Как найти мкф физика

Random converter

Перевести единицы: микрофарад [мкФ] в фарад [Ф]

1 микрофарад [мкФ] = 1E-06 фарад [Ф]

Подробнее об электрической емкости

Сенсорный экран этого планшета выполнен с использованием проекционно-емкостной технологии.

Сенсорный экран этого планшета выполнен с использованием проекционно-емкостной технологии.

Общие сведения

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Историческая справка

Маркировка конденсаторов

Примеры конденсаторов

Ионисторы

Емкостные сенсорные экраны

Поверхностно-емкостные экраны

Проекционно-емкостные экраны

Общие сведения

Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра

Измерение емкости конденсатора номинальной емкостью 10 мкФ с помощью осциллографа-мультиметра

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Условные обозначения конденсаторов на принципиальных схемах

Условные обозначения конденсаторов на принципиальных схемах

Понятие электрической емкости относится не только к проводнику, но и к конденсатору.
Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Параллельная RLC-цепь, состоящая из резистора, конденсатора и катушки индуктивности

Параллельная RLC-цепь, состоящая из резистора, конденсатора и катушки индуктивности

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Оксидные конденсаторы в блоке питания сервера.

Оксидные конденсаторы в блоке питания сервера.

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение. Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ). Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Оксидный конденсатор собран из двух алюминиевых лент и бумажной прокладки с электролитом. Одна из алюминиевых лент покрыта слоем оксида алюминия и служит анодом. Катодом служит вторая алюминиевая лента и бумажная лента с электролитом. На алюминиевых лентах видны следы электрохимического травления, позволяющего увеличить их площадь поверхности, а значит и емкость конденсатора.

Оксидный конденсатор собран из двух алюминиевых лент и бумажной прокладки с электролитом. Одна из алюминиевых лент покрыта слоем оксида алюминия и служит анодом. Катодом служит вторая алюминиевая лента и бумажная лента с электролитом. На алюминиевых лентах видны следы электрохимического травления, позволяющего увеличить их площадь поверхности, а значит и емкость конденсатора.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Трехсекционный воздушный конденсатор переменной емкости

Трехсекционный воздушный конденсатор переменной емкости

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы.
Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.

Электромобиль А2В Университета Торонто. Общий вид

Электромобиль А2В Университета Торонто. Общий вид

В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.

В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.

Электромобиль А2В Университета Торонто. Под капотом

Электромобиль А2В Университета Торонто. Под капотом

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Cенсорный экран iPhone выполнен по проекционно-емкостной технологии.

Cенсорный экран iPhone выполнен по проекционно-емкостной технологии.

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Электротехника

Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.

Электрическая емкость

Электрическая ёмкость — характеристика проводника, определяющая его способность накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками или величину емкости ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

Устройства для накопления заряда и энергии электрического поля, имеющие два вывода и обладающие высоким сопротивлением, используются в электротехнике и электронике и называются конденсаторами. Типичные значения емкости конденсаторов составляют от единиц пикофарад до десятков фарад (ионисторы). В связи с этим фарады часто используется с дольными десятичными приставками (микрофарады, пикофарады и нанофарады) и крайне редко — с кратными приставками. Для измерения емкости применяются мультиметры.

В Международной системе единиц (СИ) ёмкость измеряется в фарадах. В системе СГС в сантиметрах. 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт. 1 фарад — это очень большая емкость. Для сравнения можно сказать, что емкость Земли около 700 микрофарад. В то же время, современные ионисторы, называемые также суперконденсаторами или двухслойными электрохимическими конденсаторами, могут иметь емкость в несколько фарад при рабочем напряжении до десяти вольт.

Использование конвертера «Электрическая емкость»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение от exponent) — означает «· 10^», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

  • Выберите единицу, с которой выполняется преобразование, из левого списка единиц измерения.
  • Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения.
  • Введите число (например, «15») в поле «Исходная величина».
  • Результат сразу появится в поле «Результат» и в поле «Преобразованная величина».
  • Можно также ввести число в правое поле «Преобразованная величина» и считать результат преобразования в полях «Исходная величина» и «Результат».

