотрим на примере.

Пример расчета

Пример условий следующий.
Железобетонная стена h1=36 см, утеплена пенопластом h2=10 см. Коэффициент теплового сопротивления железобетона ?1=1,7 Вт/смК, пенопласта — ?2= 0,04 Вт/смК. Температура внутри t1=+20 град, снаружи t2=-10 градусов. Влажность внутри помещения и снаружи принимается одинаковой — 50%. Согласно таблицы, точка росы составит 9,3 градусов.

Пример. Расчет точки росы в стене
Тепловые сопротивления стены и утеплителя определяются как h/ ?, вт/м2К.
В данном примере тепловое сопротивление стены составит 0,36/1,7=0,21 вт/м2К., утеплителя 0,1/0,04= 2,5 вт/м2К.

Отношение тепловых сопротивлений первого слоя ко второму (стены к пенопласту) составит: n=0,21/2,5=0,084.
Тогда перепад температур в первом слое (стена) составит, Т= t1- t2хn = 20-(-10)х0,084=2,52 град.

Соответственно температура на границе слоя будет равна t1-Т=20-2,52=17,48 град.

Теперь мы можем в масштабе построить примерный график перепадов температуры в слое стена — утеплитель и отметим на нем точку росы.

Из примерных расчетов и примерного графика можно узнать главное – точка росы находится в утеплителе, далеко от стены, т.е. даже ухудшение условий, с учетом погрешности расчетов, не повлечет пагубного увлажнения стены.

Пример определения места нахождения температуры конденсации внутри стены

Температура внутри +22 град, снаружи — 15 град (регион севернее), влажность — 50%, точка росы — 11,1 градусов. Стена толщиной 38 см из кирпича (1,5 кирпича +шов+штукатурка принимается все как «кирпичная кладка»).

Коэффициент теплового сопротивления для кирпичной кладки — 0,7 Вт/смК, для минеральной ваты — 0,05 Вт/смК (с учетом ее увлажнения в реальных условиях эксплуатации).
Положение точки росы при нормальных условиях
Тепловое сопротивление стены: 0,38/0,7=0,54 вт/м2К., утеплителя 0,1/0,05= 2,0 вт/м2К.
Отношение тепловых сопротивлений первого слоя ко второму составит: n=0,54/2,0=0,27 , а перепад температур в пределах первого слоя будет Т= 22 — (-15)х0,27=9,99 град. Температура на границе слоев: 22- 9,99=12 град.

Как видим, ситуация «впритык». С повышением влажности, что обычное явление, с падением температуры внутри помещения, или в холодную зиму, точка росы будет «гулять» внутри стены.

Такое утепление для относительно «теплой» кирпичной стены, уже будет считаться недостаточным, и по положению точки росы и по нормативным значениям теплопотерь, через ограждающие конструкции.

Точку росы можно сдвинуть и нагревом помещения с помощью внутреннего отопления и его осушением. Естественно, что это крайняя мера, которую применяют лишь когда пришла пора «сушить стены».
Точка росы в стене — расчет и нахождение

Какие значения нужно принимать для расчета

Обычно температура внутри помещения принимается 22 градуса, чаще у пола она ниже, а под потолком достигает 27 градусов. Для центральных регионов считается минимальной температура снаружи помещений -15 градусов, (допускается кратковременные понижения температуры до -20 — -25 градусов).

Для южных регионов — -7 градусов, с кратковременным понижением -15 — -20 градусов.
(Минимальную температуру можно выбрать самостоятельно, — какая температура держится зимой постоянно? До каких значений она опускается кратковременно?)

Влажность воздуха в помещении обычно принимается средняя (но не маленькая) — 50%,. Здесь обычно имеется некоторый запас, так как часто зимой воздух в помещении суше, из-за активно работающего отопления, — 30 – 40%. Но во многих домах борются с сухостью воздуха, устанавливая увлажнители и разводя растения. Оптимальная же влажность – 50%, она же и расчетная.

Осенью и весной для пропускных утеплителей пар будет идти в обратном направлении — с улицы. Для расчета на «демисезон» по паропроницаемым утеплителям, влажность нужно принимать порядка 90%.

Где должна находиться точка росы

Утепление ограждения считается «нормальным» только когда точка росы в холодное время в основном (!) находится в утеплителе и не смещается в стену.

Что значит «в основном»?
При максимальных отрицательных температурах, которые длятся обычно несколько дней, неделю, и наступают периодически, точка росы может смещаться и в стену.

Для стены из плотных тяжелых материалов, в этом нет ничего опасного. Но для стены из пористых материалов, которые как обычно очень хорошо пропускают пар и впитывают влагу, появление точки росы должны быть коротким, особенно когда они сочетаются с утеплителями-пароизоляторами.

Такие стены требуют наибольшего утепления, особенно с учетом того, что они сами по себе теплые. Что бы сместить точку росы потребуется в 2 раза больше утеплителя. С паропрозрачными утеплителями, они сочетаются намного лучше, так как здесь можно осуществить вывод влаги, но только при условии отличной вентиляции утеплителя.

