Содержание:
Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.
История многочелена:
Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена
Многочлены от одной переменной и действия над ними
Определение многочленов от одной переменной и их тождественное равенство
Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной
По определению одночлена числа и буквы (в нашем случае одна буква — ) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида , где — некоторое число. Поэтому одночлен от одной переменной — это выражение вида где — некоторое число, — целое неотрицательное число. Если то показатель степени переменной называется степенью одночлена. Например, — одночлен шестой степени, — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку ).
По определению многочлен от одной переменной — это сумма одночленов от одной переменной . Поэтому
многочленом от одной переменной : называется выражение вида
(1)
где коэффициенты — некоторые числа.
Если , то этот многочлен называют многочленом степени от переменной . При этом член называют старшим членом многочлена , число — коэффициентом при старшем члене, а член — свободным членом. Например, — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.
Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена записывают так:
где — некоторые числа.
Теорема 1. Одночлены где и где , тождественно равны тогда и только тогда, когда и Одночлен тождественно равен нулю тогда и только тогда, когда
Поскольку равенство одночленов
(2)
выполняется при всех значениях (по условию эти одночлены тождественно равны), то, подставляя в это равенство , получаем, что Сокращая обе части равенства (2) на (где по условию), получаем При из этого равенства имеем: Поскольку 2 то равенство возможно только тогда, когда Таким образом, из тождественного равенства получаем, что и Если известно, что для всех то при получаем Поэтому одночлен тождественно равен нулю при (тогда ).
Далее любой одночлен вида будем заменять на 0.
Теорема 2. Если многочлен тождественно равен нулю (то есть принимает нулевые значения при всех значениях ), то все его коэффициенты равны нулю.
Значком обозначено тождественное равенство многочленов.
Для доказательства используем метод математической индукции. Пусть
При имеем поэтому То есть в этом случае утверждение теоремы выполняется.
Предположим, что при это утверждение также выполняется: если многочлен то
Докажем, что данное утверждение выполняется и при Пусть (3)
Поскольку равенство (3) выполняется при всех значениях , то, подставляя в это равенство получаем, что Тогда равенство (3) обращается в следующее равенство: Вынесем в левой части этого равенства за скобки и получим
(4)
Равенство (4) должно выполняться при всех значениях . Для того чтобы оно выполнялось при должно выполняться тождество
В левой части этого тождества стоит многочлен со степенями переменной от до Тогда по предположению индукции все его коэффициенты равны нулю: Но мы также доказали, что поэтому наше утверждение выполняется и при Таким образом, утверждение теоремы справедливо для любого целого неотрицательного то есть для всех многочленов.
Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают или просто (поскольку ).
Теорема 3. Если два многочлена и тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).
Пусть многочлен , а многочлен Рассмотрим многочлен Поскольку многочлены и по условию тождественно равны, то многочлен тождественно равен 0. Таким образом, все его коэффициенты равны нулю.
Но Тогда Отсюда Как видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, больше ), то коэффициенты разности будут равны нулю. Поэтому начиная с (-го номера все коэффициенты также будут равны нулю. То есть действительно многочлены и
имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.
Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.
Пример:
Докажите, что выражение
является полным квадратом.
Решение:
► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Получаем тождество:
(5)
Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:
Из первого равенства получаем или
При из второго равенства имеем а из третьего — Как видим, при этих значениях и последние два равенства также выполняются. Следовательно, тождество (5) выполняется при (аналогично можно также получить ). Таким образом,
Действия над многочленами. Деление многочлена на многочлен с остатком
Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.
Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.
При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.
Например, Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число делится на целое число если существует такое целое число что
Определение: Многочлен делится на многочлен (где — не нулевой многочлен), если существует такой многочлен что
Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что
многочлен делится на многочлен (где — не нулевой многочлен) с остатком, если существует такая пара многочленов и что причем степень остатка меньше степени делителя (в этом случае многочлен называют неполным частным.)
Например, поскольку то при делении многочлена на многочлен получаем неполное частное : и остаток 2.
Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.
Пример №1
Разделим многочлен на многочлен
Решение:
Докажем, что полученный результат действительно является результатом деления на с остатком.
Если обозначить результат выполнения первого шага алгоритма через второго шага — через третьего — через то операцию деления, выполненную выше, можно записать в виде системы равенств:
(1)
(2)
(3)
Сложим почленно равенства (1), (2), (3) и получим
(4)
Учитывая, что степень многочлена меньше степени делителя обозначим (остаток), а (неполное частное). Тогда из равенства (4) имеем: то есть
а это и означает, что мы разделили на с остатком.
Очевидно, что приведенное обоснование можно провести для любой пары многочленов и в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого и делителя (где — не нулевой многочлен) найти неполное частное и остаток
Отметим, что в случае, когда степень делимого меньше степени делителя , считают, что неполное частное а остаток
Теорема Безу. Корни многочлена. Формулы Виета
Рассмотрим деление многочлена на двучлен Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен на двучлен , то получим
Это равенство выполняется тождественно, то есть при любом значении При имеем Полученный результат называют теоремой Безу.
Теорема 1 (теорема Безу). Остаток от деления многочлена на двучлен равен (то есть значению многочлена при ).
Пример №2
Докажите, что делится на без остатка.
Решение:
► Подставив в вместо значение 1, получаем: . Таким образом, остаток от деления на равен 0, то есть делится на без остатка. <]
Определение: Число называют корнем многочлена если
Если многочлен делится на то — корень этого многочлена.
Безу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.
Действительно, если делится на то и поэтому Таким образом, — корень многочлена
Справедливо и обратное утверждение. Оно является следствием теоремы Безу.
Теорема 2. Если число является корнем многочлена то этот многочлен делится на двучлен без остатка.
По теореме Безу остаток от деления на равен Но по условию — корень таким образом,
Обобщением теоремы 2 является следующее утверждение.
Теорема 3. Если многочлен имеет попарно разные корни то он делится без остатка на произведение
Для доказательства используем метод математической индукции.
При утверждение доказано в теореме 2.
Допустим, что утверждение справедливо при То есть если попарно разные корни многочлена то он делится на произведение Тогда
(1)
Докажем, что утверждение теоремы справедливо и при Пусть — попарно разные корни многочлена Поскольку — корень то . Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:
По условию все корни разные, поэтому ни одно из чисел не равно нулю. Тогда Таким образом, — корень многочлена Тогда по теореме 2 многочлен делится на то есть и из равенства (1) имеем
Это означает, что делится на произведение
то есть теорема доказана и при
Таким образом, теорема справедлива для любого натурального
Следствие. Многочлен степени имеет не больше разных корней.
Допустим, что многочлен степени имеет разных корней: Тогда делится на произведение многочлен степени но это невозможно. Поэтому многочлен степени не может иметь больше чем корней.
Пусть теперь многочлен степени имеет разных корней Тогда этот многочлен делится без остатка на произведение Это произведение является многочленом той же
степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,
(2)
Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что то есть
(3)
Сравнивая коэффициенты при одинаковых степенях в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:
(4)
Например, при имеем:
а при
(5)
Выполнение таких равенств является необходимым и достаточным
условием того, чтобы числа были корнями многочлена
Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена разные. Введем понятие кратного корня многочлена.
Если многочлен делится без остатка на но не делится без остатка на то говорят, что число является корнем кратности многочлена
Например, если произведение записать в виде многочлена, то для этого многочлена число является корнем кратности 3, число 1 — корнем кратности 2, а число — корнем кратности 1.
При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.
Пример №3
Проверьте справедливость формул Виета для многочлена
Решение:
►
Поэтому имеет корни: (поскольку — корень кратности 2).
Проверим справедливость формулы (5). В нашем случае: Тогда
Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.
Пример №4
Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения
Решение:
► Обозначим корни уравнения через и Тогда корнями искомого уравнения должны быть числа и Поэтому искомое уравнение имеет вид где
По формулам Виета имеем Отсюда находим, что а Таким образом, искомое уравнение имеет вид
Схема Горнера
Делить многочлен на двучлен иногда удобно с помощью
специальной схемы, которую называют схемой Горнера.
Пусть многочлен необходимо разделить на двучлен В результате деления многочлена степени на многочлен первой степени получим некоторый многочлен степени (то есть , где ) и остаток Тогда то есть
Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях
Найдем из этих равенств коэффициенты и остаток
Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент неполного частного, достаточно предыдущий найденный коэффициент умножить на и добавить коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.
Пример №5
Разделите по схеме Горнера многочлен на двучлен
Решение:
► Запишем сначала все коэффициенты многочлена (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:
Таким образом,
Пример №6
Проверьте, является ли корнем многочлена
Решение:
► По теореме Безу остаток от деления многочлена на равен поэтому найдем с помощью схемы Горнера остаток от деления на
Поскольку то — корень многочлена
Нахождение рациональных корней многочлена с целыми коэффициентами
Теорема 4. Если многочлен с целыми коэффициентами имеет рациональный корень , то является делителем свободного члена a — делителем коэффициента при старшем члене
Если является корнем многочлена то Подставляем
вместо в и из последнего равенства имеем
(1)
Умножим обе части равенства (1) на Получаем
(2)
В равенстве (2) все слагаемые, кроме последнего, делятся на Поэтому делится на
Но когда мы записываем рациональное число в виде то эта дробь считается несократимой, то есть и не имеют общих делителей. Произведение может делиться на (если и — взаимно простые числа) только тогда, когда делится на Таким образом, — делитель свободного члена
Аналогично все слагаемые равенства (2), кроме первого, делятся на Тогда делится на Поскольку и взаимно простые числа, то делится на , следовательно, — делитель коэффициента при старшем члене.
Отметим два следствия из этой теоремы. Если взять то корнем многочлена будет целое число — делитель Таким образом, имеет место:
Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
Если в заданном многочлене коэффициент то делителями могут быть только числа то есть и имеет место:
Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.
Пример №7
Найдите рациональные корни многочлена
Решение:
► Пусть несократимая дробь является корнем многочлена. Тогда необходимо искать среди делителей свободного члена, то есть среди чисел a — среди делителей старшего коэффициента:
Таким образом, рациональные корни многочлена необходимо искать среди чисел Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.
При имеем следующую таблицу.
Кроме того, по схеме Горнера можно записать, что
Многочлен не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень
Пример №8
Разложите многочлен на множители.
Решение:
► Ищем целые корни многочлена среди делителей свободного члена:
Подходит 1. Делим на с помощью схемы Горнера.
Тогда
Ищем целые корни кубического многочлена среди делителей его свободного члена: Подходит Делим на
Имеем
Квадратный трехчлен не имеет действительных корней и на линейные множители не раскладывается.
Ответ:
Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен не имеет действительных корней). Таким образом, многочлен степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.
Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.
Пример №9
Разложите на множители многочлен
Решение:
► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.
Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:
(3)
где и — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:
Получаем систему
(4)
Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что и могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.
Коэффициенты и в равенстве (3) равноправны, поэтому мы не рассматриваем случаи и или и и т. д.
Для каждой пары значений и из третьего равенства системы (4) найдем а из второго равенства имеем Зная и по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения подставим в четвертое равенство системы (4) чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:
Как видим, системе (4) удовлетворяет набор целых чисел Тогда равенство (3) имеет вид
(5)
Поскольку квадратные трехчлены и не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.
Деление многочлена на многочлен
Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции , то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.
Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.
a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.
b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?
c) Как вы убедились,что каждое из двух делений выполнено правильно?
Выражение вида называется многочленом степени от одной переменной. Здесь — переменная, — определенные числа и — старший член, — коэффициент при старшем члене, -свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.
Деление целого числа па целое число можно проверить равенством
Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен -делимое, — делитель, — неполное частное, — остаток, то справедливо равенство
или .
Здесь, степень многочлена ниже степени многочлена Если делителем является двучлен , то остатком может являться определенное число
В этом случае:
Пример №10
а) Разделите многочлен на двучлен .
Ответ запишите в виде
b) Определите множество допустимых значений переменной.
c) Выполните проверку.
Решение:
b) При этом или , иначе возникает деление на нуль.
c) Должно выполняться тождество
Пример №11
Разделите на многочлен .
Решение:
запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0.
Пример №12
1) Исследуйте деление столбиком многочлена на двучлен .
2) На каждом шаге деления делимое делится на старший член делителя, на и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.
Правило синтетического деления многочлена на двучлен (схема Горнера)
При делении многочлена на двучлен вида можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.
Пример №13
Разделите многочлен на двучлен методом синтетического деления.
Решение:
коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид , то его записывают в виде .
Запишем двучлен в виде .
Таким образом, для делимого и делителя частным будет , а остатком .
Деление можно записать в виде: В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.
Теорема об остатке
Теорема об остатке (Теорема Безу)
Остаток от деления многочлена на двучлен равен значению многочлена в точке
Доказательство: В равенстве запишем . , тогда .
Пример №14
Найдите остаток от деления многочлена на двучлен , применив теорему об остатке.
Решение: запишем делитель в виде , тогда . По теореме об остатке получим, что остаток равен
.
Проверим решение.
Теорема о разложении многочлена на множители
Значения переменной , которые обращают многочлен в нуль (т.е. корни уравнения ), называются корнями (или нулями) многочлена.
Теорема. Если число является корнем многочлена , то двучлен является множителем многочлена .
Действительно, если , то из равенства имеем . Верно и обратное утверждение, т.е. если двучлен является множителем многочлена .
Пример №15
При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены множителями многочлена .
Решение: вычислим значение многочлена при .
Значит, не является множителем, а является одним из множителей данного многочлена.
Пример №16
Зная, что , разложите многочлен на множители.
Решение: так как , то двучлен один из множителей многочлена . Другой множитель найдем, используя метод синтетического деления.
Учитывая, что получим: .
Отсюда получаем, что являются нулями многочлена.
Примечание: Если многочлен задан в виде (здесь ), то число является кратным корнем многочлена (повторяется раз). Например, если разложение многочлена на множители имеет вид , то число является корнем кратности 3.
Нахождение рациональных корней
Теорема о рациональных корнях
Если для многочлена с целыми коэффициентами существует рациональный корень, то этот корень имеет вид
Доказательство. Пусть несократимая дробь является корнем многочлена с целыми коэффициентами:
Умножим обе части равенства на
Так как в последнем равенстве каждый член, кроме члена , содержит множитель и каждый член, кроме члена , содержит множитель .то коэффициент должен делится на , а коэффициент должен делится на .
Пример №17
Найдите рациональные корни многочлена .
Решение: свободный член 6, старший коэффициент 2.
Для , запишем все возможные числа вида
, т.е. одним из множителей является двучлен . Другие множители найдем, используя синтетическое деление:
Так как, , получим, что являются корнями многочлена.
Следствие 1. Если старший коэффициент и многочлен имеет рациональный корень, то он является целым числом.
Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.
Пример №18
Найдите корни многочлена
Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.
Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.
Так как то, решив квадратное уравнение получим другие корни: Значит данный многочлен третьей степени имеет три корня:
Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена
надо умножить все члены уравнения на 12, а затем решить полученное
уравнение
Для нахождения рациональных корней выполните следующие действия.
1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.
2. Из этих чисел выбирается число (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен на который многочлен делится без остатка.
3. Для данного многочлена при помощи синтетического деления на двучлен определяется другой множитель.
4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.
5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена могут являться числа ±1.
Проверим: Значит, многочлен не имеет рациональных корней.
Основная теорема алгебры
Покажем на примере, что многочлен ой степени имеет корней.
Пример №19
Найдите все корни многочлена
Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:
Значит, является корнем данного многочлена Другие корни найдем синтетическим делением.
В выражении для множителя вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Решим уравнение
( корень кратности 2);
Корни:
Во всех рассмотренных нами примерах уравнение ой степени всегда имеет корней, включая кратные корни (действительных или комплексных).
Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.
Если является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень По теореме о разложении многочлена на множители получим При этом многочлен имеет степень Если то если то согласно той же теореме, многочлен имеет хотя бы один корень. Обозначим его через тогда справедливо разложение где — многочлен степени Значит, можно записать Аналогично, если то при на основании той же теоремы, многочлен имеет хотя бы один корень. Обозначим его через получим т. е. можно записать
Продолжая процесс раз, получаем Тогда для многочлена можно записать следующее разложение:
здесь числа являются нулями многочлена Эти нули могут и не быть различными.
Следствие. Многочлен ой степени на множестве комплексных чисел имеет ровно корней, включая кратные корни.
Отметим, что если комплексное число является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число гак же является корнем данного многочлена.
Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида соответствующих действительным корням, и трехчленов вида соответствующих сопряженным комплексным корням.
Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.
Пример №20
Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и
Решение: так как число является корнем многочлена, то сопряженное комплексное число также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде
- Заказать решение задач по высшей математике
Пример №21
При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?
Решение: во всех случаях, кроме значений равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.
1. Проверим, является ли число корнем.
2. Число является корнем, значит одним из множителей данного многочлена является Другие корни найдем при помощи синтетического деления.
Учитывая, что запишем многочлен в виде т. е. являются корнями уравнения. Значения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.
