Как найти мнимую ось гипербола

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

каноническое уравнение

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

каноническое уравнение

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.

Как решаем:

  1. Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

    Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

    решение уравнения рис1

  2. Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    решение уравнения рис2
  3. Выделяем квадраты в знаменателях:
    решение уравнения рис3
  4. Готово. Можно начертить гиперболу.

Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

Как решаем:

решение уравнения 1
решение уравнения 2

и:

  1. Произведем сокращение при помощи трехэтажной дроби:
  2. Воспользуемся каноническим уравнением
    каноническое уравнение

    • Найдем асимптоты гиперболы. Вот так:

      Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
    • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

      Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

      Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    • Найдем дополнительные точки — хватит двух-трех.

      В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

      Способ такой же, как при построении эллипса. Из полученного канонического уравнения

      решение канонического уравнения

      на черновике выражаем:

      решение уравнения 2

      Уравнение распадается на две функции:

      решение уравнения 3

      — определяет верхние дуги гиперболы (то, что ищем);

      решение уравнения 5

      — определяет нижние дуги гиперболы.

      Далее найдем точки с абсциссами x = 3, x = 4:

      решение уравнения 6

  3. Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.

Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

Действительная ось гиперболы — отрезок А1А2.

Расстояние между вершинами — длина |A1A2| = 2a.

Действительная полуось гиперболы — число a = |OA1| = |OA2|.

Мнимая полуось гиперболы — число b.

В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

Мнимая полуось гипербола

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Форма гиперболы

Повторим основные термины и узнаем, какие у гиперболы бывают формы.

Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

полуфокусное расстояние

Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

гипербола продолжается неограниченно

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Фокальное свойство гиперболы

Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a < 2c) следует, что e > 1.

Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

рисунок

Рассмотрим, как это выглядит на прямоугольной системе координат:

  • пусть центр O гиперболы будет началом системы координат;
  • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
  • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

график и формула гиперболы

Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

уравнение

Запишем это уравнение в координатной форме:

уравнение в координатной форму

Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

избавимся от иррациональности

, т.е. выбранная система координат является канонической.

Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

 

Директориальное свойство гиперболы

Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

Директориальное свойство гиперболы звучит так:

Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

каноническая система координат

На самом деле для фокуса F2 и директрисы d2 условие

условие

можно записать в координатной форме так:

координатная форма

Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

избавляемся от иррациональности

Построение гиперболы

Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

график функции

Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

рисуем график

Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

По определению эксцентриситет гиперболы равен эксцентриситет гиперболы

Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

Так как b^2 = c^2 — a^2, то величина b изменится.

  1. Пусть c -> a.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

  2. Пусть c -> ∞.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

Гипербола: определение, свойства, построение

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a), меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы.

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними — фокусным расстоянием, середина O отрезка F_1F_2 — центром гиперболы, число 2a — длиной действительной оси гиперболы (соответственно, a — действительной полуосью гиперболы). Отрезки F_1M и F_2M, соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=frac{c}{a}, где c=sqrt{a^2+b^2}, называется эксцентриситетом гиперболы. Из определения (2a&lt;2c) следует, что e&gt;1.

Геометрическое определение гиперболы, выражающее ее фокальное свойство, эквивалентно ее аналитическому определению — линии, задаваемой каноническим уравнением гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1.

(3.50)

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Гипербола и фокальное свойство гипербол

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0). Для произвольной точки M(x,y), принадлежащей гиперболе, имеем:

left||overrightarrow{F_1M}|-|overrightarrow{F_2M}|right|=2a.

Записывая это уравнение в координатной форме, получаем:

sqrt{(x+c)^2+y^2}-sqrt{(x-c)^2+y^2}=pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1,,

где b=sqrt{c^2-a^2}, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.


Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2!!not{phantom{|}},c от нее (рис.3.41,а). При a=0, когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы). Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

Директрисы гиперболы и директориальное свойство

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие frac{r_2}{rho_2}=e можно записать в координатной форме:

sqrt{(x-c)^2+y^2}=eleft(x-frac{a^2}{c}right)

Избавляясь от иррациональности и заменяя e=frac{c}{a},~c^2-a^2=b^2, приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1:

frac{r_1}{rho_1}=e quad Leftrightarrow quad sqrt{(x+c)^2+y^2}= eleft(x+frac{a^2}{c} right).


Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2rvarphi (рис.3.41,б) имеет вид

r=frac{p}{1-ecdotcosvarphi}, где p=frac{p^2}{a}фокальный параметр гиперболы.

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси — луч с началом в точке F_2, принадлежащий прямой F_1F_2, но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,varphi), принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a. Выражаем расстояние между точками M(r,varphi) и F_1(2c,pi) (см. пункт 2 замечаний 2.8):

F_1M=sqrt{(2c)^2+r^2-2cdot(2c)^2cdot rcdotcos(varphi-pi)}=sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

r^2+4crcdotcosvarphi+4c^2=4a^2+4ar+r^2 quad Leftrightarrow quad aleft(1-frac{c}{a}cosvarphiright)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=frac{c}{a},~b^2=c^2-a^2,~p=frac{b^2}{a}:

r=frac{c^2-a^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{b^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{p}{1-ecosvarphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (e&gt;1 для гиперболы, 0leqslant e&lt;1 для эллипса).


Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0, находим абсциссы точек пересечения: x=pm a. Следовательно, вершины имеют координаты (-a,0),,(a,0). Длина отрезка, соединяющего вершины, равна 2a. Этот отрезок называется действительной осью гиперболы, а число a — действительной полуосью гиперболы. Подставляя x=0, получаем y=pm ib. Длина отрезка оси ординат, соединяющего точки (0,-b),,(0,b), равна 2b. Этот отрезок называется мнимой осью гиперболы, а число b — мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=pm a,~y=pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые y=pmfrac{b}{a},x, содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы, описываемой уравнением frac{x^2}{a^2}-frac{y^2}{a^2}=1 (т.е. при a=b), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox'y' (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y'=frac{a^2}{2x'} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

Асимптоты гиперболы и равносторонняя гипербола

В самом деле, повернем каноническую систему координат на угол varphi=-frac{pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y',\ y&=-frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y'end{aligned}right. quad Leftrightarrow quad left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot(x'+y'),\ y&=frac{sqrt{2}}{2}cdot(y'-x')end{aligned}right.

Подставляя эти выражения в уравнение frac{x^2}{a^2}-frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

frac{frac{1}{2}(x'+y')^2}{a^2}-frac{frac{1}{2}(y'-x')^2}{a^2}=1 quad Leftrightarrow quad 2cdot x'cdot y'=a^2 quad Leftrightarrow quad y'=frac{a^2}{2cdot x'}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр — центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе frac{x^2}{a^2}-frac{y^2}{b^2}=1. то и точки M'(x,y) и M''(-x,y), симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=frac{p}{1-ecosvarphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра — это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси (r=p при varphi=frac{pi}{2}).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e, тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: operatorname{tg}frac{gamma}{2}=frac{b}{2}. Учитывая, что e=frac{c}{a} и c^2=a^2+b^2, получаем

e^2=frac{c^2}{a^2}=frac{a^2+b^2}{a^2}=1+{left(frac{b}{a}right)!}^2=1+operatorname{tg}^2frac{gamma}{2}.

Чем больше e, тем больше угол gamma. Для равносторонней гиперболы (a=b) имеем e=sqrt{2} и gamma=frac{pi}{2}. Для e&gt;sqrt{2} угол gamma тупой, а для 1&lt;e&lt;sqrt{2} угол gamma острый (рис.3.43,а).

Эксцентриситет гиперболы и сопряжённая гипербола

6. Две гиперболы, определяемые в одной и той же системе координат уравнениями frac{x^2}{a^2}-frac{y^2}{b^2}=1 и -frac{x^2}{a^2}+frac{y^2}{b^2}=1 называются сопряженными друг с другом. Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -frac{x^2}{a^2}+frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение frac{(x-x_0)^2}{a^2}-frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O'(x_0,y_0), оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -frac{(x-x_0)^2}{a^2}+frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O'(x_0,y_0).


Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

begin{cases}x=acdotoperatorname{ch}t,\y=bcdotoperatorname{sh}t,end{cases}tinmathbb{R},

где operatorname{ch}t=frac{e^t+e^{-t}}{2} — гиперболический косинус, a operatorname{sh}t=frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству operatorname{ch}^2t-operatorname{sh}^2t=1.


Построение гиперболы в канонической системе координат

Пример 3.21. Изобразить гиперболу frac{x^2}{2^2}-frac{y^2}{3^2}=1 в канонической системе координат Oxy. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 — действительная полуось, b=3 — мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

frac{4^2}{2^2}-frac{y^2}{3^2}=1 quad Leftrightarrow quad y^2=27 quad Leftrightarrow quad y=pm3sqrt{3}.

Следовательно, точки с координатами (4;3sqrt{3}) и (4;-3sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2cdot c=2cdotsqrt{a^2+b^2}=2cdotsqrt{2^2+3^2}=2sqrt{13}

эксцентриситет e=frac{c}{a}=frac{sqrt{13}}{2}; фокальныи параметр p=frac{b^2}{a}=frac{3^2}{2}=4,!5. Составляем уравнения асимптот y=pmfrac{b}{a},x, то есть y=pmfrac{3}{2},x, и уравнения директрис: x=pmfrac{a^2}{c}=frac{4}{sqrt{13}}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.

    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Гипербола — определение и вычисление с примерами решения

    Гипербола:

    Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

    Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

    Рис. 31. Вывод уравнения гиперболы.

    Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

    Следовательно, согласно определению имеем

    Возведем обе части равенства в квадрат, получим

    Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

    Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

    Рис. 32. Асимптоты и параметры гиперболы

    Определение: Найденные точки называются вершинами гиперболы.

    Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

    Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

    В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.

    Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

    Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

    Пример:

    Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

    Решение:

    Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

    Следовательно, каноническое уравнение гиперболы имеет вид

    Пример:

    Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса

    Решение:

    Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

    Рис. 33. Параметры эллипса и гиперболы

    Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

    Гипербола в высшей математике

    Решая его относительно , получим две явные функции

    или одну двузначную функцию

    Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

    При получаем.

    При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

    Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

    Гипербола в силу симметрии имеет вид, указанный на рис. 37.

    Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

    Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

    Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

    Умножим и разделим правую часть на

    Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

    Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

    Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

    Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

    Рекомендую подробно изучить предметы:
    • Геометрия
    • Аналитическая геометрия
    • Начертательная геометрия
    Ещё лекции с примерами решения и объяснением:
    • Парабола
    • Многогранник
    • Решение задач на вычисление площадей
    • Тела вращения: цилиндр, конус, шар
    • Правильные многогранники в геометрии
    • Многогранники
    • Окружность
    • Эллипс

    При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

    Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

    Сайт пишется, поддерживается и управляется коллективом преподавателей

    Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

    Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

    2.4 Гипербола

    Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.

    Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.

    Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).

    По определению гиперболы F2MF1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).

    Исследуем формулу гиперболы.

    1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.

    В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).

    2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

    или X2 = А2, откуда Х = ±А.

    Итак, точки и являются вершинами гиперболы.

    Если же в уравнении (2.7) принять x = 0, получим

    или У2 = –B2,

    Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
    В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.

    Из уравнения (2.7) видно, что , следовательно, |X| ³ A. Кривая имеет форму, изображенную на рисунке 2.5. Она располагается вне прямоугольника со сторонами, равными 2А и 2B, с центром в начале координат, и состоит из двух отдельных ветвей, простирающихся в бесконечность (см. рисунок 2.5). Диагонали этого прямоугольника определяются уравнениями

    (2.8)

    И являются Асимптотами гиперболы.

    Если A = B, гипербола называется равносторонней.

    Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

    (2.9)

    Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).

    Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.

    Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

    (2.10)

    Для любой гиперболы ε > 1, это число определяет форму гиперболы.

    Пример 2.3. Найти координаты фокусов и вершин гиперболы

    Написать уравнение ее асимптот и вычислить эксцентриситет.

    Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

    .

    Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.

    Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.

    Теперь можем написать координаты вершин и фокусов гиперболы:

    Эксцентриситет , а уравнения асимптот имеют вид

    и .

    источники:

    http://www.evkova.org/giperbola

    http://matica.org.ua/metodichki-i-knigi-po-matematike/iunit-1-analiticheskaia-geometriia-na-ploskosti/2-4-giperbola

    Уравнение линии второго порядка:

    LaTeX formula: Ax^2+By^2+Cxy+Dx+Ey+F=0 . (4.15)

    Рассмотрим некоторые виды линий второго порядка.

    1. Окружность – это геометрическое место точек, равноудаленных от данной точки, называемой центром. 

    В случае окружности уравнение 4.15 примет вид: 

    LaTeX formula: Ax^2+By^2+Dx+Ey+F=0 .

    Если центр окружности находится в точке LaTeX formula: O(0;0) , а ее радиус равен LaTeX formula: R (рис. 4.1), то уравнение окружности имеет вид:

    LaTeX formula: x^2+y^2=R^2 . (4.16)

    Если центр окружности находится в точке LaTeX formula: O'(a;b) , а ее радиус равен LaTeX formula: R (рис. 4.2), то уравнение окружности имеет вид:

    LaTeX formula: (x-a)^2+(y-b)^2=R^2 . (4.17)

    Например, запишем уравнение окружности с центром в точке LaTeX formula: O'(-1;6) и радиусом LaTeX formula: R=3 . Согласно формуле 4.17 получим: LaTeX formula: (x+1)^2+(y-6)^2=9 . 

    2. Эллипс – это геометрическое место точек, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная. Расстояние от точки эллипса до фокуса называют фокальным радиусом.

    На рисунке 4.3 изображен эллипс: точка LaTeX formula: O – центр эллипса; точки LaTeX formula: F_1 и LaTeX formula: F_2 – его фокусы; LaTeX formula: MF_1 и LaTeX formula: MF_2 – фокальные радиусы; LaTeX formula: A_1A_2=2a – большая ось эллипса; LaTeX formula: B_1B_2=2b – малая ось эллипса; LaTeX formula: F_1F_2=2c – расстояние между фокусами. 

    Каноническое уравнение эллипса: 

    LaTeX formula: frac{x^2}{a^2}+frac{y^2}{b^2}=1 , (4.18)

    где LaTeX formula: a – большая полуось; LaTeX formula: b – меньшая полуось. 

    Фокусы имеют координаты

    LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , (4.19)

    где 

    LaTeX formula: c=sqrt{a^2-b^2} . (4.19.1) 

    Эксцентриситет эллипса находят по формуле:

    LaTeX formula: varepsilon =frac{c}{a}<1 . (4.20)

    3. Гипербола – это геометрическое место точек, для каждой из которых модуль разностей расстояний до двух данных точек, называемых фокусами, есть величина постоянная.

    На рисунке 4.4 изображена гипербола: точки LaTeX formula: A_1 и LaTeX formula: A_2 – ее вершины; точки LaTeX formula: F_1 и LaTeX formula: F_2 – ее фокусы; LaTeX formula: A_1A_2=2a – действительная ось гиперболы; LaTeX formula: B_1B_2=2b – мнимая ось; LaTeX formula: F_1F_2=2c – расстояние между фокусами; прямые (1) и (2) – асимптоты.

    Каноническое уравнение гиперболы:

    LaTeX formula: frac{x^2}{a^2}-frac{y^2}{b^2}=1 , (4.21)

    где LaTeX formula: a – действительная полуось; LaTeX formula: b – мнимая полуось.

    Фокусы имеют координаты LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , где 

    LaTeX formula: c=sqrt{a^2+b^2} . (4.22)

    Эксцентриситет гиперболы находят по формуле:

    LaTeX formula: varepsilon =frac{c}{a}>1 . (4.23)

    Уравнения асимптот гиперболы:

    LaTeX formula: y=pm frac{bx}{a} . (4.24)

    4. Парабола – это геометрическое место точек, равноудаленных от фокуса и прямой, называемой директрисой.

