Как найти минимум дифракционной решетки

В рамках геометрической оптики, распространение луча в оптически однородной среде — прямолинейное, однако в природе существует ряд явлений, где можно наблюдать отклонение от этого условия.

Дифракция – явление огибания световыми волнами встреченных препятствий. В школьной физике изучаются две дифракционные системы (системы, при прохождении луча в которых наблюдается дифракция):

  • дифракция на щели (прямоугольном отверстии)
  • дифракция на решётке (набор равноотстоящих друг от друга щелей)

Дифракция на щели — дифракция на прямоугольном отверстии (рис. 1).

Дифракция на щели

Рис. 1. Дифракция на щели

Пусть дана плоскость со щелью, шириной displaystyle b, на которую под прямым углом падает пучок света А. Большинство света проходит на экран, однако часть лучей дифрагирует на краях щели (т.е. отклоняется от своего первоначального направления). Далее эти лучи интерферируют друг с другом с образованием дифракционной картины на экране (чередование ярких и тёмных областей). Рассмотрение законов интерференции достаточно сложно, поэтому ограничимся основными выводами.

Полученная дифракционная картина на экране состоит из чередующихся областей с дифракционными максимумами (максимально светлыми областями) и дифракционными минимумами (максимально тёмными областями). Эта картина симметрична относительно центрального светового пучка. Положение максимумов и минимумов описывается углом относительно вертикали, под которым они видны, и зависит от размера щели и длины волны падающего излучения. Положение этих областей можно найти используя ряд соотношений:

  • для дифракционных максимумов

displaystyle bsin varphi =(2m+1)frac{lambda }{2} (1)

  • где

Нулевым максимумом дифракции называется центральная точка на экране под щелью (рис. 1).

  • для дифракционных минимумов

displaystyle bsin varphi =mlambda (2)

  • где

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (1) или (2).

Дифракция на дифракционной решётке. 

Дифракционной решёткой называется система, состоящая из чередующихся щелей, равноотстоящих друг от друга (рис. 2).

Дифракционная решётка (лучи)

Рис. 2. Дифракционная решётка (лучи)

Так же, как и для  щели, на экране после дифракционной решётки будет наблюдаться дифракционная картина: чередование светлых и тёмных областей. Вся картина есть результат интерференции световых лучей друг с другом, однако на картину от одной щели будет воздействовать лучи от других щелей. Тогда дифракционная картина должна зависеть от количества щелей, их размеров и близкорасположенности.

Введём новое понятие — постоянная дифракционной решётки:

displaystyle d=a+b (3)

  • где

Тогда положения максимумов и минимумов дифракции:

  • для главных дифракционных максимумов (рис. 3)

displaystyle dsin varphi =nlambda (4)

  • где

Дифракционная решётка (максимумы)

Рис. 3. Дифракционная решётка (максимумы)

  • для дифракционных минимумов

displaystyle bsin varphi =mlambda (5)

  • где

Отдельным вопросом задач на дифракцию является вопрос о наибольшем количестве максимумов, которые можно наблюдать в текущей системе. Наибольший угол, под которым можно наблюдать максимум — displaystyle {{90}^{{}^circ }}, тогда, исходя из (4):

displaystyle dsin {{90}^{{}^circ }}=nlambda Rightarrow d={{n}_{max }}lambda Rightarrow {{n}_{max }}=frac{d}{lambda } (6)

Главное помнить, что число максимумов — число, т.е. от полученного ответа необходимо брать только целую часть.

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (4) или (5).

Общий вывод: задачи на дифракцию должны содержать в себе словосочетания, связанные с «дифракцией». Далее разбираемся с объектом: щель или дифракционная решётка и используем соответствующие соотношения для минимума или максимума.

Дифракция — явление отклонения световых волн от прямолинейного распространения при прохождении света мимо края препятствия. При этом лучи могут попадать в область геометрической тени от препятствия.

diffraction author lookang

Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

0006 039 Zakon prjamolinejnogo rasprostranenija sveta         0005 003 Interferentsija poverkhnostnykh voln ot dvukh tochechnykh istochnikov V tochkakh

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

Различают два вида дифракции. Если источник света S и точка наблюдения P расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку P, образуют практически параллельные пучки, говорят о дифракции в параллельных лучах или о дифракции Фраунгофера. В противном случае говорят о дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра b2/lλ, где b – характерный размер препятствия, l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина, λ – длина волны.