Функция-многочлен
График функции-многочлен
В стандартном виде функция — многочлен записывается как В частном случае, при получаем линейную функцию (график — прямая линия), при получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.
При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Ниже показаны примеры графиков функции — многочлен и их свойства.
Пример №22
Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.
a) б)
Решение: а) степень многочлена нечетная (равна 3). Коэффициент старшего члена равен По таблице видно, что в данном случае при а при
b) степень многочлена четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при при
Пример №23
По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.
Решение:
при
при
Многочлен нечетной степени
Решение:
при
при
Многочлен четной степени
Отметим, что если нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если четно, то их вообще может и не быть.
Алгоритм построения эскиза графика функции — многочлен.
1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.
2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.
3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.
4. На основе полученных данных строят схематически график.
Пример №24
Постройте график функции
Решение:
1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.
По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа
Проверим
Значит, двучлен является одним из множителей. Остальные множители найдем синтетическим делением.
Зная, что запишем все линейные множители многочлена:
Отсюда находим нули Т. е. график пересекает ось абсцисс в точках и Так как то точка является точкой пересечения с осью Отметим эти точки на координатной плоскости.
2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках и
Отметим точки
3. Определим, как меняется график при уменьшении или увеличении значений Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при при
4. Соединим отмеченные точки и получим схематический график функции
Рациональная функция
Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:
Самым простым примером рациональной функции является функция
График функции называется гиперболой.
При стремлении значений к нулю точки гиперболы стремятся к оси ординат, т е. к прямой при неограниченном увеличении но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Прямая называется вертикальной асимптотой, а прямая называется горизонтальной асимптотой гиперболы При параллельном переносе гиперболы на вектор получается график функции . В этом случае начало координат преобразуется в точку и вертикальной асимптотой становится прямая а горизонтальной- прямая
Пример №25
Постройте график функции
Решение: точки пересечения с осью найдем из уравнения
При получим и график пересекает ось в точке Разделим почленно числитель функции на знаменатель и запишем ее в виде Прямая является вертикальной асимптотой, а прямая — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты
Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках и
В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции определяются в соответствии со степенью и данных многочленов и
Для т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид и является линейной функцией. При возрастании по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая является наклонной асимптотой.
Пример №26
Найдите асимптоты и схематично изобразите график функции
Решение: Точки пересечения с осью найдем из уравнения При получим и график пересекает ось в точке При знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Разделив числитель на знаменатель, запишем функцию в виде:
Для больших, но модулю, значений дробь по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой т. е. прямая является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.
Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.
Многочлены в линейной алгебре
Многочленом от переменной х степени n называется выражение вида:
, где — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.
Если коэффициент примногочлена отличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, — старшим коэффициентом, а — старшим членом многочлена. Коэффициент называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.
Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.
Суммой многочленов и называется многочлен
Произведением многочленов и называется многочлен:
Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.
Многочлен называется делителем многочлена , если существует многочлен такой, что
Теорема о делении с остатком
Для любых многочленов существуют многочлены такие, что причем степень меньше степени g(x) или. Многочлены g(x) и r(x) определены однозначно.
Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит , то остаток .
Число с называется корнем многочлена , если .
Теорема Безу
Число с является корнем многочлена тогда и только тогда, когда делится на x — с.
Пусть с — корень многочлена , т.е.. Разделим на
где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, . Так как , то из последнего равенства следует, что r=0, т.е.
Обратно, пусть (х-с) делит , т.е. . Тогда
Следствие. Остаток от деления многочлена на (x-с) равен .
Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена равносильно разысканию его линейных делителей со старшим коэффициентом 1.
Многочлен можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.
Пусть и пусть где Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:
Число с-называется корнем кратности к многочлена , если делит , но уже не делит .
Чтобы поверить, будет ли число с корнем многочлена и какой кратности, можно воспользоваться схемой Горнера. Сначала делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.
Число различных корней многочлена не превосходит его степени.
Большое значение имеет следующая основная теорема.
Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).
Следствие. Всякий многочлен степени имеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.
где — корни , т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: где уже различные корни , — кратность корня
Если многочлен , с действительными коэффициентами имеет корень с, то число с также корень
Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.
Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.
Пусть корни Тогда делится на х-с и , но так как у и х-с, нет общих делителей, то делится на произведение
Утверждение 2. Многочлен с действительными коэффициентами степени всегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.
При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.
Рациональной дробью называется дробь где многочлены с действительными коэффициентами, причем многочлен Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде некоторые многочлены, а правильная рациональная дробь.
Лемма 1, Если правильная рациональная дробь, а число является вещественным корнем кратности многочлена , т.е., то существует вещественное число A и многочлен с вещественными коэффициентами, такие, что где дробь является правильной.
При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.
Лемма 2. Если правильная рациональная дробь, а числоявляется корнем кратности многочлена g(x), т.е. и если , то существуют вещественные числа M и N многочлен с вещественными коэффициентами, такие, где дробь , также является правильной.
Рациональные дроби вида — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.
Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.
При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.
Он состоит в следующем:
При этом если степень многочлена равна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен коэффициентами.
Число неизвестных ‘ также равняется n:
Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.
- Квадратичные формы — определение и понятие
- Системы линейных уравнений с примерами
- Линейное программирование
- Дифференциальное исчисление функций одной переменной
- Кривые второго порядка
- Евклидово пространство
- Матрица — виды, операции и действия с примерами
- Линейный оператор — свойства и определение
Часто путают понятия одночлена и многочлена.
Давайте разберемся, что называют одночленом, а что многочленом.
Прежде всего, вспомним, что называли одночленом в уроке «Одночлены».
Обратите внимание, что «внутри» одночлена (между буквами и числовым коэффициентом) есть только знак умножения.
Например, в одночлене:
3ab = 3 · a · b
Запомните!
Многочленом называется алгебраическая сумма нескольких одночленов.
Одночлены, из которых составлен многочлен, называют членами многочлена.
Примеры многочленов:
a + 2b2 − c;
3t5 − 4b;
4 − 6xy
Несложно заметить, что любой многочлен состоит из нескольких одночленов.
Рассмотрим многочлен подробнее.
Возникает вопрос, почему многочленом называют алгебраическую сумму
одночленов, если в многочлене присутствует
знак минуса.
Это объясняется тем, что на самом деле знак «−» относится к числовому коэффициенту одночлена,
который стоит справа от знака.
Любой многочлен можно записать
по правилу знаков
как сумму одночленов.
В многочлене знак, который стоит слева от одночлена относится к числовому коэффициенту самого одночлена.
Как найти степень многочлена
Запомните!
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
То есть, чтобы найти степень многочлена, нужно сначала найти
степень каждого одночлена, который входит в
состав многочлена.
Степени многочленов
Многочлен |
Степень многочлена |
||||
---|---|---|---|---|---|
a2 − 3a2b + x = a2(степень одночлена 2) |
3 | ||||
x2y2
x2y2(степень одночлена 4) |
4 | ||||
8x2 8x2(степень одночлена 2) |
2 |
Любой одночлен является многочленом.
В самом деле, любой одночлен, по сути, является многочленом, который состоит всего из одного одночлена.
Примеры таких многочленов: 2a2b;
−3d3; a.
Число «0» называют нулевым многочленом.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
Содержание
Полином одной переменной
§
Полиномы нескольких переменных рассматриваются
☞
ЗДЕСЬ.
Будем обозначать через $ mathbb A_{} $ какое-либо из множеств $ mathbb Z,mathbb Q, mathbb R_{} $ или
$ mathbb C_{} $.
Общая информация
Функция вида
$$
f(x)=a_0x^n+a_1x^{n-1}+dots+a_n = sum_{j=0}^n a_jx^{n-j}
$$
при $ n_{} in {0,1,dots } $ и $ {a_{0},dots,a_n}subset mathbb A $ относительно переменной $ x_{} $ называется
полиномом1)
или многочленом от указанной переменной над множеством $ mathbb A_{} $. Число $ a_{j} $
называется коэффициентом2) полинома (при $ (n-j)_{} $-й степени переменной),
выражение $ a_{j}x^{n-j} $ — членом (одночленом) полинома,
$ a_{n} $ — свободным членом, $ x_{}^{n-j} $ — мономом.
П
Пример. Выражения
$$ x^{2}+2,x-679, x^{2}+sqrt{2}x-pi , {mathbf i} , x^{3}- 2,x +sqrt{3} $$
являются полиномами; а
$$ x^{-2}+3, x +x^{2} , x^{x}, sum_{j=0}^{infty} x^{j}/j_{} $$
полиномами не являются.
Если $ a_{0}ne 0 $, то член $ a_0x^{n} $ называется ведущим членом, а
$ a_{0} $ — старшим коэффициентом полинома. При этом
число $ n_{} $ называется степенью полинома и обозначается3) $ deg f_{}(x) $.
Полином первой степени называется линейным полиномом.
Полином, все коэффициенты которого, кроме, возможно, $ a_{n} $, равны нулю,
называется константой4); будем обозначать его const.
Очевидно, что степень константы равна нулю; исключительным для этого
утверждения является случай когда константа является нулем.
Если все коэффициенты полинома равны нулю,
то такой полином называется (тождественно) нулевым. В этом
случае его степень не определяется.
На переменную $ x_{} $ мы пока не накладываем ни какого ограничения: она может
принимать значения из любого указанного выше множества — не обязательно
из того, которому принадлежат коэффициенты полинома. Обозначим область
определения полинома через $ mathbb B_{} $.
Значением полинома при (или в точке) $ cin mathbb B_{} $ называется число
$$
f(c) = a_0c^n+a_1c^{n-1}+dots+a_n .
$$
Два полинома
$$ f(x)=a_0x^n+dots+a_n u g(x)=b_0x^m+dots+b_m $$
с коэффициентами из $ mathbb A $ называются (тождественно) равными:
$$ f(x)equiv g(x) $$
если совпадают множества их членов; или, что то же, равны их степени
и равны коэффициенты при одинаковых степенях переменной.
Это определение отличается от привычного определения равенства двух функций:
две функции $ F_{}(x) $ и $ G(x)_{} $ называются равными на множестве $ mathbb B_{} $ если
совпадают их значения при любом $ x in mathbb B_{} $.
На самом деле, для случая полиномов эти два определения — алгебраическое и функциональное — эквивалентны.
Т
Теорема. $ f_{}(x)equiv g(x) $ тогда и только тогда, когда
$ f(c)=g(c)_{} $ для $ forall cin mathbb B_{} $.
Одним из следствий теоремы является тот факт, что для полинома совершенно
не важен порядок следования его членов; в частности, наряду с записью
полинома по убывающим степеням переменной, мы имеем право
записывать его и по возрастающим: $ f_{}(x)= sum_{j=0}^n a_{n-j}x^{j} $.
Форма полинома, в которой его разложение записывается
по убывающим степеням переменной, называется его канонической формой.
Кроме того, теорема дает нам право на операцию, называемую
приведением подобных членов:
$$ ax^{j}+bx^j equiv (a+b)x^j, quad ax^jcdot bx^k=ab x^{j+k} .$$
Имея в виду этот факт, определим теперь две основные операции для полиномов:
сложение и умножение.
Суммой двух полиномов $ f_{}(x) $ и $ g_{}(x) $ называется полином, составленный как сумма всех одночленов, входящих в состав
$ f_{}(x) $ и $ g_{}(x) $:
$$ f(x) + g(x) = (a_n+b_m) + (a_{n-1}+b_{m-1})x+dots +
left{begin{array}{ll}
(a_0+b_0)x^n & npu m=n, \
a_0x^n & npu m<n, \
b_0x^m & npu m>n.
end{array} right.
$$
Т
Теорема. $ deg (f+g_{})le max (deg f, deg g) $.
Произведением двух полиномов $ f_{}(x) $ и $ g_{}(x) $ называется полином, составленный как сумма всевозможных попарных произведений членов первого полинома на члены второго:
$$
begin{matrix}
f(x)g(x) &=& a_0b_0x^{n+m}+(a_1b_0+a_0b_1)x^{n+m-1}
+(a_2b_0+a_1b_1+a_0b_2)x^{n+m-2}+ \
& &+dots + (a_0b_k+a_1b_{k-1}+dots+a_kb_0)x^{n+m-k}+ dots + a_nb_m .
end{matrix}
$$
(В записи коэффициента при $ x^{n+m-k} $ мы полагаем $ a_{j}= 0 $ при $ j>n_{} $ и
$ b_{ell} = 0 $ при $ ell>m_{} $).
Т
Теорема. Если $ f_{}(x) notequiv 0 $ и $ g_{}(x) notequiv 0 $,
то $ deg (fcdot g_{})= deg f + deg g_{} $.
Фактическое выполнение операции перемножения полиномов возможно по схеме,
напоминающей алгоритм умножения целых чисел «столбиком»: это позволяет
сэкономить время на выписывание степеней переменной.
П
Пример. Перемножить полиномы
$$ x^{5}+x^3-2,x^2+3 quad mbox{ и } quad 2, x^{4}-3,x^3 +4,x^2-1 , . $$
Решение. Представим полиномы наборами их коэффициентов, расположив
один из них горизонтально, а второй — вертикально. Умножение полинома
$ f_{}(x) $ на $ b_{j}x^{n-j} $ сводится к умножению набора $ (a_{0},dots,a_n) $
на $ b_{j} $; результат следующего умножения — на $ b_{j+1}x^{n-j-1} $ —
получается аналогичным образом, но записывается со сдвигом на одну позицию
вправо. Получившиеся ряды суммируются по столбцам.
$$
begin{array}{r|rrrrrrrrrr}
&1 & 0 & 1 & -2& 0 & 3 \
hline
2 & 2 & 0 & 2 & -4 & 0 & 6 \
-3& & -3 & 0 & -3 & 6 & 0 & -9 \
4 & & & 4 & 0 & 4 & -8 & 0 & 12 \
0 & & & \
-1 &&&&& -1 & 0 & -1 & 2 & 0 & -3 \
hline& 2 & -3 & 6 & -7 & 9 & -2 & -10 & 14 & 0 & -3
end{array}
$$
(В отличие от перемножения чисел здесь результаты сложения в столбиках не
переносятся в следующий разряд.)
Ответ. $ 2,x^{9}-3,x^8+6,x^7-7,x^6+9,x^5-2,x^4-10,x^3+14,x^2 — 3 $.
Множество всех полиномов от переменной $ x_{} $ с коэффициентами из $ mathbb A_{} $
будем обозначать $ mathbb A_{} [x] $.
§
Способы более эффективного умножения полиномов излагаются
☞
ЗДЕСЬ
Схема Хорнера
Задача. Вычислить значение полинома в точке $ c $.
Схема вычисления, заложенная в самом определении, «стóит» $ 3n_{}-1 $ операции:
$$ begin{array}{rrrrr}
& &c^2=ctimes c, & dots, & c^n=c^{n-1}times c , \
&a_{n-1} times c, & a_{n-2} times c^2, & dots, & a_0 times c^n ,\
a_n & +a_{n-1} times c & + a_{n-2} times c^2 & + dots & + a_0 times c^n,
end{array}
$$
т.е. $ 2n_{}-1 $ операции умножения и $ n_{} $ операций сложения. Организуем теперь
вычисления по-другому:
$$
begin{matrix}
f(c)&=&a_n+a_{n-1}c+a_{n-2}c^2+dots +a_1c^{n-1}+a_0c^n = \
&=&a_n+cleft(a_{n-1}+a_{n-2}c+ dots + a_0c^{n-1} right) = \
&= &a_n+cleft(a_{n-1}+cleft(a_{n-2}+dots + a_0c^{n-2} right) right) = \
&=& dots = \
&=&a_n+cleft(a_{n-1}+cleft(a_{n-2}+dots + c(a_1+ a_0c)dots right) right) .
end{matrix}
$$
Начинаем вычислять с самой внутренней скобки:
$${mathfrak b}_1= a_1+ a_0c, {mathfrak b}_2= a_2+ {mathfrak b}_1 c,dots,
{mathfrak b}_{n-1} = a_{n-1} +{mathfrak b}_{n-2}c,, {mathfrak b}_{n} = a_{n} +{mathfrak b}_{n-1}c=f(c)
$$
Вычисление каждой величины $ {mathfrak b}_{k} $ «стоит» $ 2_{} $ операции — одного
сложения и одного умножения (при условии, что предварительно вычислено $ {mathfrak b}_{k-1}^{} $).
Приведем компактную запись алгоритма:
$$
{mathfrak b}_k = a_k + {mathfrak b}_{k-1}c quad npu quad {mathfrak b}_0 = a_0 quad u quad
kin {1,dots,n }
.
$$
«Стоимость» вычисления значения $ f_{}(c) $ по этой схеме Хорнера составляет
$ 2n_{} $ операций. Налицо экономия по сравнению с прямым способом вычисления $ f_{}(c) $.
Вычисления удобно производить с помощью таблицы, стартовое состояние которой следующее:
$$
begin{array}{c|ccccccc}
& a_0 & a_1 & a_2 & dots & a_{n-2} & a_{n-1} & a_n \
hline
c & a_0
end{array}
$$
Будем отсчитывать строки сверху вниз, начиная от горизонтальной черты, т.е.