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

микрофарад сколько фарад

Прямая ссылка на этот калькулятор:
https://www.preobrazovaniye-yedinits.info/preobrazovat+mikrofarad+v+farad.php

Преобразовать микрофарад в фарад (мкФ в Ф):

  1. Выберите нужную категорию из списка, в данном случае ‘Ёмкость’.
  2. Введите величину для перевода. Основные арифметические операции, такие как сложение (+), вычитание (-), умножение (*, x), деление (/, :, ÷), экспоненту (^), квадратный корень (√), скобки и π (число пи), уже поддерживаются на настоящий момент.
  3. Из списка выберите единицу измерения переводимой величины, в данном случае ‘микрофарад [мкФ]’.
  4. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘фарад [Ф]’.
  5. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘749 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’48 мкФ в Ф‘ или ’84 мкФ сколько Ф‘ или ’97 микрофарад -> фарад‘ или ’40 мкФ = Ф‘ или ’78 микрофарад в Ф‘ или ’60 мкФ в фарад‘ или ’84 микрофарад сколько фарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(46 * 2) мкФ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: ‘749 микрофарад + 2247 фарад’ или ’90mm x 40cm x 83dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 1,397 098 258 891 3×1026. В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 1,397 098 258 891 3. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 1,397 098 258 891 3E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 139 709 825 889 130 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

Фарад

F

Микрофарад

µF

Округлять до {$ round $} {$ Plural(round, [‘знака’, ‘знаков’, ‘знаков’]) $} после запятой

From Wikipedia, the free encyclopedia

farad
OneFarad5.5Velectrolyticcapacitor.jpg

A one farad modern super-capacitor. The scale behind is in inches (top) and centimetres (bottom).

General information
Unit system SI
Unit of capacitance
Symbol F
Named after Michael Faraday
Conversions
1 F in … … is equal to …
   SI base units    kg−1⋅m−2⋅s4⋅A2

The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI), equivalent to 1 coulomb per volt (C/V).[1] It is named after the English physicist Michael Faraday (1791–1867). In SI base units 1 F = 1 kg−1⋅m−2⋅s4⋅A2.

Definition[edit]

The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt.[1][2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt.[3]

The relationship between capacitance, charge, and potential difference is linear. For example, if the potential difference across a capacitor is halved, the quantity of charge stored by that capacitor will also be halved.

For most applications, the farad is an impractically large unit of capacitance. Most electrical and electronic applications are covered by the following SI prefixes:

  • 1 mF (millifarad, one thousandth (10−3) of a farad) = 0.001 F = 1000 μF = 1000000000 pF
  • 1 μF (microfarad, one millionth (10−6) of a farad) = 0.000 001 F = 1000 nF = 1000000 pF
  • 1 nF (nanofarad, one billionth (10−9) of a farad) = 0.000 000 001 F = 0.001 μF = 1000 pF
  • 1 pF (picofarad, one trillionth (10−12) of a farad) = 0.000 000 000 001 F = 0.001 nF

Equalities[edit]

A farad is a derived unit based on four of the seven base units of the International System of Units: kilogram (kg), metre (m), second (s), and ampere (A).

Expressed in combinations of SI units, the farad is:

{displaystyle {text{F}}={dfrac {{text{s}}^{4}{cdot }{text{A}}^{2}}{{text{m}}^{2}{cdot }{text{kg}}}}={dfrac {{text{s}}^{2}{cdot }{text{C}}^{2}}{{text{m}}^{2}{cdot }{text{kg}}}}={dfrac {text{C}}{text{V}}}={dfrac {{text{A}}{cdot }{text{s}}}{text{V}}}={dfrac {{text{W}}{cdot }{text{s}}}{{text{V}}^{2}}}={dfrac {text{J}}{{text{V}}^{2}}}={dfrac {{text{N}}{cdot }{text{m}}}{{text{V}}^{2}}}={dfrac {{text{C}}^{2}}{text{J}}}={dfrac {{text{C}}^{2}}{{text{N}}{cdot }{text{m}}}}={dfrac {text{s}}{Omega }}={dfrac {1}{Omega {cdot }{text{Hz}}}}={dfrac {text{S}}{text{Hz}}}={dfrac {{text{s}}^{2}}{text{H}}},}

where F = farad, C = coulomb, V = volt, W = watt, J = joule, N = newton, Ω = ohm, Hz = Hertz, S = siemens, H = henry.[4]

History[edit]