Свойства дифракции:

1) Дифракция волн – характерная особенность распространения волн независимо от их природы.

2) Волны могут попадать в область геометрической тени (огибать препятствия, проникать через не­большие отверстия в экранах). На­пример, звук хорошо слышен за углом дома — звуковая волна его огибает. Дифракцией радиоволн вокруг поверхности Земли объясняется прием радиосигналов в диапазоне длинных и средних радиоволн за пределами прямой видимости излучающей антенны.

3) Дифракция волн зависит от соотношения между длиной волны и размером объекта, вызывающего дифракцию. В пределе при λ→0 законы волновой оптики переходят в законы геометрической оптики. Дифракция обнаруживается в тех случаях, когда размеры огибаемых препятствий соизмеримы с длиной волны.

slitDiffraction

Объяснить явление дифракции можно исходя из принципа Гюйгенса-Френеля.Этот принцип представляет собой правило, объясняющее, как, исходя из положения волнового фронта в данный момент, найти новое положение волнового фронта в последующий момент времени.

Гюйгенс предложил рассматривать каждую точку среды, которой достигла волна, как источник вторичных сферических волн, распространяющихся по всем направлениям со скоростью, присущей данной среде. Поверхность, огибающая вторичные волны, представляет собой фронт волны в данный момент времени.

Френель дополнил изложенный принцип следующим положением: вторичные сферические волны являются когерентными и колебания в любой точке пространства, которой вторичные волны достигнут в момент времени t, представляют собой результат интерференции этих вторичных волн

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Дифракция Фраунгофера от одной щели

Дифракция Фраунгофера наблюдается, когда источник света сильно удален от места наблюдения, в результате фронт волны можно считать плоским.

clip image001 0000

Разность хода двух волн от краев щели равна Δ = b sin φ.

Разобьем MN на отрезки длиной λ/2. Параллельно произвольному направлению луча через точки разбиения (1, 2, 3) проведем линии, которые разделят открытую часть волновой поверхности MN на участки равной ширины – зоны Френеля, параллельные краям щели. По построению ∆ – разность хода лучей от краев зон Френеля равна λ/2. Это означает, что волны, идущие от двух соседних зон при наложении погасят друг друга. Т.о., если на открытой части волновой поверхности для данного направления наблюдения уложится целое четное число зон Френеля, то для данного направления будет наблюдаться min интенсивности, т.к. зоны попарно друг друга погасят.

Четное число зон Френеля — минимум дифракции

min difr

m = 1, 2, 3…

Если число зон Френеля целое и нечетное, то в этом направлении будет наблюдаться max:

max difr

m = 0, 1, 2, 3…

Дифракционная решетка

Совокупность большого числа щелей и промежутков между ними называется дифракционной решеткой.

clip image018 0001

b — ширина щели;

а — ширина промежутка между щелями;

d = a + b — период решетки .

d

N — число щелей, приходящихся на единицу длины

Дифракционная картина на решетке определяется как интерференция волн, приходящих от всех щелей, т. е. дифракция на решетке — многолучевая интерференция. Поскольку щели разделены одинаковым расстоянием, разности хода лучей, поступающих из двух соседних щелей, будут для направления φ идентичны по всей решетке.

Δ = d sin φ

В областях, в которых существует минимум при одной щели, минимумы будут и в случае N щелей, т. е. условие первичного минимума дифракционной решетки аналогично условию минимума для одной щели:

min  — условие главных минимумов.

Условие главных максимумов:

max 

Эти максимумы расположены симметрично относительно центра (k = 0) и главного максимума.

difr gap

Между основными пиками есть дополнительные очень слабые пики, интенсивность которых значительно меньше, чем у основных пиков (1/22 интенсивности ближайшего главного максимума). Количество дополнительных максимумов равно N — 2, где N — количество штрихов решетки.