    Каноническое уравнение параболы: 

    LaTeX formula: y^2=2px . (4.25)

    где ось LaTeX formula: OX – ось симметрии параболы; LaTeX formula: p – расстояние от фокуса до директрисы LaTeX formula: d (рис. 4.5). 

    Фокус имеет координаты:

    LaTeX formula: Fleft ( frac{p}{2};0 right ). (4.25.1)

    Уравнение директрисы параболы имеет вид:

    LaTeX formula: x=-frac{p}{2} . (4.25.2)

    Если осью симметрии параболы является ось LaTeX formula: OY (рис.4.6), то каноническое уравнение параболы имеет вид: 

    LaTeX formula: x^2=2py . (4.26)

    В этом случае фокус имеет координаты:

    LaTeX formula: Fleft ( 0;frac{p}{2} right ) . (4.26.1) 

    Уравнение директрисы LaTeX formula: d параболы имеет вид:

     LaTeX formula: y=-frac{p}{2} . (4.26.2) 

    Пример 1. Найдите большую и меньшую полуоси, фокусы и эксцентриситет эллипса LaTeX formula: frac{x^2}{16}+frac{y^2}{9}=1 .

    Решение. 1. С учетом 4.18, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем большую и меньшую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

    2. По формуле 4.19.1 получим: LaTeX formula: c=sqrt{16-9}=sqrt{7} . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(sqrt{-7};0) и LaTeX formula: F_2(sqrt{7};0) .

    3. По формуле 4.20 найдем эксцентриситет: LaTeX formula: varepsilon =frac{sqrt{7}}{4} .

    Пример 2. Найдите действительную и мнимую полуоси, фокусы, эксцентриситет и асимптоты гиперболы LaTeX formula: frac{x^2}{16}-frac{y^2}{9}=1 . 

    Решение. 1. С учетом 4.21, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем действительную и мнимую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

    2. По формуле 4.22 получим: LaTeX formula: c=sqrt{16+9}=5 . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(-5;0) и LaTeX formula: F_2(5;0) .

    3. По формуле 4.23 найдем эксцентриситет: LaTeX formula: varepsilon =frac{5}{4} .

    4. По формуле 4.24 запишем уравнения асимптот: LaTeX formula: y=pm frac{3}{4}x . 

    Пример 3. Найдите фокус и директрису параболы LaTeX formula: y^2=x .

    Решение. С учетом 4.25, так как LaTeX formula: 2p=1 , то LaTeX formula: p=0,5 .По формуле 4.25.1 запишем фокус: LaTeX formula: F(0,25;0) . По формуле 4.25.2 запишем уравнение директрисы: LaTeX formula: x=-0,25 .

    Пример 4. Найдите фокус и директрису параболы LaTeX formula: x^2=8y . 

    Решение. С учетом 4.26, так как LaTeX formula: 2p=8 , то LaTeX formula: p=4 . По формуле 4.26.1 запишем фокус: LaTeX formula: F(0;2) . По формуле 4.26.1 запишем уравнение директрисы: LaTeX formula: y=-2 . 

    Как найти координаты фокусов гиперболы?

    Для того, чтобы найти фокальные радиусы, найдем фокусы гиперболы: c=√a2+b2⇒c=√16+9=√25=5 Следовательно, фокусы имеют координаты F1(−5,0),F2(5,0). Фокальные радиусы точки, можно найти по формулам r1=|¯F1M| и r2=|¯F2M|.

    Как определить какая гипербола?

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Что такое гипербола и её примеры?

    Гипербола – стилистическая фигура, преувеличение. Она используется не только в художественных текстах, но и в ораторском искусстве, и в разговорной речи. Примером гиперболы могут служить следующие выражения: «я не видел тебя тысячу лет», «ты напугал меня до смерти», «кажется он накупил еды на год вперед».

    Как понять гипербола в литературе?

    Гипербола — это чрезмерное преувеличение каких-либо качественных или количественных свойств предметов, явлений, процессов….