The term «farad» was originally coined by Latimer Clark and Charles Bright in 1861,[5] in honor of Michael Faraday, for a unit of quantity of charge, but by 1873, the farad had become a unit of capacitance.[6] In 1881 at the International Congress of Electricians in Paris, the name farad was officially used for the unit of electrical capacitance.[7][8]

Explanation[edit]

Examples of different types of capacitors

A capacitor generally consists of two conducting surfaces, frequently referred to as plates, separated by an insulating layer usually referred to as a dielectric. The original capacitor was the Leyden jar developed in the 18th century. It is the accumulation of electric charge on the plates that results in capacitance. Modern capacitors are constructed using a range of manufacturing techniques and materials to provide the extraordinarily wide range of capacitance values used in electronics applications from femtofarads to farads, with maximum-voltage ratings ranging from a few volts to several kilovolts.

Values of capacitors are usually specified in terms of SI prefix#List of SI prefixes of farads (F), microfarads (μF), nanofarads (nF) and picofarads (pF).[9] The millifarad (mF) is rarely used in practice; a capacitance of 4.7 mF (0.0047 F), for example, is instead written as 4700 μF. The nanofarad (nF) is uncommon in North America.[10] The size of commercially available capacitors ranges from around 0.1 pF to 5000F (5 kF) supercapacitors. Parasitic capacitance in high-performance integrated circuits can be measured in femtofarads (1 fF = 0.001 pF = 10−15 F), while high-performance test equipment can detect changes in capacitance on the order of tens of attofarads (1 aF = 10−18 F).[11]

A value of 0.1 pF is about the smallest available in capacitors for general use in electronic design, since smaller ones would be dominated by the parasitic capacitances of other components, wiring or printed circuit boards. Capacitance values of 1 pF or lower can be achieved by twisting two short lengths of insulated wire together.[12][13]

The capacitance of the Earth’s ionosphere with respect to the ground is calculated to be about 1 F.[14]

Informal and deprecated terminology[edit]

The picofarad (pF) is sometimes colloquially pronounced as «puff» or «pic», as in «a ten-puff capacitor».[15] Similarly, «mic» (pronounced «mike») is sometimes used informally to signify microfarads.

Nonstandard abbreviations were and are often used. Farad has been abbreviated «f», «fd», and «Fd». For the prefix «micro-«, when the Greek small letter «μ» or the legacy micro sign «μ» is not available (as on typewriters) or inconvenient to enter, it is often substituted with the similar-appearing «u» or «U», with little risk of confusion. It was also substituted with the similar-sounding «M» or «m», which can be confusing because M officially stands for 1,000,000, and m preferably stands for 1/1000. In texts prior to 1960, and on capacitor packages until more recently, «microfarad(s)» was abbreviated «mf» or «MFD» rather than the modern «μF». A 1940 Radio Shack catalog listed every capacitor’s rating in «Mfd.», from 0.000005 Mfd. (5 pF) to 50 Mfd. (50 μF).[16]

«Micromicrofarad» or «micro-microfarad» is an obsolete unit found in some older texts and labels, contains a nonstandard metric double prefix. It is exactly equivalent to a picofarad (pF). It is abbreviated μμF, uuF, or (confusingly) «mmf», «MMF», or «MMFD».

Summary of obsolete capacitance units: (upper/lower case variations are not shown)

  • μF (microfarad) = mf, mfd
  • pF (picofarad) = mmf, mmfd, pfd, μμF

[edit]

The reciprocal of capacitance is called electrical elastance, the (non-standard, non-SI) unit of which is the daraf.[17]

CGS units[edit]

The abfarad (abbreviated abF) is an obsolete CGS unit of capacitance, which corresponds to 109 farads (1 gigafarad, GF).[18]

The statfarad (abbreviated statF) is a rarely used CGS unit equivalent to the capacitance of a capacitor with a charge of 1 statcoulomb across a potential difference of 1 statvolt. It is 1/(10−5 c2) farad, approximately 1.1126 picofarads. More commonly, the centimeter (cm) is used, which is equal to the statfarad.