Между главными максимумами будут расположены (N-1) дополнительных минимумов.

difr gratingmax cond

Разрешающая способность дифракционной решетки

Размер дифракционных изображений очень мал. Например, радиус центрального светлого пятна в фокальной плоскости линзы диаметром D = 5 см с фокусным расстоянием F = 50 см в монохроматическом свете с длиной волны λ = 500 нм приблизительно равен 0,006 мм. Но в высокоточных астро­но­ми­ческих приборах реализуется дифракци­он­ный предел качества изо­бра­же­ний. Вслед­ствие дифракционного размытия изобра­жения двух близких точек объекта могут оказаться неотличимыми от изо­бра­же­ния одной точки.

img xCe4dl

Спектральной разрешающей способностью R решетки, характеризующей возможность разделения с ее помощью двух близких спектральных линий с длинами волн λ и λ + Δλ, называется отношение длины волны λ к минимально возможному значению Δλ

image034

Пусть решетка имеет период d = 10–3 мм, ее длина L = 10 см. Тогда, N = 105 (это хорошая решетка). В спектре 2-го порядка разрешающая способность решетки оказывается равной R = 2·105. Это означает, что минимально разрешимый интервал длин волн в зеленой области спектра (λ = 550 нм) равен Δλ = λ / R ≈ 2,8·10–3 нм. 

Действие оптических приборов описывается законами геометрической оптики. Согласно этим законам можно различать с помощью микроскопа сколь угодно малые детали объекта; с помощью телескопа можно установить существование двух звезд при любых малых угловых расстояниях между ними. Однако в действительности это не так, и лишь волновая теория света позволяет разобраться в причинах предела разрешающей способности оптических приборов.

Метод зон Френеля

Границей первой (центральной) зоны служат точки поверхности S, находящиеся на расстоянии l + λ/2  от точки M. Точки сферы S, находящиеся на расстояниях l + 2λ/2, l + 3λ/2 , и т.д. от точки M, образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M  Δ = λ/2.

image151

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга: A = A1 + A2 + A3 +…+ Ai.

где A – амплитуда результирующего колебания, Ai – амплитуда колебаний, возбуждаемая i-й зоной Френеля.

Величина Ai зависит от площади Si зоны и угла αi между нормалью к поверхности и прямой, направленной в точку M.

Площадь одной зоны

Square

Отсюда видно, что площадь зоны Френеля не зависит от номера зоны i. Это значит, что при не слишком больших i площади соседних зон одинаковы.

В то же время с увеличением номера зоны возрастает угол αi  и, следовательно, уменьшается интенсивность излучения зоны в направлении точки M, т.е. уменьшается амплитуда Ai. Она уменьшается также из-за увеличения расстояния до точки M.

Отсюда следует, что углы между нормалью к зоне и направлением на точку M у соседних зон примерно равны, т.е. что амплитуды волн, приходящих в точку M от соседних зон, примерно равны.

Приближенно можно считать, что амплитуда колебания Am  от некоторой m-й зоны равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.

Am .

Тогда выражение для амплитуды можно записать в виде

A rez

Так как площади соседних зон одинаковы, то выражения в скобках равны нулю, значит результирующая амплитуда А = A1 /2.

Интенсивность излучения J ~ A2.

Таким образом, результирующая амплитуда, создаваемая в некоторой точке M всей сферической поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зонойа интенсивность J = J1/4 .

Так как радиус центральной зоны мал ( r1 = 0,16 мм), следовательно, можно считать, что свет от точки P до точки M распространяется прямолинейно.

Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только центральную зону Френеля, то амплитуда в точке M будет равна A1. Соответственно, интенсивность в точке M будет в 4 раза больше, чем при отсутствии экрана (т.к. J = 4J1 ). Интенсивность света увеличивается, если закрыть все четные зоны.

Таким образом, принцип Гюйгенса–Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Дифракция на простых объектах

Дифракция на щели

diffraction1
Дифракция от круглого отверстия
Поставим на пути сферической световой волны непрозрачный экран с круглым отверстием радиуса . Экран расположен так, что перпендикуляр, опущенный из S на непрозрачный экран, попадает точно в центр отверстия.