нулевой строкой будем считать строку из коэффициентов полинома.
Вычисление значения $ {mathfrak b}_{1} $ в первой строке производится по схеме: предыдущее число умножается на $ c_{} $ и складывается с верхним, т.е.
$$
begin{array}{c|ccccccc}
& a_0 & a_1 & a_2 & dots & a_{n-2} & a_{n-1} & a_n \
hline
c & a_0 & underbrace{a_1+ca_0}_{{mathfrak b}_1}
end{array}
$$
Далее вычисления идут по тому же правилу:
$$
begin{array}{c|ccccccc}
& a_0 & a_1 & a_2 & dots & a_{n-2} & a_{n-1} & a_n \
hline
c & a_0 &{mathfrak b}_1&underbrace{a_2+c{mathfrak b}_1}_{{mathfrak b}_2}
end{array}
$$
и т.д. Величина, получившаяся в последнем столбце, и будет искомым значением $ f_{}(c) $:
$$
begin{array}{c|ccccccc}
& a_0 & a_1 & a_2 & dots & a_{n-2} & a_{n-1} & a_n \
hline
c & a_0 &{mathfrak b}_1&{mathfrak b}_2&dots &{mathfrak b}_{n-2} & {mathfrak b}_{n-1}&
underbrace{a_n+c{mathfrak b}_{n-1}}_{{mathfrak b}_n=f(c)}
end{array}
$$
П
Пример. Вычислить значение полинома $ x^{5}-3, x +1 $ в точке $ 2+ mathbf i_{} $.
Решение.
$$
begin{array}{c|cccccc}
& 1 & 0 & 0 & 0 & -3 & 1 \
hline
2+ mathbf i & 1& 2+mathbf i &3+4 mathbf i &2+11 mathbf i & -10+24mathbf i& -43+38mathbf i
end{array}
$$
Ответ. $ -43+38mathbf i_{} $.
Выясним теперь смысл коэффициентов $ {mathfrak b}_{1},dots, {mathfrak b}_{n-1} $
первой строки схемы Хорнера.
Т
Теорема. Пусть $ cin mathbb B_{} $ и $ mathbb Bsubset mathbb A_{} $. Полином
$ f_{}(x)in mathbb A[x] $ допускает единственное представление в виде:
$$
f(x)equiv (x-c)q(x)+r npu r=constin mathbb A, q(x)in mathbb A[x],
deg q = deg f — 1 .
$$
Доказательство. Будем искать константу $ r_{} $ и полином $ q_{}(x) $ методом неопределенных
коэффициентов:
$ q(x)= q_{0}x^{n-1}+q_1x^{n-2}+ dots + q_{n-1} $. Подставим его в правую часть доказываемого
тождества, приведем подобные и приравняем коэффициенты
полученного полинома коэффициентам полинома $ f_{}(x) $. Получим линейные уравнения,
из которых последовательно определяем $ q_{0},q_1, dots, q_{n-1} $ :
$$
begin{array}{l|lll}
x^n& a_0&=q_0, & \
x^{n-1}& a_1&=q_1-q_0c &Rightarrow q_1=a_1+q_0c, \
x^{n-2}& a_2&=q_2-q_1c &Rightarrow q_2=a_2+q_1c, \
vdots & & dots & \
x & a_{n-1}&=q_{n-1}-q_{n-2}c &Rightarrow q_{n-1}=a_{n-1}+q_{n-2}c,\
1 & a_n&=qquad -q_{n-1}c+r & Rightarrow r=a_n+q_{n-1}c.
end{array}
$$
Видим, что формулы, определяющие коэффициенты $ q_{k} $, полностью совпадают
с формулами, определяющими элементы первой строки
схемы Хорнера, т.е. $ q_0={mathfrak b}_{0},dots,q_{n-1}={mathfrak b}_{n-1} $.
Но тогда $ r=a_n+q_{n-1}c=a_{n}+{mathfrak b}_{n-1}c={mathfrak b}_{n}=f(c) $.
♦
Итак, имеем:
$$q(x)={mathfrak b}_0x^{n-1}+dots+{mathfrak b}_{n-1}, r={mathfrak b}_{n} , $$
при этом все коэффициенты вычисляются по схеме Хорнера, а старший коэффициент
полинома $ q_{}(x) $ совпадает со старшим коэффициентом $ f_{}(x) $. Так, для полинома приведенного выше примера имеет место тождество:
$$x^5-3, x +1 equiv
$$
$$
equiv (x-2-mathbf i)left(x^4+ (2+mathbf i)x^3+(3+4,mathbf i)x^2+ (2+11,mathbf i)x
-10+24,mathbf i right) -43+38 mathbf i .
$$
Фактически результат предыдущей теоремы говорит о возможности деления полинома $ f_{}(x) $ на линейный полином $ (x-c)_{} $ с остатком. Строгое определение операции деления полиномов дается
☟
НИЖЕ.
Алгоритм схемы Хорнера можно развить и до вычисления значений производных от полинома $ f(x_{}) $ в точке $ c_{} $. См.
☞
ЗДЕСЬ.
Корни
Если значение полинома $ f_{}(x) $ при $ x=cin mathbb B_{} $ равно нулю, то число $ c_{} $ называется корнем полинома $ f_{}(x) $.
Иными словами, корень полинома $ f_{}(x) $ — это решение уравнения $ f_{}(x)=0 $, принадлежащее множеству
$ mathbb B_{} $.
«Корень»
как название неизвестной величины, которую требуется определить («извлечь») из уравнения,
является переводом арабского слова
ریشه
«джизр, джазир» — буквально означающего
«корень растения». В свою очередь, арабский вариант, по-видимому, является переводом санскритского слова «мула», применявшегося индийскими
учеными для обозначения квадратного корня.
Уравнение $ f_{}=0 $, в левой части которого стоит полином одной или
нескольких переменных, называется алгебраическим.
Задача. Выяснить количество корней полинома $ f_{}(x)in mathbb A[x] $,
принадлежащих множеству $ mathbb B_{} $, и вычислить их.
Решить алгебраическое уравнение $ f_{}(x)=0 $ над множеством
$ mathbb B $ означает найти все корни $ f_{}(x) $, принадлежащие $ mathbb B_{} $.
На основании теоремы из предыдущего пункта имеет место следующая
Т
Теорема [Безу]. Пусть $ mathbb B subset mathbb A_{} $ и $ cin mathbb B_{} $ — корень полинома $ f_{}(x), deg fge 1 $. Тогда полином $ f_{}(x)in mathbb A [x] $ допускает представление в виде произведения:
$$
f(x)equiv (x-c)f_1(x) ,
$$
где полином $ f_{1}(x)in mathbb A [x], deg f_1 = deg f — 1 $ определяется единственным образом.
Итак, теорема Безу утверждает, что в случае существования корня полинома,
возможно разложение этого полинома в произведение двух полиномов — одного
первой степени и одного полинома степени, на единицу меньшей исходного.
Тем самым, задача о нахождении корней полинома $ f_{}(x) $ сведется к аналогичной
задаче для полинома $ f_{1}(x) $; вторая задача может оказаться более простой
за счет понижения степени.
Фактическое нахождение полинома $ f_{1}(x) $ возможно произвести с помощью схемы Хорнера.
П
Пример. Решить уравнение
$$ x^{3}+3 mathbf i, x^2-3(1+2 mathbf i)x+10-5 mathbf i =0 $$
над множеством $ mathbb C_{} $, если известно, что число $ (-1-2 mathbf i)_{} $ — одно из его решений.
Решение. Строим схему Хорнера:
$$
begin{array}{c|cccc}
& 1& 3mathbf i & -3(1+2 mathbf i) & 10-5 mathbf i \
hline
-1-2 mathbf i & 1& -1+ mathbf i & -5 mathbf i & 0
end{array}
$$
Видим, что число $ (-1-2 mathbf i)_{} $ действительно является корнем полинома, и, следовательно, последний раскладывается в произведение двух полиномов: линейного и квадратичного. Коэффициенты квадратичного полинома выбираются из той же схемы:
$$ (x+1+2 mathbf i )(x^2 + (-1+ mathbf i )x- 5 mathbf i) . $$
Квадратное уравнение над $ mathbb C_{} $ можно решить (см.
☞
ЗДЕСЬ ), его корни:
$ (-1-2 mathbf i)_{} $ и $ 2+mathbf i_{} $.
Ответ. $ (-1-2 mathbf i), 2+ mathbf i_{} $.
Если полином $ f_{}(x) $ раскладывается в произведение $ f_{}(x)equiv (x-c)f_1(x) $, то полином $ (x-c) $ называется линейным множителем для $ f_{}(x) $ над множеством $ mathbb B_{} $.
=>
Для того, чтобы $ (x-c)_{} $ был линейным множителем для $ f_{}(x) $ необходимо и достаточно чтобы число $ c_{} $ было корнем $ f_{}(x) $.
Начиная с этого места, корни полинома будем обозначать греческими буквами: $ lambda, mu_{} $ и т.д.
Примеры показывают, что не для всякого полинома и множества $ mathbb B_{} $
корни существуют. Очевидно не имеет корней полином нулевой степени
(константа, отличная от нуля); любой полином первой степени над $ mathbb A_{} $
имеет единственный корень, принадлежащий $ mathbb A_{} $.
Квадратный полином $ x^{2}+1 $ не имеет вещественных корней,
но имеет мнимые.
Основная теорема высшей алгебры
Т
Теорема. Любой полином с комплексными коэффициентами, степень которого больше нуля, имеет хотя бы один корень, в общем случае, комплексный.
Эта теорема гарантирует существование корня $ lambda_{1}in mathbb C $.
На основании теоремы Безу, можно утверждать, что $ f_{}(x) $ допускает представление
$$ f(x)equiv (x-lambda_1)f_1(x) quad npu quad f_1(x)in mathbb C [x], deg f_1(x)=deg f(x) -1 .$$
Если $ deg f_{1}(x) ge 1 $, то, по той же теореме, полином $ f_{1}(x) $
также должен обладать корнем, который мы обозначим5) $ lambda_{2} $; теорема Безу гарантирует тогда представление
$$
f(x)equiv (x-lambda_1)(x-lambda_2)f_2(x) quad npu quad f_2(x)in mathbb C [x], deg f_2(x)=deg f(x) -2
.$$
Продолжая процесс далее, мы за $ n_{} $ шагов придем к представлению
$$
f(x)equiv (x-lambda_1)(x-lambda_2)times dots times (x-lambda_n)f_n(x) quad npu quad f_n(x)in mathbb C[x], deg f_n(x)=0
,$$
т.е. полином $ f_{n}(x)^{} $ представляет собой константу. На основании условия
тождественного равенства полиномов утверждаем, что $ f_{n}(x) equiv a_0 $.
Таким образом приходим к следующей альтернативной версии основной теоремы высшей алгебры.
Т
Теорема. Для произвольного полинома $ f_{}(x) $ степени $ n_{}ge 1 $
существует его представление в виде произведения линейных множителей
$$
f(x)equiv a_0(x-lambda_1)(x-lambda_2)times dots times (x-lambda_n) ;
$$
это представление единственно с точностью до перестановки сомножителей.
Как уже отмечалось в доказательстве теоремы, в этом представлении
могут встречаться одинаковые линейные сомножители. Собрав их вместе, получим
иной вид этого представления
$$
f(x)equiv a_0(x-lambda_1)^{{mathfrak m}_{1}}times
dots times
(x-lambda_{mathfrak r})^{{mathfrak m}_{{mathfrak r}}} , npu
{mathfrak m}_{1}+{mathfrak m}_{2}+dots+{mathfrak m}_{mathfrak r}=n
$$
и все числа $ lambda_{1},dots,lambda_{mathfrak r} $ теперь различны. Эта
формула называется формулой разложения полинома $ f_{}(x) $ на линейные сомножители или линейным представлением полинома $ f_{}(x) $; при этом число
$ {mathfrak m}_{j}^{}in mathbb N $ называется кратностью линейного сомножителя
$ x-lambda_{j} $ или кратностью корня $ lambda_{j} $ в полиноме $ f_{}(x) $.
Корень $ lambda_{j} $ называется простым, если $ {mathfrak m}_{j}=1_{} $ и
кратным кратности $ {mathfrak m}_{j}^{} $ если $ {mathfrak m}_{j}>1_{} $ (двойным или двукратным, если $ {mathfrak m}_{j}=2_{} $, тройным или трехкратным если $ {mathfrak m}_{j}=3_{} $ и т.д.)
Здесь имеет место неоднозначность математической терминологии:
простой корень — не обязательно простое число!
П
Пример. Найти линейное представление полинома
$$ f(x)=x^{6}-2, x^3+1 , .$$
Решение. Линейное представление легко получить если сначала заметить, что $ f(x)equiv (x^3-1)^{2} $, а затем использовать
выражения для корней кубических из единицы:
$$f(x)equiv (x-1)^2 left(x- frac{-1+ mathbf i sqrt{3}}{2} right)^2
left(x- frac{-1 — mathbf i sqrt{3}}{2} right)^2
.
$$
Все корни полинома имеют вторую кратность.
♦
§
Выведение условия наличия кратного корня (в терминах коэффициентов полинома)
☞
ЗДЕСЬ. При известном корне, нахождение его кратности
☞
ЗДЕСЬ.
Т
Теорема. Два полинома, степени которых
не превосходят $ n_{} $, равны тождественно если они имеют равные значения более
чем при $ n_{} $ различных значениях переменной.
Доказательство необходимости очевидно. Если полиномы $ f_{}(x) $ и $ g_{}(x) $ удовлетворяют условию теоремы, то полином $ f(x)-g_{}(x) $ должен иметь более,
чем $ n_{} $ корней, что, ввиду основной теоремы высшей алгебры, возможно лишь если он тождественно
нулевой.
♦
Теорема утверждает, что полином $ f_{}(x) $ степени,
$ le n_{} $, однозначно определяется своими значениями при более чем $ n_{} $
различных значениях переменной. Можно ли эти значения задавать произвольно?
Оказывается задание $ (n+1)_{} $-й пары $ (x_{1},y_1),dots,(x_{n+1},y_{n+1}) $
при всех различных $ x_{1},dots,x_{n+1} $ позволяет однозначно определить
полином $ f_{}(x) $ такой, что $ f(x_{1})=y_1,dots,f(x_{n+1})=y_{n+1} $ и
$ deg f_{} le n $. Практические способы решения этой задачи обсуждаются в разделе
☟
Интерполяция
Раздел находится
☞
ЗДЕСЬ.
Корни и коэффициенты полинома
Симметрические функции корней
Разложение полинома $ f_{}(x) $ на линейные множители дает интересные
соотношения между корнями полинома и его коэффициентами. Сначала выведем их
для малых степеней. Для $ n_{}=2 $:
$$a_0x^2+a_1x+a_2equiv a_0(x-lambda_1)(x-lambda_2)equiv
a_0x^2-a_0(lambda_1+lambda_2)x+a_0lambda_1lambda_2
Rightarrow
$$
$$
Rightarrow
left{ begin{array}{ccr}
lambda_1+lambda_2&=&-a_1/a_0, \
lambda_1lambda_2&=&a_2/a_0,
end{array}
right.
$$
т.е. получили формулы известные из школьного курса алгебры. Далее, для $ n_{}=3 $:
$$a_0x^3+a_1x^2+a_2x+a_3equiv a_0(x-lambda_1)(x-lambda_2)(x-lambda_3)equiv $$
$$equiv
a_0x^3-a_0(lambda_1+lambda_2+lambda_3)x^2+a_0(lambda_1lambda_2
+ lambda_1lambda_3+lambda_2lambda_3)x-a_0lambda_1lambda_2lambda_3
Rightarrow
$$
$$
Rightarrow
left{ begin{array}{ccr}
lambda_1+lambda_2+lambda_3&=&-a_1/a_0, \
lambda_1lambda_2+lambda_1lambda_3+lambda_2lambda_3&=&a_2/a_0,\
lambda_1lambda_2lambda_3&=&-a_3/a_0.
end{array}
right.
$$
Т
Теорема. Для корней $ lambda_{1},dots,lambda_n $ полинома
$$ f(x)=a_{0}x^n+a_1x^{n-1}+dots+a_n,, a_0ne 0 $$
справедливы формулы Виета
$$
sum_{1 le jle n} lambda_j = lambda_1+ dots+ lambda_n= -frac{a_1}{a_0},
$$
$$
sum_{1le j_1<j_2le n} lambda_{j_1} lambda_{j_2}= lambda_1 lambda_2 +
lambda_1 lambda_3 +dots + lambda_2 lambda_3
+ dots+ lambda_{n-1}lambda_n= frac{a_2}{a_0},
$$
$$
sum_{1le j_1<j_2<j_3le n} lambda_{j_1} lambda_{j_2} lambda_{j_3}=
lambda_1 lambda_2 lambda_3+ lambda_1 lambda_2 lambda_4 + dots+
lambda_{n-2} lambda_{n-1} lambda_n = -frac{a_3}{a_0},
$$
$$
dots
$$
$$
lambda_{1} lambda_{2}times dots timeslambda_{n-1}
+ lambda_{1} lambda_{2} times dots times lambda_{n-2} lambda_n
+ dots + lambda_{2} lambda_{3}times dots times lambda_n
= (-1)^{n-1} frac{a_{n-1}}{a_0},
$$
$$ lambda_{1} lambda_{2}times dots times lambda_{n}= (-1)^{n} frac{a_{n}}{a_0} .$$
Здесь в левой части $ k_{} $-й формулы стоит сумма всевозможных
произведений из $ k_{} $ чисел, выбранных из $ lambda_{1},dots,lambda_n $ (корни учитываются в
соответствии с их кратностями); в правой части формулы стоит $ (-1)^ka_{k}/a_0 $.