Notes[edit]

  1. ^ a b The International System of Units (SI) (8th ed.). Bureau International des Poids et Mesures (International Committee for Weights and Measures). 2006. p. 144.
  2. ^ «farad | Definition, Symbol, & Facts | Britannica». www.britannica.com. Retrieved 2022-07-25.
  3. ^ Peter M B Walker, ed. (1995). Dictionary of Science and Technology. Larousse. ISBN 0752300105.
  4. ^ The International System of Units (SI) (9th ed.). Bureau International des Poids et Mesures. 2019. p. 138.
  5. ^
    As names for units of various electrical quantities, Bright and Clark suggested «ohma» for voltage, «farad» for charge, «galvat» for current, and «volt» for resistance. See:

    • Latimer Clark and Sir Charles Bright (1861) «On the formation of standards of electrical quantity and resistance,» Report of the Thirty-first Meeting of the British Association for the Advancement of Science (Manchester, England: September 1861), section: Mathematics and Physics, pp. 37-38.
    • Latimer Clark and Sir Charles Bright (November 9, 1861) «Measurement of electrical quantities and resistance,» The Electrician, 1 (1): 3–4.

  6. ^ Sir W. Thomson, etc. (1873) «First report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units,» Report of the 43rd Meeting of the British Association for the Advancement of Science (Bradford, September 1873), pp. 222-225. From p. 223: «The «ohm,» as represented by the original standard coil, is approximately 109 C.G.S. units of resistance: the «volt» is approximately 108 C.G.S. units of electromotive force: and the «farad» is approximately 1/109 of the C.G.S. unit of capacity.»
  7. ^ (Anon.) (September 24, 1881) «The Electrical Congress,» The Electrician, 7: 297. From p. 297: «7. The name farad will be given to the capacity defined by the condition that a coulomb in a farad gives a volt.»
  8. ^ Tunbridge, Paul (1992). Lord Kelvin: his influence on electrical measurements and units. London: Peregrinus. pp. 26, 39–40. ISBN 9780863412370. Retrieved 5 May 2015.
  9. ^ Braga, Newton C. (2002). Robotics, Mechatronics, and Artificial Intelligence. Newnes. p. 21. ISBN 0-7506-7389-3. Retrieved 2008-09-17. Common measurement units are the microfarad (μF), representing 0.000,001 F; the nanofarad (nF), representing 0.000,000,001 F; and the picofarad (pF), representing 0.000,000,000,001 F.
  10. ^ Platt, Charles (2009). Make: Electronics: Learning Through Discovery. O’Reilly Media. p. 61. ISBN 9781449388799. Retrieved 2014-07-22. Nanofarads are also used, more often in Europe than in the United States.
  11. ^ Gregorian, Roubik (1976). Analog MOS Integrated Circuits for Signal Processing. John Wiley & Sons. p. 78.
  12. ^ Pease, Bob (2 September 1993). «What’s All This Femtoampere Stuff, Anyhow?». Electronic Design. Retrieved 2013-03-09.
  13. ^ Pease, Bob (1 December 2006). «What’s All This Best Stuff, Anyhow?». Electronic Design. Retrieved 2013-03-09.
  14. ^ Williams, L. L. (January 1999). «Electrical Properties of the Fair-Weather Atmosphere and the Possibility of Observable Discharge on Moving Objects» (PDF). Archived from the original (PDF) on 2016-12-21. Retrieved 2012-08-13.
  15. ^ «Puff». Wolfram Research. Retrieved 2009-06-09.
  16. ^ «1940 Radio Shack Catalog — Page 54 — Condensers». radioshackcatalogs.com. Archived from the original on 11 July 2017. Retrieved 11 July 2017.
  17. ^ «Daraf». Webster’s Online Dictionary. Archived from the original on 2011-10-04. Retrieved 2009-06-19.
  18. ^ Graf, Rudolf F. (1999). Modern Dictionary of Electronics. Newnes. p. 1. ISBN 9780080511986. Retrieved 2016-04-15.

External links[edit]

  • Farad unit conversion tool

Основной параметр:ёмкостьЕдиница измерения:

Фарад

Обозначениеконденсатора

на схемах

Конденсатор — это пассивный электронный прибор, который способен накапливать электрический заряд (заряжаться). Основной характеристикой конденсаторов является емкость, которую измеряют в фарадах (Ф, F).

  • Фарад — большая величина, на практике используются дольные единицы измерения емкости конденсаторов: микрофарады (мкФ, µF), нанофарады (нФ, nF), пикофарады (пФ, pF).
  • 1 Ф = 1 000 000 мкФ
  • 1 мкФ = 1 000 нФ = 1 000 000 пФ
  • 1 нФ = 1 000 пФ

Обозначениеэлектролитическогоконденсатора

на схемах

Номинал конденсатора на схемах указывают рядом с его обозначением. При емкости менее 10000 пФ ставят число пикофарад без обозначения размерности, например, 22, 180, 6800. Для емкости 0,01 мкФ и более ставят число микрофарад. Зарубежные обозначения часто заменяют греческую букву µ (мю) на латинскую u («uF» вместо «µF»).