Разобьем открытую часть волновой поверхности на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке М будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю.

image1782  Otv difr

Дифракция на круглом отверстии при открытом чётном (слева) и нечётном (справа) числе зон.

Difr otv

Естественно, что если r0>>λ, то никакой дифракционной картины не будет.

Дифракция от диска
Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск.

В центре тени светлое пятно

image1788 0014 069 Difraktsija ot kruglogo diska

Difr disk                  

Амплитуда световых колебаний в точке M равна половине амплитуды, обусловленной первой открытой зоной. Если размер диска невелик (охватывает небольшое число зон), то действие первой зоны немногим отличается от действия центральной зоны волнового фронта. Таким образом, освещенность в точке M будет такой же, как и в отсутствие экрана. Вследствие симметрии центральная светлая точка будет окружена кольцами света и тени (вне границ геометрической тени).

Парадоксальное, на первый взгляд, заключение, в силу которого в самом центре геометрической тени может находиться светлая точка, было выдвинуто Пуассоном в 1818 г. и впоследствии было названо его именем. «Пятно Пуассона» подтверждает правильность теории Френеля.

arrow left                                     arrow right

Дифракционная
решётка

— оптический прибор, работающий по
принципу дифракциисвета, представляет собой совокупность
большого числа регулярно расположенных
штрихов (щелей, выступов), нанесённых
на некоторую поверхность.

Расстояние,
через которое повторяются штрихи на
решётке, называют периодом дифракционной
решётки. Обозначают буквой d.
Если известно число штрихов (N),
приходящихся на 1 мм решётки, то период
решётки находят по формуле: d
= 1 / N
мм.

Формула
дифракционной решётки:

Где
d
— период решётки, α
— угол максимума данного цвета, k
— порядок максимума, λ
— длина волны.

Если
число
зон Френеля четное,
то

и
в точке В
наблюдается
дифракционный
минимум
(полная
темнота), если же число
зон Френеля нечетное,
то

и
наблюдается дифракционный
максимум,
соответствующий
действию одной нескомпенсированной
зоны Френеля. Отметим, что в направлении
j
= 0
щель
действует как одна зона Френеля, и в
этом направлении свет распространяется
с наибольшей интенсивностью, т. е. в
точке В0
наблюдается
центральный
дифракционный максимум.

Положение
дифракционных максимумов зависит от
длины волны. При освещении щели белым
светом центральный максимум наблюдается
в виде белой полоски; он общий для всех
длин волн (при j
= 0 разность хода равна нулю для всех l).
Боковые максимумы радужно окрашены,
так как условие максимума при любых m
различно
для разных l.

23)—Дифракция рентгеновских лучей. Рентгеноструктурный анализ. Формула Вульфа-Брэггов.

Дифракция
рентгеновских лучей, рассеяние
рентгеновских лучей кристаллами (или
молекулами жидкостей и газов), при
котором из начального пучка лучей
возникают вторичные отклонённые пучки
той же длины волны, появившиеся в
результате взаимодействия первичных
рентгеновских лучей с электронами
вещества; направление и интенсивность
вторичных пучков зависят от строения
рассеивающего объекта. Дифрагированные
пучки составляют часть всего рассеянного
веществом рентгеновского излучения.

Рентгенострукту́рный
ана́лиз

(рентгенодифракционный анализ) — один
из дифракционных
методовисследования структуры
вещества. В основе данного метода лежит
явлениедифракциирентгеновских
лучейна трехмерной кристаллической
решетке.

Метод
позволяет определять атомнуюструктуру вещества, включающую в себяпространственную
группуэлементарной
ячейки, ее размеры и форму, а также
определить группусимметрии
кристалла.

Рентгеноструктурный
анализ и по сей день является самым
распространенным методом определения
структуры вещества в силу его простоты
и относительной дешевизны.

Формуле
Вульфа — Брэггов

т.
е. при разности хода между двумя лучами,
отраженными от соседних кристаллографических
плоскостей, кратной целому числу длин
волн А, наблюдается дифракционный
максимум.

d
— период решётки, α
— угол максимума данного цвета,

k
— порядок максимума, λ
— длина волны.