Доказательство
☞
ЗДЕСЬ.
И
Биографические заметки о Виете
☞
ЗДЕСЬ
П
Пример. Найти все корни полинома $ 3,x^3-16,x^2+23,x-6 $,
если известно, что произведение двух из них равно $ 1_{} $.
Решение. Имеем:
$$
left{ begin{array}{ccl}
lambda_1+lambda_2+lambda_3&=&16/3, \
lambda_1lambda_2+lambda_1lambda_3+lambda_2lambda_3
&=&23/3,\
lambda_1lambda_2lambda_3&=&6/3=2.
end{array}
right.
$$
Вдобавок к этим уравнениям, мы должны записать дополнительное условие:
$$lambda_1 lambda_2=1 .$$
Из третьего уравнения системы получаем тогда $ lambda_3=2 $. Подставив его
в два оставшихся, придем к двум идентичным:
$$lambda_1 + lambda_2=10/3 .$$
Теперь для нахождения неизвестных $ lambda_{1} $ и $ lambda_{2} $ можем воспользоваться
формулами Виета «в обратном порядке», составив квадратный полином,
имеющий их корнями:
$$t^2-10/3,t+1 .$$
Ответ. $ 2,,3,, 1/3 $.
?
Можно ли использовать формулы Виета для решения уравнения ?
Ответ
☞
ЗДЕСЬ.
Обдумаем еще раз результаты основной теоремы высшей алгебры и формул Виета. С одной
стороны, задав коэффициенты $ a_{0},a_1,dots,a_n $ мы однозначно определяем
набор из $ n_{} $ комплексных чисел $ lambda_{1},dots,lambda_n $ — корней этого
полинома. С другой стороны, задав произвольным образом набор корней
$ lambda_{1},dots,lambda_n $, по формулам Виета однозначно определим
величины $ a_1/a_0,dots,a_n/a_0 $. Для простоты, рассмотрим подмножество
полиномов степени $ n_{} $, имеющих старший коэффициент равным $ 1_{} $. Получаем
тогда взаимно-однозначное соответствие:
$$ (a_1,dots,a_n) leftrightarrow (lambda_1,dots,lambda_n) . $$
Итак, каждый корень $ lambda_{j} $ полинома является какой-то функцией его
коэффициентов $ a_1,dots,a_{n} $, т.е. формально говоря, функцией от многих
переменных. Относительно этой функции мы пока ничего сказать не можем; более того, как мы узнаем НИЖЕ, для степеней полинома бóльших $ 4_{} $ не существует
«хороших» общих формул, выражающих корни полинома через его
коэффициенты. Несмотря на это, формулы Виета подтверждают, что
некоторые комбинации этих неизвестных нам функций оказываются равными
коэффициентам полинома. Какова основная отличительная особенность этих
комбинаций?
Функция $ Phi(x_1,dots,x_n) $ называется симметрической функцией своих переменных, если ее значение не меняется ни при какой перестановке этих переменных:
$$Phi(x_1,dots,x_n) equiv Phi(x_{j_1},dots,x_{j_n}) $$
при всех различных $ j_1,dots, j_n in {1,dots,n} $.
П
Пример. Функции
$$ sqrt{1+x_1x_2x_3} , frac{x_1x_2}{x_3}+frac{x_1x_3}{x_2}+frac{x_2x_3}{x_1} $$
являются симметрическими функциями переменных $ x_1,x_2,x_3 $, а функция
$$ x_1^2x_2x_3+x_1x_2^2x_3 $$
симметрической функцией не является, поскольку ее значения меняются при перестанове $ (x_1,x_2,x_3) leftrightarrow (x_3,x_2,x_1) $.
В левых частях формул Виета как раз и стоят симметрические полиномы
относительно $ lambda_{1},dots,lambda_n $. Оказывается результат теоремы
допускает следующее обобщение.
Т
Теорема [Гаусс]. Значение любого симметрического полинома
$ Phi(x_1,dots,x_n) $ на корнях $ lambda_1,dots,lambda_n $ полинома
$ x^n+a_1x^{n-1}+ dots+a_n $ является полиномиальной функцией от $ a_{1},dots,a_n $:
$$
Phi(lambda_1,dots,lambda_n) equiv {mathfrak F}(a_1,dots,a_n) .
$$
П
Пример. Пусть $ lambda_{1} $ и $ lambda_{2} $
означают корни полинома $ x^2+a_1x+a_2 $.
Выразить
$$lambda_1^2+lambda_2^2-3,lambda_1^2lambda_2-3,lambda_1lambda_2^2$$
через коэффициенты полинома.
Решение. Поскольку выражения для корней квадратного уравнения нам известны:
$$
lambda_1= frac{-a_1+sqrt{a_1^2-4,a_2}}{2} quad u quad
lambda_2= frac{-a_1-sqrt{a_1^2-4,a_2}}{2} ,
$$
то непосредственной подстановкой их в заданный полином, получаем
$$ a_1^2-2,a_2+3,a_1a_2 . $$
♦
П
Пример. Пусть $ lambda_1,, lambda_2,, lambda_3 $
означают корни полинома $ x^3+a_1x^2+a_2x+a_3 $.
Выразить
$$lambda_1^2lambda_2+lambda_1^2lambda_3+lambda_1lambda_2^2+
lambda_1lambda_3^2+lambda_2^2lambda_3+lambda_2lambda_3^2
-lambda_1^2-lambda_2^2-lambda_3^2
$$
через коэффициенты полинома.
Решение. Выделим в требуемом выражении комбинации
корней, стоящие в левых частях формул Виета.
Первые $ 6_{} $ слагаемых можно представить в виде
$$(lambda_1lambda_2+lambda_1lambda_3+lambda_2lambda_3)
(lambda_1+lambda_2+lambda_3)-3lambda_1lambda_2lambda_3 , $$
а
$$lambda_1^2+lambda_2^2+lambda_3^2=
left(lambda_1+lambda_2+lambda_3 right)^2-2, (lambda_1lambda_2+
lambda_1lambda_3+lambda_2lambda_3) .$$
Далее применяем формулы Виета.
Ответ. $ 3,a_3-a_1a_2-a_1^2+2, a_2 $.
Существуют общие алгоритмы нахождения полинома $ {mathfrak F} $ по заданному полиному $ Phi $: см.
[3], [4]. Однако в своей практике я встречал необходимость в подобном представлении лишь для некоторых классов полиномов $ Phi_{} $; сейчас их и рассмотрим.
Суммы Ньютона
Для полинома $ f(x)=a_{0}x^n+a_1x^{n-1}+dots+a_n, (a_0ne 0) $ его $ k_{} $-й суммой Ньютона называется сумма $ k_{} $-х степеней его корней:
$$
s_k=lambda_1^k + dots + lambda_n^k .
$$
При этом обычно считают $ k_{} in {mathbb N} $ (хотя формально можно определить суммы Ньютона и для отрицательных индексов $ k_{} $ при условии $ a_{n} ne 0 $). Для однообразия полагают также $ s_{0}=n $.
T
Теорема. Суммы Ньютона выражаются рационально через коэффициенты полинома $ f_{}(x) $ посредством следующих рекуррентных формул Ньютона:
$$s_0=n, s_1=-a_1/a_0, $$
$$
s_k=left{begin{array}{lr}
-(a_1s_{k-1}+a_2s_{k-2}+dots+a_{k-1}s_1+a_kk)/a_0,
&npu kle n ;\
-(a_1s_{k-1}+a_2s_{k-2}+dots+a_ns_{k-n})/a_0
& npu k > n.
end{array}
right.
$$
П
Пример.
$$
s_2=(a_1^2-2, a_0a_2) big/ a_0^2 ,
$$
$$
s_3=-(a_1s_2+a_2s_1+3,a_3)big/ a_0=
$$
$$
=-left(a_1 (a_1^2-2, a_0a_2) big/ a_0^2 +a_2 (-a_1 big/ a_0)+3,a_3 right)
big/ a_0=
$$
$$
=left(-a_1^3+3,a_0a_1a_2-3,a_0^2a_3 right) big/ a_0^3 .
$$
♦
§
Подробнее о суммах Ньютона
☞
ЗДЕСЬ.
Результант и дискриминант
Пусть $ g(x)=b_0x^m+dots + b_{m} $ — произвольный полином из $ mathbb A_{} [x] $. Тогда выражение
$$ g(lambda_1) times dots times g(lambda_n) $$
является симметрическим полиномом от корней $ lambda_{1},dots,lambda_n $ полинома $ f_{}(x) $.
По теореме Гаусса, оно должно рационально выражаться через коэффициенты $ a_{0},dots,a_n $. С другой стороны, очевидно, это выражение обращается в нуль тогда и только тогда, когда хотя бы один сомножитель обратится в нуль, т.е. будет существовать общий корень полиномов $ f_{}(x) $ и $ g_{}(x) $. Выражение
$$ a_0^m prod_{j=1}^n g(lambda_j) $$
называется результантом полиномов $ f_{}(x) $ и $ g_{}(x) $.
§
Способы вычисления результанта, его свойства и применения
☞
ЗДЕСЬ.
В частном случае, когда $ g_{}(x) $ совпадает с производной полинома $ f_{}(x) $ результант переходит в дискриминант — выражение отличающееся от
$$ a_0^{n-1} prod_{j=1}^n f^{prime}(lambda_j) $$
только сомножителем $ (-1)^{n(n-1)/2}/a_0 $ и
обращающееся в нуль тогда и только тогда, когда $ f^{prime}(x) $ имеет общий корень с $ f_{}(x) $.
Как мы увидим НИЖЕ, последнее условие оказывается необходимым и достаточным наличия у полинома $ f_{}(x) $ кратного корня.
П
Пример. Для $ f(x)=a_{0}x^2+a_1x+a_2 $ указанное произведение оказывается равным
$$ (2a_0lambda_1 +a_1)(2a_0lambda_2 +a_1)=(4a_0^2lambda_1 lambda_2+2a_0a_1(lambda_1 +lambda_2)+a_1^2)=
$$
$$
=left(4a_0^2 frac{a_2}{a_0}-2a_0a_1frac{a_1}{a_0}+a_1^2right)=4a_0a_2-a_1^2,
$$
т.е. привычному «школьному» понятию.
§
Способы вычисления дискриминанта, его свойства и применения
☞
ЗДЕСЬ.
Преобразования корней
Если $ lambda_{1},dots,lambda_n $ — корни полинома $ f(x)=a_0x^n+a_1x^{n-1}+dots+a_{n} $, то
1.
корнями полинома
$$ f(-x)=(-1)^nleft(a_0x^n-a_1x^{n-1}+dots+(-1)^na_nright) = $$
$$ =(-1)^n sum_{j=0}^n (-1)^ja_jx^{n-j} $$
являются $ -lambda_1, dots, -lambda_n $;
2.
корнями полинома
$$f(x- {color{Red} alpha })=a_0(x-{color{Red} alpha } )^n+a_1(x-{color{Red} alpha })^{n-1}+dots+a_n=
$$
$$
= sum_{j=0}^n a_j(x-{color{Red} alpha })^{n-j}
$$
являются $ {color{Red} alpha }+lambda_1, dots, {color{Red} alpha }+lambda_n $;
3.
при дополнительном условии, что $ a_{n} ne 0 $, корнями полинома
$$f^{ast}(x)= x^nfleft(1/x right) equiv a_0+a_1x+dots+a_nx^n =
$$
$$
=sum_{j=0}^n a_jx^{j}
$$
являются $ 1/{lambda_1}, dots, 1/{lambda_n} $.
Преобразования
1-3
часто используются как при выводе теоретических результатов так и в практике вычислений.
Поясним идею этих применений. Корни исходного и корни преобразованного полинома остаются неизвестными. Допустим, мы получили какой-то результат, касающийся оценки положительных корней полинома $ f_{}(x) in mathbb R[x] $, и хотим распространить эту оценку и на отрицательные корни (см., к примеру,
☟
НИЖЕ ). Производится замена переменной $ x rightarrow — x $, которая меняет знаки всех корней: отрицательные становятся положительными, и к новому полиному применяется полученный результат. В приложениях возникают и более сложные преобразования корней: когда, к примеру, все их надо «загнать» в ограниченную область комплексной плоскости — скажем, в круг $ |x|le 1 $ (см.
☟
НИЖЕ ).
П
Пример. Построить полином $ F_{}(x) $, корни которого равны квадратам корней полинома $ f_{}(x) $.
Решение. Составим выражение
$$
f(sqrt{x})f(-sqrt{x}) .
$$
С одной стороны, используя линейное представление полинома $ f_{}(x) $ получим
$$
f(sqrt{x})f(-sqrt{x})=(-1)^n a_0^2(x-lambda_1^2)times dots times (x-lambda_n^2) ,
$$
т.е. полином с требуемыми корнями. С другой стороны, мы можем найти выражения для коэффициентов этого полинома:
$$
begin{matrix}
f(sqrt{x})&equiv & a_n+a_{n-1} sqrt{x} +a_{n-2} x + a_{n-3} x sqrt{x}+dots equiv \
& equiv & (a_n+a_{n-2} x +a_{n-4} x^2 +dots ) + sqrt{x} (a_{n-1}+ a_{n-3} x + a_{n-5} x^2+ dots ) ;\
f(-sqrt{x})&equiv & (a_n+a_{n-2} x +a_{n-4} x^2 +dots ) — sqrt{x} (a_{n-1}+ a_{n-3} x + a_{n-5} x^2+ dots ) .
end{matrix}
$$
В результате, искомый полином представляется в виде
$$
F(x)=(a_n+a_{n-2} x +a_{n-4} x^2 +dots )^2-x(a_{n-1}+ a_{n-3} x + a_{n-5} x^2+ dots )^2 .
$$
Это преобразование иногда называется квадрированием корней полинома $ f_{}(x) $; оно применяется в методе Греффе-Лобачевского вычисления корней полинома.
♦
Общий метод построения полинома $ F_{}(x) $ , корни которого связаны с корнями $ f_{}(x) $ соотношением вида $ Lambda_j = g(lambda_j) $ при $ g_{}(x) $ — произвольном полиноме
☞
ЗДЕСЬ.
Непрерывность корней
Т
Теорема [5]. Корни полинома
$$ f(x)=x^n+a_1x^{n-1}+dots+a_n in mathbb C[x],quad nge 1 $$
являются непрерывными функциями его коэффициентов. Строго говоря,
если $ lambda_1,dots,lambda_{n} $ — корни этого полинома,
а $ {tilde lambda_1},dots,{tilde lambda_n} $ — корни полинома
$${tilde f}(x)=x^n+{tilde a}_1x^{n-1}+dots+{tilde a}_n in mathbb C[x]
,
$$
то эти корни можно перенумеровать таким образом, чтобы
$$ |lambda_j-{tilde lambda}_j| < 2n varepsilon quad npu quad jin{1,dots,n} . $$
Здесь
$$varepsilon= sqrt[n]{sum_{k=1}^n|a_k-{tilde a}_k| gamma^{n-k} } quad
npu quad gamma = max_{jin {1,dots,n}}
left( sqrt[j]{|a_j|} ,
sqrt[j]{|{tilde a}_j|} right) . $$
П
Пример. Для полинома
$$ f(x)=192,x^5+[(259-173{mathbf i}){color{Red} alpha }+211-413{mathbf i}]x^4 +
$$
$$
+[(80-320{mathbf i}){color{Red} alpha }-304-704{mathbf i}]x^3
+384{mathbf i},x^2-192-192,{mathbf i}
$$
исследовать динамику корней при изменении значений параметра $ {color{Red} alpha }_{} $ от $ -2_{} $ до $ 3_{} $.
Решение. На рисунке
показаны следы, «заметаемые» корнями на комплексной плоскости. Направления движений указаны стрелками.