Конденсаторы используют для сглаживания тока в электрических цепях, в колебательных системах (колебательных контурах, генераторах импульсов, мультивибраторах).

Конденсаторы состоят из двух пластин (обкладок), разделенных слоем диэлектрика. По материалу диэлектрика конденсаторы разделяют на керамические, электролитические, бумажные, слюдяные и другие.

Керамическиеконденсаторы

Керамические конденсаторы имеют емкость от единиц до тысяч пикофарад. Электролитические конденсаторы обладают большей емкостью, которая может достигать тысяч микрофарад. Большинство электролитических конденсаторов имеют положительный и отрицательный полюса, что требует включения их в схемы с соблюдением полярности.

Электролитическийконденсатор

На корпусе электролитического конденсатора в большинстве случаев есть полоска, обозначающая отрицательный вывод. Кроме того, длина положительного вывода конденсатора немного больше, чем отрицательного.

Конденсаторы имеют рабочее напряжение, которое чаще всего указывают на корпусе. При подборе конденсатора следует выбирать конденсатор с напряжением равным или большим, указанному в схеме.

  1. Цифровая кодировка конденсаторов
  2. При обозначении номинала на керамических конденсаторах используется цифровая кодировка, в которой последняя цифра обозначает количество нулей (емкость в пикофарадах).
  3. 681 — 680 пФ
  4. 102 — 1 000 пФ
  5. 103 — 10 000 пФ (0.01 мкФ)
  6. 104 — 100 000 пФ (0.1 мкФ)
  7. 154 — 150 000 пФ (0.15 мкФ)
  8. 224 — 220 000 пФ (0.22 мкФ)

При параллельном соединении конденсаторов их емкость складывается. А допустимое напряжение будет равно напряжению конденсатора с самым малым значением этого напряжения.

При последовательном соединении конденсаторов общую емкость можно рассчитать по приводимой формуле. Общее допустимое напряжение при этом будет равно сумме всех допустимых напряжений конденсаторов.

Фарады, микрофарады, нанофарады и пикофарады: измерение электрической емкости

Область применения

В фарадах измеряют электрическую ёмкость проводников, то есть их способность накапливать электрический заряд. Например, в фарадах (и производных единицах) измеряют: ёмкость кабелей, конденсаторов, межэлектродные ёмкости различных приборов. Промышленные конденсаторы имеют номиналы, измеряемые в микро-

,
нано-
и
пикофарадах
и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад[3].

Не следует путать электрическую ёмкость и электрохимическую ёмкость батареек и аккумуляторов, которая имеет другую природу и измеряется в других единицах: ампер-часах, соразмерных электрическому заряду (1 ампер-час равен 3600 кулонам).

Измерение электрической ёмкости

Единица измерения напряжения

Основное свойство конденсаторов – они не пропускают постоянный ток, а сопротивление переменному току тем меньше, чем выше его частота. Поэтому измерение элемента сводится к измерению его сопротивления на определённой частоте и вычислению её по соответствующей формуле.

На практике это делается специальными приборами или мультиметром, в котором есть эта функция.

Измерение электрической ёмкости

Кратные и дольные единицы

Образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF
применять не рекомендуется не применяются или редко применяются на практике
  • В советской практике — использовались только две единицы: микрофарада
    и
    пикофарада
    К:Википедия:Статьи без источников (тип: не указан)[
    источник не указан 2947 дней
    ] (ёмкость в 1—100 мФ и нФ выражалась в тысячах микрофарад и пикофарад, соответственно; ёмкость в 100—1000 мФ и нФ — в десятых долях фарады и микрофарады). Никакие другие единицы использовать было не принято;
  • Также, на схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства, целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н
    — в нанофарадах; а с буквами
    мк
    — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)К:Википедия:Статьи без источников (тип: не указан)[
    источник не указан 2778 дней
    ];
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u
    («uF» вместо «µF») из-за отсутствия в раскладке греческих букв.