Формула
Вульфа — Брэггов используется при решении
двух важных задач:

  1. Наблюдая
    дифракцию рентгеновских лучей известной
    длины волны на кристаллической структуре
    неизвестного строения и измеряя θ
    и
    от, можно найти межплоскостное расстояние
    (d),
    т.
    е. определить структуру вещества. Этот
    метод лежит в основе рентгеноструктурного
    анализа
    .
    Формула Вульфа — Брэггов остается
    справедливой и при дифракции электронов
    и нейтронов. Методы исследования
    структуры вещества, основанные на
    дифракции электронов и нейтронов,
    называются соответственно электронографией
    и нейтронографией.

  2. Наблюдая
    дифракцию рентгеновских лучей неизвестной
    длины волны на кристаллической структуре
    при известном d
    и
    измеряя q
    и m,
    можно найти длину волны падающего
    рентгеновского излучения. Этот метод
    лежит в основе рентгеновской спектроскопии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дифракция Фраунгофера

Рассмотрим дифракцию света на щели.

Выберем направление наблюдения под углом (varphi), тогда границы зон Френеля определяются параллельными плоскостями (волновыми фронтами), расположенными на расстоянии (lambda/2) перпендикулярно направлению наблюдения (рис. (1)а).

Frame 557.png

Рис. (1). Дифракция света на щели

Оптическая разность хода лучей, проходящих у разных краёв щели, распространяющихся по направлению с углом, записывается:
(Delta =bcdot sin(varphi)).  ((1))
Условие минимумов:
(boxed{bcdot sin(varphi)=pm m lambda,; m in Z}),  ((2))
условие максимумов:
(boxed{bcdot  sin(varphi)=pm  left(m+frac{1}{2}right)lambda,; m in Z}).  ((3))

Если (m=0), то максимум называется центральным, остальные максимумы называются максимумами порядка (m) (рис. (1)б).

Дифракция Фраунгофера на дифракционной решётке

Точно таким же образом строятся зоны Френеля при прохождении плоского волнового фронта через дифракционную решётку — устройство, состоящее из чередующихся периодически расположенных прозрачных и непрозрачных полос.
Периодом решётки (или постоянная дифракционной решётки) называется физическая величина (d):
(boxed{d=a+b}),  ((4))
где (a) — это ширина прозрачных полос, а (b) — это ширина непрозрачных полос. Каждый участок волнового фронта (параллельные плоскости), проходящего через прозрачную полоску, может быть рассмотрен как источник вторичных волн, которые могут интерферировать (рис. (2)а).

Frame 558.png

Рис. (2). Дифракция света на дифракционной решётке

Главные максимумы будут наблюдаться под такими углами (varphi), что разность хода лучей от всех щелей (Delta) будет равна целому числу длин волн (рис. (2)б):
(boxed{Delta =d⋅ sin(varphi) = pm m lambda,; m in Z}),  ((5))
где (m) — это номер дифракционного максимума.
Главными минимумами дифракционной решётки называются такие направления, где волновой фронт, проходящий через каждую щель, имеет чётное число зон Френеля:
(boxed{bcdot sin(varphi)=pm m lambda,; m in Z}).  ((6))
Дополнительными минимумами дифракционной решётки называются такие направления, где волны от разных щелей приходят в противофазе:
(boxed{Delta = d⋅ sin(varphi) = m’ lambda,; m’= pm 1/N, pm 2/N,ldots}),  ((7))
где под (N) подразумевается количество щелей. Обратим внимание, что (m’neq 0, 1, 2,ldots), поскольку это положения главных максимумов.

Источники:

Рис. 1. Дифракция света на щели. © ЯКласс.

Рис. 2. Дифракция света на дифракционной решётке. © ЯКласс.

Дифракция света

В рамках геометрической оптики, распространение луча в оптически однородной среде — прямолинейное, однако в природе существует ряд явлений, где можно наблюдать отклонение от этого условия.