Сначала посмотрим на начало процесса. При $ {color{Red} alpha }=-2 $ полином имеет следующие
корни:
$$ lambda_1approx-1.0726-0.5122 {mathbf i}, lambda_{2}approx -0.7337+0.1972{mathbf i},
lambda_{3}approx 0.3557+0.9054 {mathbf i},
$$
$$
lambda_4 approx 0.5028-0.3812 {mathbf i}, lambda_5 approx 2.5467+0.1398 {mathbf i} .
$$
Эти стартовые точки отмечены отрезками
|
|
|
|
|
. При увеличении значений $ {color{Red} alpha }_{} $ от $ -2 $ до $ -1_{} $ происходит «дрейф» корней — плавный, но разный по скорости. К примеру, синий и фиолетовый корни меняются очень медленно, а вот зеленый и малиновый быстро сближаются пока не столкнутся при значении $ {color{Red} alpha }=-1 $:
$$ lambda_1approx -1.5096-0.4133 {mathbf i}, lambda_2 approx -0.6768+0.1479 {mathbf i},
lambda_3 approx 0.4364-0.4845 {mathbf i}, lambda_4 = 1+ {mathbf i},
$$
$$
lambda_5 =1+ {mathbf i} .
$$
Что происходит при дальнейшем увеличении $ {color{Red} alpha }_{} $? Число корней должно остаться инвариантным — по основной теореме высшей алгебры оно продолжает совпадать со степенью полинома, т.е. корни не
аннигилируют. Поэтому столкнувшиеся корни порождают два новых — голубой и коричневый — которые начинают расходиться. При $ {color{Red} alpha }=1 $ ситуация следующая:
$$
lambda_1 approx -2.3350+0.4836 {mathbf i}, lambda_2 approx -0.5794+0.1185{mathbf i}, lambda_3 approx 0.2721-0.4926 {mathbf i},
$$
$$
lambda_4 approx -0.3888+2.5945 {mathbf i},
lambda_5 approx 0.5832+0.3480 {mathbf i} .
$$
Имея перед глазами полную картину истории, понимаем, что корни, обозначенные $ lambda_{1} $ (красный) и $ lambda_{4} $ (голубой), стремятся к столкновению — и оно действительно происходит при $ {color{Red} alpha }=2 $:
$$ lambda_1 = -2+2{mathbf i}, lambda_2 approx -0.5458+0.1142 {mathbf i}, lambda_3 approx 0.2296-0.4712 {mathbf i}, lambda_4 = -2+2{mathbf i},
$$
$$
lambda_5 approx 0.5193+0.3101 {mathbf i} .
$$
Дальнейшую динамику можем предсказать «по прецеденту» — столкнувшиеся корни должны разойтись. При $ {color{Red} alpha }=3_{} $:
$$
lambda_1 approx -4.0682+3.6140 {mathbf i}, lambda_2 approx -0.5184+0.1116 {mathbf i},
lambda_3 approx 0.2007-0.4506{mathbf i},
$$
$$
lambda_4 approx -1.2359+1.2927{mathbf i},
lambda_5 approx 0.4759+0.2864{mathbf i} .
$$
♦
?
К какому числу стремится желтый корень при $ {color{Red} alpha } to +infty $ ?
Последний пример наводит на еще одну гипотезу: мы видим, что графики корней получились гладкими, за исключением, возможно, некоторых специфических точек.
Т
Теорема. Корни полинома
$$ f(x)=x^n+a_1x^{n-1}+dots+a_n in mathbb C[x] $$
являются непрерывно дифференцируемыми функциями коэффициентов за исключением тех наборов значений коэффициентов, которые определяют кратные корни.
Доказательство
☞
ЗДЕСЬ.
§
Условие наличия кратного корня у полинома $ f_{}(x) $ может быть получено в виде явного условия на его коэффициенты. См.
☞
ДИСКРИМИНАНТ.
Теоремы настоящего пункта имеют теоретический, качественный характер. Для оценки реального влияния изменений коэффициентов полинома на динамику его корней приходится проводить отдельные — и весьма кропотливые — исследования: см.
☞
ЧУВСТВИТЕЛЬНОСТЬ КОРНЕЙ.
Поиск корней алгебраических уравнений: решение в радикалах
Можно ли выразить корни полинома $ f(x)in mathbb C[x] $ в виде «хороших» функций от его коэффициентов? Вспомним, что для квадратного уравнения
существует общая формула вычисления корней:
$$x^2+ax+b=0 Rightarrow lambda_{1,2}=frac{-apm sqrt{a^2-4b}}{2}
.
$$
Эта формула включает в себя элементарные алгебраические операции
$ +,- ,times, div $ и операцию извлечения квадратного корня. По аналогии
можно сформулировать и общую задачу.
Задача. Найти выражения корней полинома степени $ n_{}>2 $ в виде функций его коэффициентов; при этом функции должны представлять конечную комбинацию элементарных алгебраических
операций и операций извлечения корней произвольных (целых) степеней.
Поставленная задача называется задачей о разрешимости уравнения в радикалах6).
Оказывается, что любое уравнение третьей или четвертой степени разрешимо в радикалах. Перед тем, как изложить способы их решения, сделаем два упрощения. Первое из них заключается в том, что уравнение $ f_{}(x)=0 $ делится на старший коэффициент полинома $ f_{}(x) $.
Полином называется нормализованным7), если его старший коэффициент равен $ 1_{} $. Операция деления полинома на его старший коэффициент называется нормализацией полинома.
Очевидно, что нормализованный полином имеет те же корни, и в тех же кратностях, что и
исходный. Для простоты обозначений, будем считать, что полином уже
нормализован:
$$ f(x)=x^n+a_1x^{n-1}+dots+a_n .$$
Второе упрощение заключается в замене переменной (подстановке): $ x=y+{color{Red} alpha } $.
Ее результатом будет новый полином той же степени, что и исходный, относительно
переменной $ y_{} $:
$$ F(y)equiv f(y+{color{Red} alpha }) , . $$
Корни нового полинома связаны (cм. преобразование
2
☞
ЗДЕСЬ ) с корнями старого
по формуле $ lambda_j = Lambda_j+{color{Red} alpha } $; так что, найдя корни одного полинома,
легко установим и корни другого. Подберем теперь параметр $ {color{Red} alpha } $ так,
чтобы обратить в нуль коэффициент при $ y^{n-1} $ в полиноме $ F_{}(y) $.
Используя формулу бинома Ньютона, получаем
$$
begin{matrix}
f(x)&=&x^n+a_1x^{n-1}+a_2x^{n-2}+dots+a_n= \
&=&(y+{color{Red} alpha })^n +a_1(y+{color{Red} alpha })^{n-1}+a_2(y+{color{Red} alpha })^{n-2}+dots+a_n = \
&=&y^n + C_n^1 {color{Red} alpha } y^{n-1} +C_n^2 {color{Red} alpha }^2 y^{n-2}+dots+
{color{Red} alpha }^n + \
& & qquad + a_1y^{n-1}+a_1 C_{n-1}^1 {color{Red} alpha } y^{n-2}+dots
+a_1{color{Red} alpha }^{n-1} + \
& & quad qquad qquad +a_2y^{n-2} + dots + a_n.
end{matrix}
$$
Понятно, что если положить $ {color{Red} alpha }= — a_1/n $, то коэффициент при $ y^{n-1} $
исчезнет. Для простоты обозначений, будем считать, что полином уже
предварительно подвергнут такому преобразованию:
$$ f(x)=x^n qquad +a_2x^{n-2}+dots+a_n .$$
Уравнение третьей степени
Рассмотрим уравнение третьей степени:
$$
x^3+p,x+q=0
$$
Сделаем в этом уравнении замену переменной: $ x=u+v $, введя две неизвестные
$ u_{} $ и $ v_{} $; получим:
$$
u^3+v^3+3,uv(u+v)+p(u+v)+q=0 .
$$
Сгруппируем:
$$
u^3+v^3+(3,uv+p)(u+v)+q=0 .
$$
Подчиним теперь неизвестные $ u_{} $ и $ v_{} $ условию
$$
3,uv+p=0 iff uv=-frac{p}{3} .
$$
Тогда предыдущее уравнение приведется к виду
$$u^3+v^3=-q . $$
Итак, для определения неизвестных величин $ u_{} $ и $ v_{} $ мы получили систему
уравнений
$$
u^3+v^3=-q,
uv=-frac{p}{3} .
$$
Возведя последнее уравнение в куб, получим
$$
u^3v^3=-frac{p^3}{27} .
$$
Два полученных равенства, связывающие $ u^3 $ и $ v^3 $,
позволяет утверждать, что эти величины являются решениями квадратного
уравнения:
$$t^2+q,t- frac{p^3}{27}=0 .$$
Выражение
$$
Delta = frac{q^2}{4}+frac{p^3}{27}
$$
называется дискриминантом кубического уравнения.
Решив квадратное уравнение, получим:
$$
u^3=-frac{q}{2}+ sqrt{Delta}, v^3=-frac{q}{2}- sqrt{Delta} .
$$
В итоге имеем формулу для решений уравнения:
$$
x=u+v=sqrt[3]{-frac{q}{2}+sqrt{frac{q^2}{4}+frac{p^3}{27}}}+
sqrt[3]{-frac{q}{2}-sqrt{frac{q^2}{4}+frac{p^3}{27}}} ;
$$
она называется формулой Кардано.
Формула Кардано не очень удобна для практических вычислений.
Вспомним, что корень кубический из комплексного числа может принимать три различных значения.
Решение же, представленное формулой Кардано, имеет в правой части
комбинацию из двух кубических корней. Таким образом, получаем
9 всевозможных комбинаций из значений корней кубических. С другой стороны, основная теорема высшей алгебры утверждает, что кубическое уравнение должно иметь только
три решения. Для того, чтобы установить соответствие между значениями $ u_{} $
и $ v_{} $, обратимся к условию $ uv=-p/3 $ . Согласно этому условию, задание
значений для $ u_{} $ позволит однозначно восстановить $ v_{} $. Пусть
$$
u_1=sqrt[3]{-frac{q}{2}+sqrt{frac{q^2}{4}+frac{p^3}{27}}}
$$
какое-то одно из трех возможных значений корня кубического. Два оставшихся значения корня кубического получаются домножением $ u_1 $ на корни кубические из единицы:
$$u_2=u_1varepsilon_1, u_3=u_1varepsilon_2 $$
при
$$varepsilon_1=cos frac{2pi}{3} + {mathbf i} sin frac{2pi}{3}=
frac{-1}{2}+
{mathbf i} frac{sqrt{3}}{2} u
varepsilon_2=cos frac{4pi}{3} + {mathbf i} sin frac{4pi}{3}=
frac{-1}{2}-
{mathbf i} frac{ sqrt{3}}{ 2}
.
$$
Если теперь взять
$$
v_1=-frac{p}{3u_1} ,
$$
то решения кубического уравнения можно выразить в виде комбинаций
$ u_1 $ и $ v_1 $:
$$
begin{array}{ccl}
lambda_1&=&u_1+v_1, \
lambda_2&=&u_2+v_2=u_2-frac{displaystyle p}{displaystyle 3u_2}=u_1varepsilon_1-frac{displaystyle p}{displaystyle 3u_1varepsilon_1}
=u_1varepsilon_1-frac{displaystyle pvarepsilon_2}{displaystyle 3u_1}=u_1varepsilon_1+v_1varepsilon_2,\
lambda_3&=&u_3+v_3=u_1varepsilon_2+v_1varepsilon_1 .
end{array}
$$
Окончательно получаем формулы для вычисления корней:
$$
left{
begin{array}{lcl}
lambda_1&=&u_1+v_1, \
lambda_2&=&-frac{scriptstyle 1}{scriptstyle 2}(u_1+v_1)
+{mathbf i} frac{scriptstyle sqrt{3}}{scriptstyle 2} (u_1-v_1),\
lambda_3&=&-frac{scriptstyle 1}{scriptstyle 2}(u_1+v_1)
-{mathbf i} frac{scriptstyle sqrt{3}}{scriptstyle 2} (u_1-v_1),
end{array} right.
$$
где $ u_1 $ — одно из значений корня кубического, а $ v_1 $ связано с ним
соотношением $ v_1=-p/(3u_1) $.
П
Пример [2]. Решить уравнение $ x^3-6{mathbf i},x^2-10,x+8 {mathbf i}=0 $.
Решение. Подстановка $ x=y+2 {mathbf i} $ приводит уравнение к виду
$$y^3+2,y+4{mathbf i} =0 , $$
т.е. $ p=2,,q=4 {mathbf i} $. Далее
$$Delta=-frac{100}{27} Rightarrow sqrt{Delta} = pm frac{10 {mathbf i}}{3sqrt{3}}
Rightarrow u_1=sqrt[3]{left(-2 + frac{10}{3sqrt{3}} right){mathbf i}}
.
$$
Одно из значений последнего корня:
$$u_1=-{mathbf i}, sqrt[3]{-2 + frac{10}{3sqrt{3}}} , $$
это выражение можно упростить, если повезет заметить, что подкоренное выражение
равно $ left(-1+1/{sqrt{3}}right)^3 $:
$$u_1={mathbf i}left(1-frac{1}{sqrt{3}}right) Rightarrow
v_1=-frac{p}{3u_1}= {mathbf i} left(1+frac{1}{sqrt{3}}right) .
$$
Получаем:
$$mu_1=2, {mathbf i} , mu_2=1- {mathbf i}, mu_3=-1- {mathbf i} .$$
Значения корней исходного уравнения получатся «сдвигом» на
$ 2 {mathbf i} $.
Ответ. $ 4{mathbf i},, 1 + {mathbf i},, -1+ {mathbf i} $.
§
Дальнейший анализ формулы Кардано
☞
ЗДЕСЬ
Уравнение четвертой степени
$$ x^4+a_1x^3+a_2x^2+a_3x+a_4 = 0 $$
также может быть решено в радикалах. Идея решения заключается в сведении задачи к решению некоторого кубического уравнения. Ее реализация
☞
ЗДЕСЬ.
Уравнения высших степеней
Успех в решении уравнений третьей и четвертой степени побудил
исследователей искать подобные формулы для уравнений высших степеней.
Методология подхода была очевидна: свести решение уравнения $ n $-й
степени к решению уравнения $ (n-1) $-й степени. Однако, несмотря на почти трехвековые усилия лучших математиков, решить уравнение пятой степени не удавалось. Наконец, в начале
XIX века был получен отрицательный результат.
Т
Теорема [Руффини, Абель]. Уравнение степени выше четвертой в общем
случае неразрешимо в радикалах.
П
Пример. Уравнение $ x^5-4, x -2=0 $ не разрешимо в радикалах.
Установить разрешимо или нет данное конкретное уравнение в радикалах возможно с помощью теории, развитой французским математиком Галуа.
П
Пример. Уравнение $ x^5+x+1=0 $ разрешимо в радикалах, поскольку
$$ x ^5+x+1equiv (x^2+x+1)(x^3-x^2+1) , .$$
Отрицательный характер результата теоремы Руффини-Абеля не должен слишком уж
разочаровывать. Он означает только лишь то, что корни полинома нельзя представить в виде
формулы, состоящей из конечного набора сравнительно простых функций. Тем не
менее, если расширить класс допустимых в формуле функций (или допустить бесконечность числа операций), представление для корня можно найти (см., к примеру,
☞
ЗДЕСЬ ). Наконец, для практических задач часто более важна не столько «красивая»
аналитическая формула для корня, сколько приближенное его значение с требуемой точностью.
Поиск корней алгебраических уравнений: возможность упрощений
Для некоторых классов уравнений удается упростить задачу: свести решение исходного уравнения к решению уравнения меньшей степени .
Возвратное уравнение
Так называется уравнение вида
$ a_0z^n+a_1z^{n-1}+dots+a_{n-1}z+a_n=0, a_0ne 0 $, у которого набор коэффициентов
$ (a_0,a_1,dots, a_{n-1},a_n) $ симметричен относительно
середины:
$$ a_0=a_{n},a_1=a_{n-1},dots, a_{j}=a_{n-j} dots $$
П
Пример. Уравнения
$$ z^2-3,z+1=0,quad -sqrt{2}z^5+2,z^4+mathbf i z^3+2,z-sqrt{2},quad z^n+1=0 , $$ $$ z^n+z^{n-1}+z^{n-2}+dots + z^2 +z+1=0 $$
являются возвратными.
§
Методы упрощения подобных уравнений
☞
ЗДЕСЬ.
Делимость полиномов
Здесь $ mathbb A_{} $ означает какое-то из множеств $ mathbb Q, mathbb R $ или $ mathbb C_{} $.
Т
Теорема. Для полиномов $ f_{}(x) $ и $ g(x)not equiv 0 $ из $ mathbb A[x] $
существует единственная пара полиномов $ q_{}(x) $ и $ r_{}(x) $ из
$ mathbb A[x] $ таких, что
$$
f(x) equiv g(x) q(x) + r(x) quad mbox{ и } quad
deg r < deg g .
$$
Доказательство
☞
ЗДЕСЬ.
В этом представлении полином $ f_{}(x) $ называется делимым, $ g_{}(x) $ — делителем,
$ r_{}(x) $ — остатком от деления $ f_{}(x) $ на $ g_{}(x) $, а $ q_{}(x) $ —
частным9).