Переменный и подстроечный конденсатор

Обозначениепеременного и подстроечного

конденсатора на схемах

  • Конденсаторы могут обладать не только постоянной емкостью, но и переменной емкостью, которую можно плавно менять в заданных пределах.
  • Конденсаторы с переменной емкостью используют в колебательных контурах радиоприемников и ряде других устройств.
  • Подстроечные конденсаторы применяются для настройки работы электронной схемы, когда в процессе работы устройства их емкость не меняется.
  • Дополнение

Фарады, микрофарады, нанофарады и пикофарады: измерение электрической емкости

Ещё примеры маркировки конденсаторов:

  • Кодовая маркировка конденсаторов

Источник: https://myrobot.ru/wiki/index.php?n=Components.RCL

Примечания

  1. Производные единицы Беккерель · Ватт · Вебер · Вольт · Генри · Герц · Градус Цельсия · Грей · Джоуль · Зиверт · Катал · Кулон · Люкс · Люмен · Ньютон · Ньютон-метр · · Паскаль · Радиан · Сименс · Стерадиан · Тесла · Фарад
    Принятые для использования с СИ Ангстрем · Астрономическая единица · Гектар · Градус дуги (Минута дуги, Секунда дуги) · Дальтон (Атомная единица массы) · Децибел · Литр · Непер · Сутки (Час, Минута) · Тонна · Электронвольт Атомная система единиц · Естественная система единиц
    См. также Приставки СИ · Система физических величин · Преобразование единиц · Новые определения СИ · История метрической системы
    Книга:СИ · Категория:СИ

    Это заготовка статьи о единицах измерения. Вы можете помочь проекту, дополнив её.
    : неверное или отсутствующее изображение Для улучшения этой статьи желательно:

    • Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.К:Википедия:Статьи без источников (тип: не указан)

Преобразовать микрофарад в фарад (мкФ в Ф):

Прямая ссылка на этот калькулятор:https://www.preobrazovaniye-yedinits.info/preobrazovat+mikrofarad+v+farad.php

  1. Выберите нужную категорию из списка, в данном случае ‘Ёмкость’.
  2. Введите величину для перевода. Основные арифметические операции, такие как сложение (+), вычитание (-), умножение (*, x), деление (/, :, ÷), экспоненту (^), скобки и π (число пи), уже поддерживаются на настоящий момент.
  3. Из списка выберите единицу измерения переводимой величины, в данном случае ‘микрофарад [мкФ]’.
  4. И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘фарад [Ф]’.
  5. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘134 микрофарад’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘микрофарад’ или ‘мкФ’.

После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Ёмкость’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение.

Как вариант, преобразуемое значение можно ввести следующим образом: ’74 мкФ в Ф‘ или ’28 мкФ сколько Ф‘ или ’22 микрофарад -> фарад‘ или ’95 мкФ = Ф‘ или ’19 микрофарад в Ф‘ или ‘6 мкФ в фарад‘ или ‘5 микрофарад сколько фарад‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