Дифракция – явление огибания световыми волнами встреченных препятствий. В школьной физике изучаются две дифракционные системы (системы, при прохождении луча в которых наблюдается дифракция):

  • дифракция на щели (прямоугольном отверстии)
  • дифракция на решётке (набор равноотстоящих друг от друга щелей)

Дифракция на щели — дифракция на прямоугольном отверстии (рис. 1).

Рис. 1. Дифракция на щели

Пусть дана плоскость со щелью, шириной , на которую под прямым углом падает пучок света А. Большинство света проходит на экран, однако часть лучей дифрагирует на краях щели (т.е. отклоняется от своего первоначального направления). Далее эти лучи интерферируют друг с другом с образованием дифракционной картины на экране (чередование ярких и тёмных областей). Рассмотрение законов интерференции достаточно сложно, поэтому ограничимся основными выводами.

Полученная дифракционная картина на экране состоит из чередующихся областей с дифракционными максимумами (максимально светлыми областями) и дифракционными минимумами (максимально тёмными областями). Эта картина симметрична относительно центрального светового пучка. Положение максимумов и минимумов описывается углом относительно вертикали, под которым они видны, и зависит от размера щели и длины волны падающего излучения. Положение этих областей можно найти используя ряд соотношений:

  • для дифракционных максимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на максимум,
    • — порядок максимума (счётчик),
    • — длина волны света.

Нулевым максимумом дифракции называется центральная точка на экране под щелью (рис. 1).

  • для дифракционных минимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на минимум,
    • — порядок минимума (счётчик),
    • — длина волны света.

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (1) или (2).

Дифракция на дифракционной решётке.

Дифракционной решёткой называется система, состоящая из чередующихся щелей, равноотстоящих друг от друга (рис. 2).

Рис. 2. Дифракционная решётка (лучи)

Так же, как и для щели, на экране после дифракционной решётки будет наблюдаться дифракционная картина: чередование светлых и тёмных областей. Вся картина есть результат интерференции световых лучей друг с другом, однако на картину от одной щели будет воздействовать лучи от других щелей. Тогда дифракционная картина должна зависеть от количества щелей, их размеров и близкорасположенности.

Введём новое понятие — постоянная дифракционной решётки:

  • где
    • — постоянная дифракционной решётки,
    • — расстояние между щелями,
    • — ширина щели.

Тогда положения максимумов и минимумов дифракции:

  • для главных дифракционных максимумов (рис. 3)
  • где
    • — постоянная дифракционной решётки,
    • — угол между вертикалью и направлением на максимум.
    • — порядок максимума (счётчик),

Рис. 3. Дифракционная решётка (максимумы)

  • для дифракционных минимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на минимум,
    • — порядок минимума (счётчик),
    • — длина волны света.

Отдельным вопросом задач на дифракцию является вопрос о наибольшем количестве максимумов, которые можно наблюдать в текущей системе. Наибольший угол, под которым можно наблюдать максимум — , тогда, исходя из (4):

Главное помнить, что число максимумов — число, т.е. от полученного ответа необходимо брать только целую часть.

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (4) или (5).

Общий вывод: задачи на дифракцию должны содержать в себе словосочетания, связанные с «дифракцией». Далее разбираемся с объектом: щель или дифракционная решётка и используем соответствующие соотношения для минимума или максимума.

5.5. Дифракционная решетка

Широкое распространение в научном эксперименте и технике получили дифракционные решетки, которые представляют собой множество параллельных, расположенных на равных расстояниях одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционные решетки изготавливаются с помощью делительной машины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и фактически играют роль щелей.

Рассмотрим сначала дифракцию света от решетки на примере двух щелей. (При увеличении числа щелей дифракционные максимумы становятся лишь более узкими, более яркими и отчетливыми.)

Пусть а — ширина щели, a b ширина непрозрачного промежутка (рис. 5.6).

Рис. 5.6. Дифракция от двух щелей

Период дифракционной решетки — это расстояние между серединами соседних щелей:

Разность хода двух крайних лучей равна

Если разность хода равна нечетному числу полуволн

то свет, посылаемый двумя щелями, вследствие интерференции волн будет взаимно гаситься. Условие минимумов имеет вид

Эти минимумы называются дополнительными.