При $ r(x) equiv 0 $, говорят, что полином $ f_{}(x) $ делится (нацело)
на $ g_{}(x) $, а полином $ g_{}(x) $ называется делителем $ f_{}(x) $. Тривиальными делителями полинома $ f_{}(x) $ называют сам полином $ f_{}(x) $ и полином тождественно равный $ 1_{} $ (оба — с точностью до домножения на ненулевую константу). Любой другой делитель полинома (если существует) называется нетривиальным.
П
Пример [1]. Найти частное и остаток от деления
$$f(x)=2, x^5 +x^4 -x^2 +2, x +1 quad mbox{ на } quad
g(x)=x^3+2, x^2 — x -1 .$$
Решение.
$$
begin{array}{rrrrrrr|l}
2,x^5&+ x^4 &+0x^3 &-x^2 &+2x &+1 && x^3+2,x^2-x-1\
2,x^{5}&+4 x^4&-2,x^3&-2x^2&& && overline{ 2,x^2 -3, x +8 quad } \
hline
&-3,x^4&+2,x^3&+x^2&+2,x& \
&-3,x^{4}&-6,x^3&+3,x^2&+3,x& \
hline
&&8,x^{3}&-2,x^2&-x&+1 \
&&8,x^{3}&+16,x^2&-8,x&-8 \
hline
&&& -18x^{2}&+7,x&+9
end{array}
$$
Ответ. $ q(x)=2, x^2 -3, x + 8, r(x)=-18, x^2 + 7, x +9 $.
Фактическое выполнение операции деления полиномов можно производить, действуя лишь над наборами их коэффициентов — подобно тому, как мы производили их умножение.
П
Пример. Найти частное и остаток от деления
$$f(x)=x^8+x^7+3,x^4-1 quad mbox{ на } quad g(x)=x^4-3, x^3 +4, x +1 .$$
Решение.
$$
begin{array}{rrrrrrrrrr|l}
1& 1 &0&0&3&0 &0 & 0&-1 &&1 -3 0 4 1\
1&-3 &0&4&1& & & & && overline{ 1 4 12 32 82} \
hline
&4 & 0 &-4 & 2 & 0 & {} \
&4 &-12& 0 & 16 & 4& {} \
hline
&& 12& -4 &-14 & -4 & 0 & {} \
&& 12& -36 & 0 & 48 & 12 & {} \
hline
&&& 32 & -14& -52&-12 & 0 & {} \
&&& 32 & -96& 0 & 128& 32 & {} \
hline
&&&&82&-52&-140&-32&-1 \
&&&&82&-246&0&328&82 \
hline
&&&&&194&-140&-360&-83
end{array}
$$
Ответ. $ q(x)=x^4+4,x^3+12,x^2+32, x+82,, r(x)=194, x^3-140, x^2-360, x -83 $.
Свойства.
1.
Если $ m le n $ при $ a_0ne 0, b_0 ne 0 $, то $ deg q(x) =n-m $ и ведущий член $ q_{}(x) $ равен $ {a_0}/{b_0}, x^{n-m} $.
2.
Если $ g(x)equiv x-c $, то коэффициенты частного $ q_{}(x) $ найдутся из схемы Хорнера.
Наибольший общий делитель
Рассмотрим множество всех общих делителей полиномов $ f_{}(x) $ и $ g_{}(x) $:
$$
mathbb D={d_1(x) in mathbb A[x] , | f(x) mbox{ делится на } d_1(x), g(x) mbox{ делится на } d_1(x) } .
$$
Наибольшим общим делителем полиномов $ f_{}(x) $ и $ g_{}(x) $ называется полином $ d_{}(x) $, который является делителем как $ f_{}(x) $, так и $ g_{}(x) $ и, вместе с тем, сам делится на любой другой общий делитель этих полиномов:
$$ operatorname{HOD} (f(x),g(x)) = d(x) iff d(x) in mathbb D
, d(x) mbox{ делится на } forall d_1(x) in mathbb D
.
$$
Рассмотрим множество всех полиномов, которые делятся и на $ f_{}(x) $ и на $ g_{}(x) $:
$$
mathbb K={k_1(x) in mathbb A[x] , | k_1(x) mbox{ делится на } f(x), k_1(x) mbox{ делится на } g(x) } .
$$
Наименьшим общим кратным полиномов $ f_{}(x) $ и $ g_{}(x) $ называется полином $ k_{}(x) $, который делится как на $ f_{}(x) $, так и на $ g_{}(x) $ и, вместе с тем, сам является делителем любого другого полинома, который делится на $ f_{}(x) $ и $ g_{}(x) $:
$$ operatorname{HOK} (f(x),g(x)) = k(x) iff k(x) in mathbb K
, forall k_1(x) in mathbb K
mbox{ делится на } k(x) .
$$
Пока открытым является вопрос существования $ operatorname{HOD} (f,g)_{} $ и $ operatorname{HOK} (f,g)_{} $. Для первого случая этот вопрос решается
конструктивно — построением $ operatorname{HOD} (f,g)_{} $ с помощью алгоритма, позаимствованного из
☞
ТЕОРИИ ЧИСЕЛ.
Алгоритм Евклида.
Пусть $ f(x) not equiv 0 $ и $ g(x) not equiv 0 $ — полиномы из $ mathbb A_{}[x] $ . Поделим $ f_{}(x) $ на $ g_{}(x) $:
$ f(x)=g(x)q_{1}(x)+r_1(x) $, пусть остаток $ r_{1}(x) not equiv 0 $, тогда
$ 0 le deg r_{1}(x)< deg g(x) $. Поделим делитель на
этот остаток: $ g(x)=r_{1}(x)q_2(x)+r_2(x) $, предположим, что остаток
$ r_{2}(x) not equiv 0 $, тогда $ 0 le deg r_{2}(x)< deg r_1(x) $.
Снова разделим делитель на остаток и продолжим процесс далее
до тех пор, пока на каком-то шаге не произойдет деление нацело, т.е.
остаток будет тождественно равен нулю (это обязательно случится за конечное число
шагов, т.к. степени полиномов $ r_{j}(x) $ уменьшаются). Запишем процедуру в виде схемы:
$$
begin{array}{lcl}
f(x)&=&g(x)q_1(x)+r_1(x) , quad 0 le deg r_1(x)< deg g(x) , \
g(x)&=&r_1(x)q_2(x)+r_2(x) , quad 0 le deg r_2(x)< deg r_1(x), \
r_1(x)&=&r_2(x)q_3(x)+r_3(x) , quad 0 le deg r_3(x)< deg r_2(x), \
dots && dots \
r_{j-2}(x)&=&r_{j-1}(x)q_{j}(x)+r_{j}(x) , quad
0 le deg r_j(x)< deg r_{j-1}(x) , \
dots && dots \
r_{k-2}(x)&=&r_{k-1}(x)q_{k}(x)+r_{k}(x) , quad 0 le deg r_k(x)< deg r_{k-1}(x) , \
r_{k-1}(x)&=&r_{k}(x)q_{k+1}(x) .
end{array}
$$
Т
Теорема. Последний не равный нулю остаток в алгоритме Евклида совпадает с $ operatorname{HOD}(f(x),g_{}(x)) $.
Доказательство полностью аналогично доказательству соответствующего результата из теории целых чисел.
♦
П
Пример. Вычислить
$$ operatorname{HOD} left( x^4+3, x^3 -x^2 -4, x -3, ,
3, x^3 +10, x^2 +2, x -3 right) , . $$
Решение.
$$
begin{array}{rrrrrr|l}
x^4 &+3,x^3 &-x^2 &-4,x &-3 && 3,x^3+10,x^2+2,x-3\
x^4&+10/3, x^3&+2/3, x^2&-, x &
&& overline{ 1/3 x -1/9 quad } \
hline
&-1/3,x^3&-
5/3,x^2&-3,x&-3 \
&-1/3,x^3&-10/9,x^2&
-2/9,x&{}
+1/3 \
hline
&&-5/9,,x^2&
-25/9,x&-10/3
end{array}
$$
В обозначениях алгоритма Евклида, имеем:
$$ q_{1}(x)=1/3, x -1/9, r_{1}(x)=-5/9, x^2 -25/9, x-10/3 . $$
Поскольку $ r_{1}(x) notequiv 0 $, делим $ g_{}(x) $ на этот остаток:
$$
begin{array}{rrrrr|l}
3,x^3 &+10,x^2 &+2,x &-3 && -5/9,,x^2
-25/9,x-10/3 \
3, x^3&+15, x^2&+18, x & &&,
overline{-27/5, x +9 quad } \
hline
&-5,x^2&-16,x&-3 \
&-5,x^2&-25,x&-30 \
hline
&&9,x&+27
end{array}
$$
Здесь $ q_{2}(x)=-27/5, x +9, r_2(x)=9x+27 notequiv 0 $ и алгоритм деления продолжается:
$$
begin{array}{rrrr|l}
-5/9,,x^2&
-25/9,x&
-10/3 && 9,x+27 \
-5/9,,x^2&
-5/3,x& && ,
overline{ -5/81, x
— 10/81 quad } \
hline
&-10/9,x&
-10/3 \
&-10/9,x&-10/3 \
hline
& & 0
end{array}
$$
Здесь остаток получился равным нулю, следовательно $ r_{2}(x)=operatorname{HOD}(f(x),g(x)) $.
Ответ. $ 9(x+3)_{} $.
Легко видеть, что если $ d_{}(x) = operatorname{HOD} (f(x),g(x)) $, то и $ Ccdot d(x)_{} $
также будет $ operatorname{HOD} (f(x),g(x)) $ при любой константе $ C ne 0 $. Так, в только
что решенном примере мы имели право записать ответ в виде $ operatorname{HOD}(f,g)=x+3 $
или $ operatorname{HOD} (f,g)=mathbf{i} x+3, mathbf{i} $ и т.д.
Обычно, получив какое-то представление $ d_{}(x) $ для $ operatorname{HOD} (f(x),g(x)) $,
подбирают константу $ C_{} $ так, что либо — в случае $ d(x)in mathbb{Q}[x] $ —
полином $ C_{}d(x) $ имел коэффициенты целыми:
$$ Cd(x) in mathbb{Z}[x] $$
(например, положив $ C_{} $ равным наименьшему общему кратному знаменателей коэффициентов $ d_{}(x) $ ;
либо же так, чтобы $ C_{}d(x) $ был нормализован (имел старший коэффициент равным $ 1_{} $):
$$C=1/(mbox{старший коэффициент } d(x)) .$$
Еще один способ нахождения $ operatorname{HOD} $ для полиномов из $ mathbb{C}[x] $ вытекает из основной теоремы высшей алгебры.
Т
Теорема. Пусть множество $ { (x-lambda_1),dots,(x-lambda_{mathfrak r}) } $ представляет собой объединение множеств линейных сомножителей полиномов $ f_1(x),dots,f_k(x) $. Выпишем «универсальное» разложение каждого $ f_j $ на линейные сомножители:
$$ f_j(x)equiv a_{0j} (x-lambda_1)^{{mathfrak m}_{1j}}(x-lambda_2)^{{mathfrak m}_{2j}}times
dots times
(x-lambda_{mathfrak r})^{{mathfrak m}_{{mathfrak r}j}}
$$
(здесь возможно, что некоторые из кратностей $ {mathfrak m}_{ij} $ равны 0). Тогда
$$ operatorname{HOD} left(f_1(x),dots,f_k(x) right)=
(x-lambda_1)^{{mathfrak m}_1}(x-lambda_2)^{{mathfrak m}_2}times cdots times (x-lambda_{mathfrak r})^{{mathfrak m}_{mathfrak r}} ,
$$
$$
operatorname{HOK} left(f_1(x),dots,f_k(x) right)=
(x-lambda_1)^{{mathfrak M}_1}(x-lambda_2)^{{mathfrak M}_2}times cdots times (x-lambda_{mathfrak r})^{{mathfrak M}_{mathfrak r}}
$$
где $ displaystyle {mathfrak m}_{ell} = min_{jin{1,dots, k}} {mathfrak m}_{ell j}, displaystyle {mathfrak M}_{ell} = max_{jin{1,dots, k}} {mathfrak m}_{ell j} $.
П
Пример. Вычислить $ operatorname{HOD} left(x^2-1,, x^3+1 right) $ .
Решение. Выписываем разложения полиномов на линейные сомножители:
$$x^2-1equiv (x-1)(x+1), quad x^3+1 equiv(x+1)
left(x-left( 1/2 — sqrt{3}/2 mathbf{i} right) right)
left(x- left( 1/2 + sqrt{3}/2 mathbf{i} right) right) .$$
Ответ. $ x+1 $.
Разумеется, этот способ нахождения $ operatorname{HOD} $ имеет
лишь теоретическое значение, поскольку, как было указано
☞
ЗДЕСЬ, получить выражение корней полинома в радикалах, как правило, не удается.
Т
Теорема. Существуют полиномы $ u(x)_{} $ и $ v(x)_{} $ из
$ mathbb A[x] $, удовлетворяющие уравнению линейного представления $ operatorname{HOD} $:
$$
v(x)f(x)+u(x)g(x)equiv operatorname{HOD}(f,g) .
$$
Доказательство этого результата и практический способ построения полиномов $ u(x)_{} $ и $ v(x)_{} $ можно скопировать из соответствующего раздела теории чисел.
§
Явное представление
$ operatorname{HOD} (f(x),g(x)) $ через коэффициенты полиномов с помощью аппарата определителей приведено
☞
ЗДЕСЬ.
Алгоритм Евклида имеет приложение и к задаче локализации корней полинома $ f(x) $ с вещественными коэффициентами, т.е. к нахождению числа всех вещественных корней и точного количества их на произвольном интервале вещественной оси. Подробне
☟
ЗДЕСЬ.
Взаимно простые полиномы
— это полиномы, у которых
нормализованный $ operatorname{HOD} $ равен $ 1_{} $ (тождественно). Подробное рассмотрение этого случая
☞
ЗДЕСЬ.
Производные от полинома
Для случая произвольной функции
$ F(x): mathbb R mapsto mathbb R $ это определение строится на предельном переходе:
$$ frac{d, F}{d, x} bigg|_{_{x=c}}
= F^{prime}(c) = lim_{hto 0} frac{F(c+h)-F(c)}{h} .$$
Пусть $ F(x)equiv x^k $ при $ kin mathbb N_{} $. Тогда, с помощью формулы бинома Ньютона
получаем:
$$(c+h)^k-c^k=kc^{k-1}h+C_k^2c^{k-2}h^2+dots+h^k $$
и
$$frac{F(c+h)-F(c)}{h} to kc^{k-1} quad npu hto 0 . $$
Отсюда следует, что функция $ x^{k} $ дифференцируема в любой точке $ xinmathbb R_{} $
и ее производная равна $ kx^{k-1} $. Обобщим это определение и на комплексную
плоскость $ mathbb C^{} $ . Всюду в предыдущих рассуждениях допустим, что и точка
$ c_{} $ и приращение $ h_{} $ могут быть комплексными. Окончательный вывод не изменится:
формула
$$(x^k)^{prime}= kx^{k-1} $$
остается справедливой и для $ xin mathbb C_{} $. С помощью этой формулы, а также с
помощью основных правил дифференцирования функций:
$$
left(F_1pm F_2 right)^{prime}=F_1^{prime}pm F_2^{prime},
left(cFright)^{prime}=cF^{prime},
left(F_1F_2 right)^{prime}=F_1^{prime}F_2+F_1F_2^{prime}
$$
получаем
$$ f^{prime}(x)=(a_0x^n+a_1x^{n-1}+dots+a_{n-1}x+a_n)^{prime}
= na_0x^{n-1}+(n-1)a_1x^{n-2}+dots +a_{n-1} . $$
Таким образом, $ f^{prime}(x) $ также будет полиномом над $ mathbb A_{} $ и
$ deg f^{prime} = deg f — 1 $. Кроме того, обобщая по индукции
формулу дифференцирования произведения, выводим:
$$
left(f_1f_2times dots times f_k right)^{prime}=
f_1^{prime}f_2times dots times f_k+f_1f_2^{prime}times dots times f_k+
dots+ f_1f_2times dots times f_k^{prime} .
$$
Если применить ее к формуле разложения полинома на линейные
множители, то получим формулу
$$
begin{matrix}
f^{prime}(x)&=&a_0(x-lambda_2)(x-lambda_3)times dots times (x-lambda_n)+
\
&+&a_0(x-lambda_1)(x-lambda_3)times dots times (x-lambda_n)+ \
&+ & dots + \
&+& a_0(x-lambda_1)(x-lambda_2)times dots times (x-lambda_{n-1}).
end{matrix}
$$
Из нее, в частности, следует, что
$$
f^{prime}(lambda_j)=a_0(lambda_j-lambda_1)times dots times
(lambda_j-lambda_{j-1})(lambda_j-lambda_{j+1})
times dots times (lambda_j-lambda_{n})=
$$
$$
=a_0
prod_{1le k le n atop
scriptstyle kne j} (lambda_j — lambda_k) .
$$
Последняя формула, впрочем, может быть получена и напрямую из определения производной:
$$
f^{prime}(lambda_j)=lim_{xto lambda_j} frac{f(x)-f(lambda_j)}{x-lambda_j}
=lim_{xto lambda_j} frac{a_0(x-lambda_1)timesdotstimes (x-lambda_n)}{x-lambda_j} .
$$
Производные высших порядков вводятся определением
$$F^{(k)}(x)= left(F^{(k-1)}(x) right)^{prime} npu k>1 ; $$
для однотипности обозначений считают также нулевой производной сам полином:
$$F^{(0)}(x)= F(x) .$$
В дальнейшем нам пригодится следующая формула Лейбница:
$$left(F_1 F_2 right)^{(k)}=sum_{j=0}^k C_k^j F_1^{(k-j)}F_2^{(j)}=$$
$$
=F_1^{(k)}F_2+ C_k^1F_1^{(k-1)}F_2^{prime}
+ C_k^2F_1^{(k-2)}F_2^{prime prime }+ dots +F_1F_2^{(k)} ,
$$
где $ C_k^{j} $ означает биномиальный коэффициент.