Приведены наглядные графики температур для различных схем утепления. Точка росы примерно указана как 16 градусов, достигается, когда внутри дома особо комфортная обстановка +25 градусов, 55 – 60 % влажности.
Примеры, положения точки росы, при разных схемах утепления

  • 1 — стена без утеплителя;
  • 2 — недостаточный слой утепления — точка росы находится внутри стены. Ее постоянное нахождение вызовет намокание неплотной стены, нездоровую атмосферу, опасность разрушения материала, если стена слой утепления имеет большее сопротивление движению пара, чем сама стена (неправильное утепление);
  • 3 — достаточное утепление, точка росы в утеплителе (основное время), нормальное сохранение материалов стены и тепло в доме, если тепловое сопротивление конструкции не меньше нормативного, ведь для очень холодных стен сместить точку росы из них можно и маленьким слоем утепления;
  • 4 — внутреннее утепление – худшее решение. Точка росы на поверхности стены или близка к этому, влечет намокание стены, и ущерб здоровью жильцов, мокрое замораживание и разрушение конструкций. Применяется в безвыходных ситуациях при условии сплошного закрытия стены утеплителем-пароизолятором, который и предотвращает проникновение пара к точке росы. Т.е. образование конденсата невозможно из-за влажности близкой к 0.

В нормативах указаны тепловые сопротивления ограждающих поверхностей для конкретных климатических зон. Этот значением уменьшать запрещает нам государство.

Чаще норматив требует меньшую толщину утеплителя, чем та, что нужна для смещения точки росы в утеплитель. Поэтому подбирать утеплитель под все поверхности в принципе желательно и по условию смещения точки росы в утеплитель.

Эти значения сравниваются с нормативным требованием, а принимается, как правило, еще большее значение, кратное толщине утеплителей, который находится в продаже.

Как определить годовую амплитуду температуры

Амплитудой того или иного параметра называют разность между максимальным и минимальным его значениями. Амплитуда температур чрезвычайно важна для характеристики климата того или иного региона. При этом необходимо, чтобы измерения проводились по одной и той же шкале поверенного термометра.

Как определить годовую амплитуду температуры

Вам понадобится

  • — термометр.

Инструкция

Амплитуду суточных температур вы можете вычислить самостоятельно. Проведите необходимые измерения. На метеостанциях обычно замеряют температуру наружного воздуха 8 раз в сутки, то есть через каждые три часа, начиная с полуночи.

Найдите максимальное и минимальное значения. Вычтите из большего меньшее. Если вы проводите измерения летом, то оба значения будут положительными. Например, самая высокая температура у вас +25°С, самая низкая — +10°С. Отняв от первого числа второе, вы получите 15°С. Это и есть амплитуда суточной температуры в конкретный день.

Для вычисления амплитуд в весенний и зимний период пользуйтесь теми же способами, которые вы применяете при решении математических задач с положительными и отрицательными числами. Например, если у вас днем температура 10°С, а ночью опускается до -10°С, действия будут аналогичны тем, что описаны в первом случае. Из 10° вычтите -10, то есть А=10-(-10)=10+10=20.

Амплитуда месячных или годовых температур высчитывается таким же способом. Среди всех значений найдите максимальное или минимальное, а затем вычтите из первого второе.

Можно посчитать и амплитуду среднесуточных температур. Сначала вычислите средние значения, например за каждые сутки. Чтобы найти среднесуточную температуру, необходимо сложить все значения и разделить полученную сумму на количество измерений. Чем чаще вы смотрите на термометр, тем выше будет точность результата. Хотя обычно для вычисления среднесуточной температуры бывает достаточно 8 измерений, как и для определения амплитуды.

Выпишите все среднесуточные температуры за месяц. Найдите самое большое значение и самое маленькое. Вычтите из первого второе. Годовая амплитуда рассчитывается так же.

Полезный совет

Для определения амплитуды температур желательно пользоваться одним и тем же термометром. Это может быть как обычный уличный спиртовой градусник, так и домашняя цифровая метеостанция. Такое устройство сочетает в себе сразу несколько приборов. По нему вы можете рассчитать и разные другие амплитуды, например влажности и давления.

Если вы не очень уверенно оперируете с положительными и отрицательными числами, сделайте себе шкалу, наподобие числовой линейки. Отметьте на ней точку 0. Поделите правую и левую части на отрезки равной длины. В правой части у каждой отметки проставьте положительные числа, в левой — отрицательные в зеркальном отображении. Откложите вправо количество градусов выше нуля, влево — ниже. Посчитайте, сколько отрезков находится между этими точками.

Источники:

  • как рассчитать амплитуду

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти радио волну шансона
  • Налоговую как найти в тамбове
  • Как исправить конфликты модов скайрим
  • Тупоугольный треугольник как найти гипотенузу
  • Как найти косинус угла авс в треугольнике