Если разность хода равна четному числу полуволн

то волны, посылаемые каждой щелью, будет взаимно усиливать друг друга. Условие интерференционных максимумов с учетом (5.36) имеет вид

Это формула для главных максимумов дифракционной решетки.

Кроме того, в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, то есть главные минимумы решетки будут наблюдаться в направлениях, определяемых условием (5.21) для одной щели:

Если дифракционная решетка состоит из N щелей (современные решетки, применяемые в приборах для спектрального анализа, имеют до 200 000 штрихов, и период d = 0.8 мкм, то есть порядка 12 000 штрихов на 1 см), то условием главных минимумов является, как и в случае двух щелей, соотношение (5.41), условием главных максимумов — соотношение (5.40), а условие дополнительных минимумов имеет вид

Здесь k’ может принимать все целочисленные значения, кроме 0, N, 2N, . . Следовательно, в случае N щелей между двумя главными максимумами располагается (N–1) дополнительных минимумов, разделенных вторичными максимумами, создающими относительно слабый фон.

Положение главных максимумов зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разлагаются в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный — наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как спектральная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, наоборот, сильнее отклоняет красные лучи.

Важной характеристикой всякого спектрального прибора является разрешающая способность.

Разрешающая способность спектрального прибора — это безразмерная величина

ВОЛНОВАЯ ОПТИКА

19.3.2.3. Зависимость интенсивности дифракционной картины от угла дифракции φ

Разобьем щель на полоски шириной dx и изобразим векторную диаграмму колебаний, посылаемых этими полосками в точку наблюдения P . При φ = 0 колебания от всех полосок будут иметь одинаковую фазу. Результирующее колебание в точке P получится в результате сложения сонаправленных бесконечно малых векторов. Векторная диаграмма (14.3) в этом случае будет иметь вид вектора длиной A0 .

Для колебаний приходящих от щели в точку наблюдения P , расположенную под углом φ , векторная диаграмма имеет вид дуги окружности длиной A0 .

Замыкающий эту дугу вектор Aщ является амплитудой результирующего колебания от щели при произвольном угле φ . Фазовый угол δ соответствует максимальной разности хода, равной Δ = b Sinφ . Так как

, см. (18.1.2.2), то

.

Величину вектора Aщ найдем из геометрических соображений.

(по определению радианной меры угла).

Из треугольника COB :

.

Исключив R получим:

.

Интенсивность (16.5.4.) пропорциональна квадрату амплитуды, следовательно:

.

Учитывая связь δ с разностью хода Δ , получим связь интенсивности дифрагировавшего света с параметрами разбираемой задачи:

.

График этой функции в осях I — Sinφ имеет следующий вид:

19.4 Дифракционная решетка

— это совокупность большого числа одинаковых щелей, отстоящих друг от друга на одно и то же расстояние. Расстояние d между соответственными точками соседних щелей называют периодом решетки:

19.4.1. Условие главного максимума для дифракционной решетки

Пусть на дифракционную решетку с числом щелей N падает по нормали параллельный пучок света (плоская волна, 15.1.7) с длиной волны λ . Между экраном и решеткой поместим собирающую линзу. Экран расположим в фокальной плоскости линзы. По принципу Гюйгенса-Френеля (19.2) для нахождения амплитуды результирующего колебания в какой-либо точке P экрана наблюдения надо найти результат интерференции всех вторичных волн, с учетом их фаз и амплитуд. Линза собирает в точке P все параллельные лучи, идущие от решетки под углом φ .

Каждая щель создает колебания с амплитудой зависящей от φ (19.3.2.3).

.

Разность хода лучей, идущих от соответственных точек соседних щелей найдем из треугольника ABC :

.

При выполнении условия максимума (18.1.2.3)

,

таким образом, условие главного максимума для дифракционной решетки будет иметь следующий вид:

Целое число m называют порядком максимума. Колебания от соседних щелей при выполнении условия максимума в точку P будут приходить в одинаковой фазе. Результирующая амплитуда Aр , создаваемая в точке P решеткой будет в N раз больше амплитуды от одной щели:

.

будет в N 2 раз больше, чем интенсивность Iщ , создаваемая одной щелью.