Для полинома $ f(x)_{} $ степени $ n_{} $ имеем:
$$f^{(k)}(x)=n(n-1)times dots times (n-k+1)a_0x^{n-k}+dots+k!a_{n-k}
npu kle n $$
и $ deg f^{(k)} = deg f — k $. Очевидно $ f^{(k)}(x)equiv 0 $ при $ k> n_{} $.
Т
Теорема. Простой корень полинома не является корнем его производной. Кратный корень полинома кратности $ mathfrak m $ является корнем его производной кратности $ ({mathfrak m}-1) $.
Доказательство. Если $ x=lambda_{} in mathbb C $ — простой корень для $ f_{}(x) $, то
$ f(x)equiv (x-lambda)tilde{f}(x) $ при $ tilde{f}(lambda) ne 0 $.
Дифференцируя и подставляя $ x=lambda $, получаем
$$
f^{prime}(x)equiv tilde{f}(x) +(x-lambda)tilde{f}^{prime}(x)
Rightarrow f^{prime}(lambda)=tilde{f}(lambda)ne 0
$$
по предположению.
Если $ x=lambda_{} $ — кратный корень кратности $ mathfrak m $ для $ f_{}(x) $, то
$ f(x)equiv (x-lambda)^{mathfrak m}widehat{f}(x) $ при $ widehat{f}(lambda) ne 0 $. Снова дифференцируем:
$$
f^{prime}(x)={mathfrak m}(x-lambda)^{{mathfrak m}-1} widehat{f}(x)+
(x-lambda)^{{mathfrak m}}widehat{f}^{prime}(x)=
$$
$$
=(x-lambda)^{{mathfrak m}-1}
underbrace{left({mathfrak m}widehat{f}(x)
+(x-lambda)widehat{f}^{prime}(x)
right)}_{= H(x)} .
$$
Из этого представления следует, что $ x=lambda_{} $ является корнем $ f^{prime}(x) $
кратности, не меньшей $ ({mathfrak m}-1) $. Если бы кратность была
больше этого значения, то необходимо $ H(lambda)=0 $. Однако, этого не
может быть, т.к. $ widehat{f}(lambda) ne 0 $.
♦
=>
Полином $ f(x)_{} $ имеет кратный корень тогда и только
тогда, когда он имеет нетривиальный наибольший общий делитель со своей производной
$$ operatorname{HOD} (f(x),f^{prime}(x)) notequiv const . $$
П
Пример. При каком условии на коэффициенты $ p_{} $ и $ q_{} $ полином
$$ x^3+p,x+q $$
имеет кратный корень?
Решение. На основании теоремы на этом корне $ x=lambda_{} $
должно быть выполнено
$$lambda^3+p,lambda+q=0 , quad 3, lambda^2 + p=0 .$$
Из второго равенства выражаем $ lambda^2 $ и подставляем в первое:
$$lambda^2=-frac{p}{3} Rightarrow lambda left(-frac{p}{3} right)
+p,lambda+q=0 Rightarrow lambda=-frac{3,q}{2,p} $$
при $ pne 0 $.
Подставляя это значение в любое из исходных равенств, получаем:
$$
frac{27,q^2+4,p^3}{4, p^2} =0 Rightarrow
left(frac{q}{2} right)^2 + left(frac{p}{3} right)^3 =0 .
$$
Это условие уже встречалось нам ВЫШЕ при анализе формулы решения уравнения третьей степени.
При $ p=0 $ кратный корень может встретиться лишь при $ q=0 $, т.е. опять же
при обращении в нуль дискриминанта кубического уравнения.
Ответ. $ left( p/3 right)^3 + left( q/2 right)^2=0 $.
Предыдущий пример позволяет выявить общую закономерность:
наличие у полинома $ f_{}(x) $ кратного корня является ситуацией исключительной,
наблюдаемой только тогда, когда коэффициенты полинома связаны некоторым
условием типа равенства. Общий способ получения этого условия
☞
ЗДЕСЬ
?
При каком условии на коэффициенты $ p_{} $ и $ q_{} $ полином
а) $ x^4+p,x+q $ ; б) $ x^5+p,x+q $
имеет кратный корень?
П
Пример. Найти все значения параметра $ {color{Red} alpha } $, при которых полином
$$ x^4-5,x^2+{color{Red} alpha },x+28 $$
имеет кратный корень.
Решение. На основании следствия к теореме для выполнения
условия необходимо и достаточно, чтобы был нетривиален
$ operatorname{HOD} (f(x),f^{prime}(x)) $. Ищем его по алгоритму Евклида, делим $ f(x) $ на $ f^{prime}(x) $:
$$
f(x)equiv frac{1}{4} , x, f^{prime}(x) +
overbrace{left(-frac{5}{2}, x^2
+frac{3}{4}, {color{Red} alpha }, x +28 right)}^{r_1(x)}
,
$$
затем $ f^{prime}(x) $ на полученный остаток $ r_{1}(x) $:
$$
f^{prime}(x) equiv left(-frac{8}{5},x-
frac{12}{25}, {color{Red} alpha } right) r_1(x) +
overbrace{left(frac{3}{25},(3, {color{Red} alpha }^2 + 290),x+
frac{361}{25}, {color{Red} alpha } right)}^{r_2(x)}
,
$$
и, при дополнительном предположении $ 3, {color{Red} alpha }^2 + 290ne 0 $, делим $ r_{1}(x) $ на $ r_{2}(x) $:
$$
r_1(x) equiv frac{25}{36left(3, {color{Red} alpha }^2 +290 right)^2}
left[-30,left(3, {color{Red} alpha }^2 +290 right) x +
alpha, (27, {color{Red} alpha }^2 + 6220) right] r_2(x) +
$$
$$
+ frac{25, left(-27, {color{Red} alpha }^4 -19660, {color{Red} alpha }^2 + 3390912right)
}{36, left(3, {color{Red} alpha }^2 +290 right)^2} .
$$
$ operatorname{HOD} (f(x),f^{prime}(x)) $ может быть нетривиальным (равным $ r_{2}(x) $)
только при условии
$$-27, {color{Red} alpha }^4 -19660, {color{Red} alpha }^2 + 3390912=0 . $$
Решить последнее уравнение легко если заменить
переменную $ A = {color{Red} alpha }^2 $:
$$( A-144)(27, A +23548)=0 .$$
При $ 3, {color{Red} alpha }^2 + 290= 0 $ будет
$ operatorname{HOD} (f(x),f^{prime}(x))= r_2(x)not equiv 0 $, так что
при этих значениях параметра кратных корней у $ f(x)_{} $ быть не может.
Ответ. $ {color{Red} alpha } in { pm 12, pm {scriptstyle 58}/{scriptstyle 3} sqrt{{scriptstyle 7}/{scriptstyle 3}}, mathbf i } $.
=>
Число $ lambda_{} $ является корнем кратности $ mathfrak m_{} $ для $ f(x)_{} $ тогда и
только тогда, когда выполнены условия:
$$
underbrace{f^{(0)}(lambda)=0,dots, f^{({mathfrak m}-1)}(lambda)=0}_{mathfrak m},,
f^{({mathfrak m})}(lambda)ne 0 .
$$
Доказательство необходимости следует из теоремы. Достаточность вытекает из результатов следующего пункта (формализация способа проверки приводится
☞
ЗДЕСЬ).
Формула Тейлора
Представление полинома $ f(x)_{}in mathbb A[x] $ в канонической форме $ a_{0}x^n+a_1x^{n-1}+dots + a_n $ не является единственно возможным способом задания полинома. В конце концов,
полином можно представить и с помощью разложения на линейные сомножители — разумеется, если известен набор его корней. Саму
эту каноническую форму можно описать как разложение полинома по
степеням переменной $ x_{} $. Пусть теперь $ cin mathbb A_{} $ — произвольная константа.
Любую степень $ x^{k} $ можно «переразложить» по степеням линейного полинома
$ x-c_{} $ с помощью формулы бинома Ньютона:
$$ x^kequiv left[c+(x-c) right]^kequiv c^k +kc^{k-1}(x-c)+
frac{k(k-1)}{2}c^{k-2}(x-c)^2+dots+ (x-c)^k .$$
Если это сделать для каждого монома полинома $ f(x)_{} $, то
получим разложение $ f(x)_{} $ по степеням $ x-c_{} $ в виде
$$
f(x)equiv A_0+A_1(x-c)+A_2(x-c)^2+dots+A_n(x-c)^n .
$$
Задача. Найти коэффициенты $ A_{0},dots,A_n $ в этом разложении.
Для решения этой задачи продифференцируем несколько раз последнее тождество:
$$
begin{matrix}
f^{prime}(x)&=&A_1+2,A_2(x-c)+3,A_3(x-c)^2+dots+nA_n(x-c)^{n-1} , ,\
f^{prime prime}(x)&=&2,A_2+3cdot 2,A_3(x-c)+dots +n(n-1)A_n(x-c)^{n-2}, ,\
f^{prime prime prime}(x)&=&3cdot 2,A_3+dots +n(n-1)(n-2)A_n(x-c)^{n-3}, ,\
dots & & dots
end{matrix}
$$
Подстановка в эти формулы $ x=c_{} $ дает:
$$f^{prime}(c)=A_1, f^{prime prime}(c)=2,A_2, f^{prime prime prime}(c)=
3cdot 2,A_3,dots $$
Т
Теорема. Разложение полинома $ f_{}(x) $ по степеням $ x-c_{} $ имеет вид
$$
f(x) equiv f(c)+
frac{f^{prime}(c)}{1!} (x-c) + frac{f^{prime prime }(c)}{2!} (x-c)^2+
dots + frac{f^{(n)}(c)}{n!} (x-c)^{n} =
$$
$$
=sum_{j=0}^n frac{f^{(j)}(c)}{j!} (x-c)^{j} ;
$$
это тождество называется формулой Тейлора для полинома $ f_{}(x) $ в точке $ x=c $.
Доказательство и алгоритм эффективного вычисления коэффициентов формулы Тейлора (схема Хорнера)
☞
ЗДЕСЬ.
Формула Тейлора имеет гораздо большее значение,
чем просто переразложение полинома $ f_{}(x) $ по степеням заданного линейного полинома.
Она связана с задачей о приближении, аппроксимации функций.
Пусть функция $ F_{}(x) $ неизвестной заранее структуры описывает поведение
какого-то природного процесса. Мы имеем возможность провести серию (конечное
число) экспериментов (наблюдений), чтобы на их основе найти приближенное значение функции в произвольной точке $ x_{} $. Экспериментальные серии могут различаться по своему типу. Это могут быть серии экспериментов
-
однотипных, когда, например, удается узнать (засечь) положение спутника в разные моменты времени $ x_1,x_{2},dots $ на неизвестной орбите;
-
разнотипных, когда для того же спутника мы имеем возможность измерения большого количества различных параметров движения (положения, скорости, ускорения, ускорения ускорения, и пр.), но только в один фиксированный момент времени $ x=c_{} $.
На основании этих серий мы должны предсказать величину $ F(x)_{} $.
Самой простой функцией, решающей задачи в таких постановках, является
полином. Если этот полином $ f(x)_{} $ удается построить, то именно его
мы и будем считать приближением неизвестной нам функции $ F(x)_{} $.
Задача построения такого полинома для серии экспериментов первого типа обсуждается
☞
ЗДЕСЬ. А формула Тейлора позволяет найти полином $ f(x)_{} $ для серии
экспериментов второго типа. Геометрически: неизвестный нам заранее график функции $ y=F(x)_{} $ (красный) приближается (аппроксимируется) либо прямой (зеленый), либо параболой (серый), либо кубикой (фиолетовый) — и все кривые приближения строятся только на основании информации о функции $ F(x)_{} $ в одной-единственной точке $ c_{} $.
П
Пример. Найти приближенное значение $ F(1)_{} $, если известно, что
$$F(-1)=F^{prime}(-1)=F^{prime prime}(-1)=F^{prime prime prime}(-1)=0.367
.$$
Решение. По формуле Тейлора получаем полином
$$f(x)=0.367+0.367(x+1) + frac{0.367}{2} (x+1)^2+frac{0.367}{6} (x+1)^3 $$
и $ f(1)=2.324(3) $.
Ответ. $ F(1)approx 2.324 $.
Полиномы с вещественными коэффициентами
Рассмотрим теперь случай полинома с вещественными коэффициентами
$ f(x)=a_0x^n+a_1x^{n-1}+ dots + a_n in mathbb R [x] $.
Т
Теорема. Значения полинома $ f(x) in mathbb R [x] $ от комплексно-сопряженных значений переменной будут также комплексно-сопряженными:
$$ mbox{если} f(c)=A+mathbf i B mbox{при} {A,B} subset mathbb R, mbox{то} f(overline{c})=A-mathbf i B , . $$
Доказательство. Действительно, поскольку $ a_jin mathbb R $,
то $ overline{a_j}=a_j $ для $ forall jin {0,1,dots,n} $, и тогда
$$
begin{matrix}
fleft(overline{c} right)&=&a_0 overline{c}^n + a_1 overline{c}^{n-1} +
dots + a_n = overline{a_0} overline{c^n} +
overline{a_1} overline{c^{n-1}}+ dots +
overline{a_n}= \
&=&overline{a_0c^n+a_1c^{n-1}+ dots + a_n}=A-mathbf i B .
end{matrix}
$$
=>
Если мнимое число
$ c=alpha + mathbf i beta , beta ne 0 $ является корнем $ f_{}(x) $, то и
ему комплексно-сопряженное $ overline c = alpha — mathbf i beta $ также
является корнем $ f_{}(x) $.
Иными словами, мнимые корни полинома $ f_{}(x) $ с вещественными коэффициентами «ходят пáрами»:
$ alpha pm mathbf i beta $. Геометрический смысл: на комплексной плоскости точки,
изображающие корни $ f_{}(x) $, расположены симметрично относительно вещественной
оси.
Как следствие предыдущей теоремы и основной теоремы высшей алгебры, получим
Т
Теорема. Любой полином $ f_{}(x)in mathbb R [x] $ может быть представлен в виде произведения вещественных полиномов степеней не выше второй:
$$
begin{array}{rl}
f(x) & equiv a_0 (x- lambda_1)^{{mathfrak m}_1} times dots times
(x- lambda_r)^{{mathfrak m}_r} times \
& times (x^2 +p_1x+ q_1)^{{mathfrak M}_1} times dots times
(x^2 +p_{ell}x+ q_{ell})^{{mathfrak M}_{ell}} .
end{array}
$$
Здесь $ lambda_1 , dots , lambda_r $ — различные вещественные числа,
а квадратные трехчлены
$$ {x^2 +p_1x+ q_1, dots , x^2 +p_{ell}x+ q_{ell}} subset mathbb R [x] $$
— различные с отрицательными дискриминантами
$ mathcal D_j=p_j^2-4q_j<0 $. Это представление единственно с точностью до перестановки множителей.
П
Пример. Разложить полином
$$
x^7-sqrt{3}x^6+(-3+2sqrt{3})x^5+(2+sqrt{3})x^4+(3-6sqrt{3})x^3+(-12+11sqrt{3})x^2+
$$
$$
+(10-8sqrt{3})x+4sqrt{3}-6
$$
на вещественные множители.
Ответ. $ (x+sqrt{3})(x+(1-sqrt{3}))^2(x^2-x+1)^2 $.
=>
Полином $ f_{}(x) $ с вещественными коэффициентами нечетной степени имеет хотя бы один вещественный корень, а, в общем случае, нечетное число вещественных корней (с учетом их кратностей ).