    1. реки крови;
    2. вечно опаздываете;
    3. горы трупов;
    4. сто лет не виделись;
    5. напугать до смерти;
    6. сто раз говорила;
    7. миллион извинений;
    8. море поспевшей пшеницы;

    Как начертить гиперболу по уравнению?

    Как построить гиперболу?

    1. Прежде всего, находим асимптоты. …
    2. Теперь находим две вершины гиперболы, которые расположены на оси абсцисс в точках . …
    3. Ищем дополнительные точки. …
    4. Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях.

    Как узнать что это парабола?

    Пара́бола (греч. παραβολή — приближение) — геометрическое место точек на плоскости, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы). Наряду с эллипсом и гиперболой, парабола является коническим сечением.

    Как построить гиперболу по формуле?

    Как построить гиперболу?

    1. Сначала находим асимптоты. …
    2. Теперь находим две вершины гиперболы, которые расположены на оси абсцисс в точках . …
    3. Ищем дополнительные точки. …
    4. Изобразим асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях.

    Как выглядит формула гиперболы?

    Гипербола — это плоская кривая, которая имеет уравнение x²/a² — y²/b²=1. Это каноническое уравнение гиперболы, в нем координатные оси совпадают с осями гиперболы. Она имеет два фокуса. Это такие точки, модуль разности расстояний от которых до любой P(x,y) есть постоянная величина.

    Как найти точки гиперболы?

    Как построить гиперболу?

    1. Прежде всего, находим асимптоты. …
    2. Теперь находим две вершины гиперболы, которые расположены на оси абсцисс в точках . …
    3. Ищем дополнительные точки. …
    4. Изобразим на чертеже асимптоты , вершины , дополнительные и симметричные им точки в других координатных четвертях.

    Что такое гипербола 5 класс?

    Гипербола – это преувеличение, сознательно примененное писателем или поэтом. Этот художественный прием помогает выразить мысль автора более образно. Например, гипербола Маяковского “В сто сорок солнц закат пылал” позволяет представить красоту и величие солнечного заката.

    Что такое мифа гиперболы?

    Гипе́рбола (из древнегреческого: «переход; чрезмерность, избыток; преувеличение») — стилистическая фигура явного и намеренного преувеличения, с целью усиления выразительности и подчёркивания сказанной мысли.

    Какая функция является гиперболой?

    Функция y = k x имеет название — обратная пропорциональность, где число k является коэффициентом обратной пропорциональности. Графиком этой функции является гипербола.

    Как построить параболу по уравнению?

    Алгоритм построения параболы Уравнение квадратичной функции имеет вид y = ax2 + bx + c. Уравнение квадратичной функции имеет вид y = a * (x — x₀)2 + y₀…Как строим:

    1. построить y = x2,
    2. умножить ординаты всех точек графика на 2,
    3. сдвинуть его вдоль оси ОХ на 1 единицу вправо,
    4. сдвинуть его вдоль оси OY на 4 единицы вверх.

    3 авг. 2020 г.

    Как определить параболу по формуле?

    Напомним графиком квадратичной функции является парабола y=ax2+bx+c , где a≠0. Осью симметрии параболы является линия, которая проходит через центр и через вершину параболы, таким образом, разделив график на две равные части.

    Как найти а в параболе?

    Нахождение коэффициента a :

    1. По графику параболы определяем координаты вершины (m;n).
    2. По графику параболы определяем координаты любой точки А (х1;у1).
    3. Подставляем эти значения в формулу квадратичной функции, заданной в другом виде: у=a(х-m)2 +n.
    4. Решая полученное уравнение, находим а.

    21 февр. 2022 г.

    Как найти точки параболы?

    Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c.

    Как найти каноническое уравнение эллипса?

    Эллипс — это замкнутая плоская кривая, которая имеет уравнение x²/a²+y²/b²=1. Это каноническое уравнение эллипса, в нем координатные оси совпадают с осями эллипса.

    Понравилась статья? Поделить с друзьями:
  • Как найти прямую проходящую через b вектора
  • Как найти правильную пропорцию
  • Как найти настройки исключений
  • Окато что это такое как найти
  • Как найти на компьютере папку ярлык