19.4.2. Зависимость интенсивности дифракционной картины решетки от угла дифракции φ

Амплитуда результирующего колебания от N щелей, Ap(φ) , есть результат многолучевой интерференции (18.3). Таким образом:

.

Здесь δ — разность фаз колебаний, идущих в точку P от соответственных точек соседних щелей. Выразим δ через Δ (18.1.2.2), а Δ из треугольника ABC :

Подставив Aщ , полученную в (19.3.2.3), получим зависимость амплитуды результирующего колебания, создаваемого решеткой для угла φ :

.

Для интенсивности (16.5.4) получим:

.

Здесь I0 — интенсивность, создаваемая одной щелью при φ = 0 , первая дробь учитывает зависимость от интенсивности от φ одной щели, а вторая учитывает результат многолучевой интерференции N щелей.

При выполнении условия главного максимума d·Sinφ = mλ вторая дробь после раскрытия неопределенности по правилу Лопиталя дает N 2 . Таким образом, интенсивность в максимуме, как и было показано в (19.4.1), в N 2 раз больше интенсивности, создаваемой одной щелью.

19.4.2.1. Минимумы интенсивности дифракционной картины решетки

Формально получить условия на φ при которых будут наблюдаться минимумы можно, если проанализировать на минимум только что полученное выражение I(φ) . Анализ дает следующие результаты:

а) — это условие минимума для щели (19.3.2.2);

б) — это условие главного минимума для решетки. При выполнении этого условия колебания от соседних щелей приходят в точку P в противофазе и попарно гасят друг друга;

в) — целое число не кратное N .

Это условие добавочных минимумов. При k’ кратном N получим условие максимума.

При выполнении условия добавочных минимумов векторная диаграмма сложения колебаний от N щелей замыкается: конец N-го вектора попадает в начало 1-го и результирующая амплитуда равна нулю. На рисунке ниже изображена эта ситуация для N = 6 (рис. а), k’ = 1 и k’ = 2 (рис. б). При k’ = 2 векторы A1 и A4 , A2 и A5 , A3 и A6 расположены в одном месте.

19.4.2.2. Добавочные минимумы, ближайшие к главным максимумам

Если в условии добавочных минимумов (19.4.2.1,в) положить k’ = 1, N ±1, 2N ±1,… , т.е. k’ = mN ±1, m = 0, 1, 2, … , то получим условие для добавочных минимумов, ближайших к главным максимумам порядка m :

При разности хода d·Sinφ равной ±mλ наблюдается главный максимум порядка m . Добавка к разности хода величины λ/N дает условие минимума, ближайшего к главному максимуму. Эта добавка тем меньше, чем больше N — число щелей решетки, принимающих участие в образовании интерференционной картины. У хороших решеток d ≈ 10 -6 м и при длине решетки lр = 1 см число щелей N = lр/d = 10000, что дает очень узкие главные максимумы, необходимые в спектральных приборах.

19.4.3. График интенсивности Ip(Sin φ )

Для наглядности графика возьмем решетку с очень малым числом щелей, N = 4. Пусть, для определенности, постоянная решетки d в четыре раза больше ширины щели b , т.е. d = 4b , а длина волны λ = b/2 . Найдем значения Sinφ , при которых будут наблюдаться максимумы и минимумы от нашей решетки:

Главные максимумы решетки (19.4.1):

Главные минимумы решетки:

Добавочные минимумы решетки:

Зависимость интенсивности дифракционной картины от Sinφ изображена на рисунке (расположенном ниже) сплошной линией. Бледная линия — огибающая дифракционной картины — это интенсивность дифракционной картины от одной щели, помноженная на N 2 = 4 2 = 16 .

источники:

http://online.mephi.ru/courses/physics/optics/data/course/5/5.5.html

http://msk.edu.ua/ivk/Fizika/2_kurs/Tushev_Shizika/TUSHEV2/19-3.html

Понравилась статья? Поделить с друзьями:
  • Как найти песню американо
  • Как составить таблицу расписание занятий в экселе
  • Как найти украинский канал
  • Что делать если перевернулось изображение на экране ноутбука как исправить
  • Как найди середину медианы