Отрывок, характеризующий Фарад

Не сходя с этого места и не выпустив ни одного заряда, полк потерял здесь еще третью часть своих людей. Спереди и в особенности с правой стороны, в нерасходившемся дыму, бубухали пушки и из таинственной области дыма, застилавшей всю местность впереди, не переставая, с шипящим быстрым свистом, вылетали ядра и медлительно свистевшие гранаты. Иногда, как бы давая отдых, проходило четверть часа, во время которых все ядра и гранаты перелетали, но иногда в продолжение минуты несколько человек вырывало из полка, и беспрестанно оттаскивали убитых и уносили раненых. С каждым новым ударом все меньше и меньше случайностей жизни оставалось для тех, которые еще не были убиты. Полк стоял в батальонных колоннах на расстоянии трехсот шагов, но, несмотря на то, все люди полка находились под влиянием одного и того же настроения. Все люди полка одинаково были молчаливы и мрачны. Редко слышался между рядами говор, но говор этот замолкал всякий раз, как слышался попавший удар и крик: «Носилки!» Большую часть времени люди полка по приказанию начальства сидели на земле. Кто, сняв кивер, старательно распускал и опять собирал сборки; кто сухой глиной, распорошив ее в ладонях, начищал штык; кто разминал ремень и перетягивал пряжку перевязи; кто старательно расправлял и перегибал по новому подвертки и переобувался. Некоторые строили домики из калмыжек пашни или плели плетеночки из соломы жнивья. Все казались вполне погружены в эти занятия. Когда ранило и убивало людей, когда тянулись носилки, когда наши возвращались назад, когда виднелись сквозь дым большие массы неприятелей, никто не обращал никакого внимания на эти обстоятельства. Когда же вперед проезжала артиллерия, кавалерия, виднелись движения нашей пехоты, одобрительные замечания слышались со всех сторон. Но самое большое внимание заслуживали события совершенно посторонние, не имевшие никакого отношения к сражению. Как будто внимание этих нравственно измученных людей отдыхало на этих обычных, житейских событиях. Батарея артиллерии прошла пред фронтом полка. В одном из артиллерийских ящиков пристяжная заступила постромку. «Эй, пристяжную то!.. Выправь! Упадет… Эх, не видят!.. – по всему полку одинаково кричали из рядов. В другой раз общее внимание обратила небольшая коричневая собачонка с твердо поднятым хвостом, которая, бог знает откуда взявшись, озабоченной рысцой выбежала перед ряды и вдруг от близко ударившего ядра взвизгнула и, поджав хвост, бросилась в сторону. По всему полку раздалось гоготанье и взвизги. Но развлечения такого рода продолжались минуты, а люди уже более восьми часов стояли без еды и без дела под непроходящим ужасом смерти, и бледные и нахмуренные лица все более бледнели и хмурились. Князь Андрей, точно так же как и все люди полка, нахмуренный и бледный, ходил взад и вперед по лугу подле овсяного поля от одной межи до другой, заложив назад руки и опустив голову. Делать и приказывать ему нечего было. Все делалось само собою. Убитых оттаскивали за фронт, раненых относили, ряды смыкались. Ежели отбегали солдаты, то они тотчас же поспешно возвращались. Сначала князь Андрей, считая своею обязанностью возбуждать мужество солдат и показывать им пример, прохаживался по рядам; но потом он убедился, что ему нечему и нечем учить их. Все силы его души, точно так же как и каждого солдата, были бессознательно направлены на то, чтобы удержаться только от созерцания ужаса того положения, в котором они были. Он ходил по лугу, волоча ноги, шаршавя траву и наблюдая пыль, которая покрывала его сапоги; то он шагал большими шагами, стараясь попадать в следы, оставленные косцами по лугу, то он, считая свои шаги, делал расчеты, сколько раз он должен пройти от межи до межи, чтобы сделать версту, то ошмурыгывал цветки полыни, растущие на меже, и растирал эти цветки в ладонях и принюхивался к душисто горькому, крепкому запаху. Изо всей вчерашней работы мысли не оставалось ничего. Он ни о чем не думал. Он прислушивался усталым слухом все к тем же звукам, различая свистенье полетов от гула выстрелов, посматривал на приглядевшиеся лица людей 1 го батальона и ждал. «Вот она… эта опять к нам! – думал он, прислушиваясь к приближавшемуся свисту чего то из закрытой области дыма. – Одна, другая! Еще! Попало… Он остановился и поглядел на ряды. „Нет, перенесло. А вот это попало“. И он опять принимался ходить, стараясь делать большие шаги, чтобы в шестнадцать шагов дойти до межи. Свист и удар! В пяти шагах от него взрыло сухую землю и скрылось ядро. Невольный холод пробежал по его спине. Он опять поглядел на ряды. Вероятно, вырвало многих; большая толпа собралась у 2 го батальона. – Господин адъютант, – прокричал он, – прикажите, чтобы не толпились. – Адъютант, исполнив приказание, подходил к князю Андрею. С другой стороны подъехал верхом командир батальона. – Берегись! – послышался испуганный крик солдата, и, как свистящая на быстром полете, приседающая на землю птичка, в двух шагах от князя Андрея, подле лошади батальонного командира, негромко шлепнулась граната. Лошадь первая, не спрашивая того, хорошо или дурно было высказывать страх, фыркнула, взвилась, чуть не сронив майора, и отскакала в сторону. Ужас лошади сообщился людям.

Понравилась статья? Поделить с друзьями:
  • Как составить характеристику на ребенка в суд
  • Как найти моду выборки формула
  • Как найти вес груза по физике
  • Как найти 1 комнатную квартиру без посредников
  • Как найти папку геймдата в сталкере