Геометрия
Полиномы с вещественными коэффициентами удобны тем, что теоретические результаты, полученные в предыдущих пунктах, получают геометрическую интерпретацию. Прежде всего, следует отметить, что полином является частным случаем непрерывной функции и на него распространяются все результаты математического анализа, разработанные для подобных функций. Итак, полином $ f_{}(x) $ — непрерывная функция при любых $ x in mathbb R $. Более того, поскольку производные полинома снова оказываются полиномами, то свойство непрерывности наследуется при дифференцировании: полином является непрерывно-дифференцируемой функцией. Из этого следует, что на плоскости $ (x_{},y) $ график полинома $ y=f_{}(x) $ представляет из себя непрерывную и гладкую кривую (ни разрывов, ни углов!) — касательная к графику существует в любой его точке.
Далее, вещественному корню $ x=lambda_{} $ полинома $ f_{}(x) $ на плоскости
$ (x_{},y) $ соответствует точка пересечения графика $ y=f_{}(x) $ с осью абсцисс.
По основной теореме высшей алгебры, таких точек может быть только конечное число: их — не более степени полинома $ deg f (x) $. Далее, между каждой парой $ lambda_j, lambda_k $ вещественных корней полинома $ f_{}(x) $, его график обязан иметь «впадину» или «горб». Обращаясь к языку математического анализа, можно сказать (и доказать), что между двумя вещественными корнями полинома находится точка его локального минимума или локального максимума. В этой точке касательная к графику функции параллельна оси абсцисс и, следовательно, тангенс угла наклона касательной должен быть равен нулю. Иными словами, точки $ mu_1,mu_2,dots $, в которых полином имеет локальный минимум или максимум, должны быть корнями его производной. См. следующий ПУНКТ.
К сожалению, не имеется наглядной интерпретации мнимых корней полинома .
§
Дальнейшие геометрические свойства полинома с вещественными коэффициентами см.
☞
ЗДЕСЬ.
Экстремумы
Говорят, что полином $ f(x)in mathbb R[x] $ имеет в точке
$ c_{} $ (локальный) минимум если существует некоторое $ delta>0 $, что при всех значениях аргументов из $ delta_{} $-окрестности точки $ c_{} $, т.е. при всех $ x_{} $, удовлетворяющих неравенству $ |x-c|<delta $
будет выполнено $ f(x)> f(c) $.
Если последнее неравенство изменить на противоположное, то получим
определение (локального) максимума. Говорят, что полином
имеет в точке $ c_{} $ (локальный) экстремум10) если он имеет в этой точке либо максимум либо минимум.
Т
Теорема [Ферма для полиномов]. Если полином $ f_{}(x) $ имеет в точке
$ c_{} $ экстремум, то в этой точке его производная обращается в нуль:
$$
f'(c)=0 .
$$
Геометрический смысл этого результата пояснен в предыдущем пункте. Обращение производной полинома в нуль в точке $ c_{} $ является условием необходимым для существования в ней экстремума. Для выяснения будет ли в этой точке минимум, максимум или же экстремум отсутствует, следует обратиться к формуле Тейлора. Рассмотрим эту формулу в точке $ c_{} $ «подозрительной на экстремум», т.е. в такой, где $ f'(c)=0 $:
$$
f(x)-f(c)=frac{1}{2}f»(c)(x-c)^2+frac{1}{6}f»'(c)(x-c)^3+dots+frac{1}{n!}f^{(n)}(c)(x-c)^n
.
$$
Если $ f»(c)ne 0 $, то можем переписать эту разность в виде
$$
f(x)-f(c)=(x-c)^2underbrace{left[frac{1}{2}f»(c)+frac{1}{6}f»'(c)(x-c)+dots+frac{1}{n!}f^{(n)}(c)(x-c)^{n-2}right]}_{P(x)} .
$$
Полином $ P(x) $ в точке $ c_{} $ имеет значение $ frac{1}{2}f»(c) $, и его знак в некоторой окрестности точки $ c_{} $ полностью определяется знаком этого числа. Таким образом, в той же окрестности имеем:
$$ operatorname{sign} (f(x)-f(c)) = operatorname{sign} (f»(c)) . $$
=>
Если в точке $ c_{} $ выполнены условия $ f'(c)=0, f»(c)> 0 $ то в этой точке полином имеет локальный минимум; если же в ней выполнены условия $ f'(c)=0, f»(c)< 0 $, то в этой точке полином имеет локальный максимум.
Остался нерассмотренным случай $ f'(c)=0, f»(c)= 0 $ — крайне исключительный. Эта исключительность будет понятной если обратиться к результатам пункта о производных полинома: вероятность того, чтобы случайным образом выбранный полином $ f_{}(x) $ обладал такой точкой $ c_{} $ — нулевая. Тем не менее, надо довести исследование до конца и в этом случае. Если $ f»'(c) ne 0 $, то из той же формулы Тейлора имеем формулу:
$$
f(x)-f(c)=(x-c)^3underbrace{left[frac{1}{6}f»'(c)+dots+frac{1}{n!}f^{(n)}(c)(x-c)^{n-3}right]}_{Q(x)} .
$$
Вне зависимости от знака $ f»'(c) $ эта разность принимает значения разных знаков в произвольной окрестности точки $ c_{} $:
$$ operatorname{sign} (f(x)-f(c)) = left{ begin{array}{r}
operatorname{sign} f»'(c) quad npu x > c \
— operatorname{sign} f»'(c) quad npu x < c
end{array}
right.
$$
В точке $ c_{} $ полином не имеет ни минимума, ни максимума. По аналогии рассматривается и общий случай.
Т
Теорема. Для того, чтобы в точке $ c_{} $ полином $ f_{}(x) $ имел экстремум необходимо и достаточно, чтобы в этой точке были выполнены условия
$$ f'(c)=0,f»(c)=0,dots, f^{(k)}(c)=0,f^{(k+1)}(c)ne 0 $$
при произвольном нечетном $ k_{} $. При этом в точке $ c_{} $ полином будет иметь локальный минимум при $ f^{(k+1)}(c)>0 $ и локальный максимум при $ f^{(k+1)}(c)<0 $.
При известной точке $ c_{} $ условия теоремы удобно проверять с помощью схемы Хорнера.
Еще одним аспектом проблемы является вычисление собственно экстремальных значений полинома, т.е. величин $ f(c) $. В самом деле, поставим, например, задачу нахождения абсолютного (глобального) максимума полинома на всем множестве вещественных чисел. Такая постановка задачи имеет смысл при дополнительном условии, что полином $ f_{}(x) $ имеет четную степень и отрицательный старший коэффициент (только при этом условии при $ x to + infty $ и при $ x to -infty $ значения полинома не будут неограниченно возрастать). В соответствии с теоремой Ферма, нам нужно найти все вещественные корни производной полинома, т.е. решить уравнение $ f'(x)=0 $, подставить найденные величины в сам полином и ранжировать полученные значения по возрастанию. Вспомним, однако, что для корней полинома, как правило, не получить точных формул (см.
☞
ЗДЕСЬ ), поэтому оценить корни полинома $ f'(x) $ мы можем, разве что, приближенно. После их нахождения, приближенные значения подставляются в полином $ f_{}(x) $ и ошибка вычислений накапливается… Можно ли избежать этого накопления? — Частично, да. Для полинома $ f_{}(x) $ (четной) степени $ n_{} $ можно построить новый полином степени $ n-1 $ по новой переменной $ z_{} $:
$$ mathcal F(z) = (z-f(mu_1))times dots times(z-f(mu_{n-1})) , $$
где $ mu_1,dots,mu_{n-1} $ — корни $ f'(x) $. При этом коэффициенты нового полинома $ mathcal F(z) $ будут рационально выражаться через коэффициенты полинома $ f'(x) $ на основании теоремы Гаусса о симметрических полиномах. Подробности конструктивного построения см.
☞
ЗДЕСЬ. Как правило, максимальный вещественный корень полинома $ mathcal F(z) $ и будет давать значение $ max f(x) $.
П
Пример. Найти
$$ max_{xin mathbb R} (-x^6+12,x^2+12,x+2) , . $$
Решение. Если идти по традиционной схеме математического анализа, то мы должны сначала найти корни производной полинома $ f(x)=-x^6+12,x^2+12,x+2 $, т.е. решить уравнение
$ x^5-4,x-2=0 $. В радикалах это уравнение не решается, так что приходится применять приближенные методы поиска вещественных корней: $ mu_1approx -1.24359, mu_2 approx — 0.50849, mu_3 approx 1.51851 $. Наконец, требуется сравнить по величине $ f(mu_1), f(mu_2), f(mu_3) $.
В альтернативу этому подходу, можно избежать нахождения корней производной и построить (хоть и кропотливо, но зато безошибочно) полином
$$ mathcal F(z)= -z^5+10,z^4+472,z^3+16208,z^2-16272,z-32800 , $$
найти один его (максимальный вещественный) корень $ approx 35.6321 $ — он и будет искомым максимумом.
Проверка: $ max f = f(mu_3) approx 35.6321 $.
Подчеркнем, что указанная возможность гарантирована только полиномиальностью рассматриваемой экстремальной задачи и на произвольные (неполиномиальные) функции предлагаемый метод не распространяется.
Приводимость
Полином $ Phi(x) in mathbb A[x] $, отличный от константы, называется неприводимым в (или неприводимым над) $ mathbb A_{} $ если у $ Phi(x) $ нет нетривиального делителя в $ mathbb A[x] $. В противном случае $ Phi(x) $ называется приводимым в (или приводимым над) $ mathbb A_{} $. Полином $ Phi(x) in mathbb A[x] $ неприводим над $ mathbb A_{} $ тогда и только тогда, когда $ operatorname{HOD} (Phi(x),g(x)) equiv const in mathbb A_{} $ для любого полинома $ g(x)in mathbb A_{}[x], deg g(x) < deg Phi (x) $.
Понятие неприводимости полинома является аналогом понятия простоты числа в теории (целых) чисел.
Т
Теорема. Любой полином $ f(x) in mathbb A [x] $ можно представить в виде
$$
begin{array}{rl}
f(x) & equiv a_0 (x- lambda_1)^{{mathfrak m}_1} times dots times
(x- lambda_r)^{{mathfrak m}_r} times \
& times (x^2 +p_1x+ q_1)^{{mathfrak M}_1} times dots times
(x^2 +p_{ell}x+ q_{ell})^{{mathfrak M}_{ell}} .
end{array}
$$
где $ Phi_1(x),dots , Phi_K(x) $ — различные нормализованные и неприводимые в $ mathbb A_{} $ полиномы, а $ { {mathfrak m}_1,dots,{mathfrak m}_K } subset mathbb N $.
Последнее тождество называется каноническим разложением $ f(x)_{} $ над $ mathbb A_{} $.
П
Пример. Полином $ x^{2}-2 $ неприводим в $ mathbb Q_{} $, но приводим в $ mathbb R_{} $:
$$ x^2-2 equiv left(x-sqrt{2} right) left(x + sqrt{2} right) , .$$
Полином $ x^{2}+2 $ неприводим в $ mathbb Q_{} $, но приводим в $ mathbb C_{} $:
$$ x^2+2 equiv left(x+mathbf i sqrt{2} right) left(x — mathbf i sqrt{2} right) , .$$
Полином $ x^{4}+4 $ не имеет вещественных корней, но, тем не менее, приводим в $ mathbb Q_{} $, т.к.
$$ x^4+4equiv (x^2+2, x +2)(x^2-2, x +2) , . $$
Т
Теорема. Любой полином $ f(x)in mathbb C [x] $ степени большей $ 1_{} $ приводим в $ mathbb C_{} $.
Доказательство следует из основной теоремы высшей алгебры.
♦
Т
Теорема. Любой полином $ f(x)in mathbb R [x] $ степени большей $ 2_{} $ приводим в $ mathbb R_{} $. Неприводимыми в $ mathbb R_{} $ являются полиномы вида
$$ x+a quad mbox{и} quad x^2+p, x +q_{} quad mbox{при} quad {a,p,q } subset mathbb R, p^2 — 4q <0 , .$$
Каноническое разложение в $ mathbb R_{} $ произвольного полинома $ f(x)in mathbb R [x] $
имеет вид
$$
f(x)equiv a_0 (x- lambda_1)^{{mathfrak m}_1} times dots times
(x- lambda_r)^{{mathfrak m}_r} times
$$
$$
times (x^2 +p_1x+ q_1)^{{mathfrak M}_1} times dots times
(x^2 +p_{ell}x+ q_{ell})^{{mathfrak M}_{ell}} ,
$$
где $ lambda_{1} , dots , lambda_r $ — различные вещественные числа, а квадратные трехчлены $ {x^2 +p_1x+ q_1, dots , x^2 +p_{ell}x+ q_{ell}} subset mathbb R [x] $ — различные с отрицательными дискриминантами $ mathcal D_j=p_j^2-4q_j<0 $.
Фактически, эта теорема является переформулировкой результата, приведенного
☞
ЗДЕСЬ.
Рассмотрим теперь полином с рациональными коэффициентами:
$$f(x)=a_0x^n+a_1x^{n-1}+dots+a_n in mathbb Q [x] , a_0 ne 0 . $$
Если полином $ f_{}(x) $ приводим в $ mathbb Q_{} $, то будет приводимым и
полином $ Ccdot f_{}(x) $ при $ forall C in mathbb Q, C ne 0 $; верно и обратное.
Представив коэффициенты $ a_{0},dots, a_n $ в виде несократимых дробей,
возьмем
$$ C=operatorname{HOK}(mbox{ знаменатель } a_{0},dots, mbox{ знаменатель } a_n ) , $$
тогда приводимость (или неприводимость) полинома $ f_{}(x) $ в $ mathbb Q_{} $
эквивалентна приводимости (соответственно, неприводимости)
в $ mathbb Q_{} $ полинома $ Ccdot f(x) $ с целыми коэффициентами. Поэтому в дальнейшем
будем сразу предполагать
$ f(x)in mathbb Z[x] $. Можно ли пойти дальше и утверждать, что приводимость
такого полинома в $ mathbb Q_{} $ эквивалентна приводимости его в $ mathbb Z_{} $, т.е.
полином раскладывается на произведение полиномов меньших степеней с рациональными коэффициентами тогда и
только тогда, когда он раскладывается на произведение полиномов меньших степеней с целыми коэффициентами?
Т
Теорема. Полином $ f(x)in mathbb Z[x] $ неприводимый в $ mathbb Z_{} $ будет неприводимым и в $ mathbb Q_{} $.
Приводимость полинома с целыми коэффициентами $ f(x)in mathbb Z[x] $ в $ mathbb Z_{} $ означает, что он раскладывается на два множителя с целыми коэффициентами:
$$
a_0x^n+a_1x^{n-1}+ dots + a_n equiv (b_0x^k+b_1x^{k-1} + dots + b_k)
(c_0x^{ell}+c_1x^{ell-1} + dots + c_{ell})
$$
при $ k<n, ell < n, k+ell = n $. Для практического решения вопроса о существовании такого разложения, сначала установим условия его существования для случая, когда один из
сомножителей — линейный полином.
Т
Теорема. Если полином
$$f(x)=a_0x^n+a_1x^{n-1} + dots + a_n in mathbb Z[x] , a_0 ne 0,a_n ne 0 $$
имеет рациональный корень, представленный в виде несократимой дроби $ lambda=mathfrak p/mathfrak q,, {{mathfrak p}, {mathfrak q}}subset mathbb Z $, то ее числитель $ {mathfrak p} $ является делителем свободного члена $ a_{n} $, а знаменатель $ {mathfrak q}_{} $ — делителем старшего коэффициента $ a_{0} $.
Доказательство
☞
ЗДЕСЬ
.
♦
Итак, для поиска рациональных корней полинома $ f_{}(x) $ надо выписать множество всех натуральных делителей $ {{mathfrak p}_1=1,dots,{mathfrak p}_{s}} $ числа $ |a_n| $, и множество всех натуральных делителей $ {{mathfrak q}_1=1,dots,{mathfrak q}_{t}} $ числа $ |a_0| $, и после этого организовать вычисление $ fleft(pm {mathfrak p}_j/{mathfrak q}_i right) $
при всех возможных значениях индексов $ jin {1,dots,s }, i in {1,dots, t } $. Если ни одно из полученных чисел не равно нулю, то рациональных корней полином не имеет.
=>
Если нормализованный полином $ f(x) in mathbb Z[x] $ имеет рациональные корни, то они — только целые и находятся среди делителей свободного члена.
П
Пример. Найти рациональные корни полинома
$$f(x)=6,x^6-55, x^5+331, x^3-86,x^4+289,x^2-25,x+350 . $$
Решение. Выписываем множества делителей
для $ 350 : quad {1,, 2 ,, 5 ,, 7,, 10,, 14,, 25
,, 35,, 50,, 70,, 175 } $ и для $ 6 : {1,, 2,, 3,, 6 } $.
Составляем всевозможные несократимые дроби:
$$ left{
begin{array}{ccccccccccc}
1,& 2 ,& 5 ,& 7,& 10,& 14,& 25 ,& 35,& 50,& 70,& 175, \
{scriptstyle 1}/{scriptstyle 2},& &
{scriptstyle 5}/{scriptstyle 2} ,& {scriptstyle 7}/{scriptstyle 2}, &
& & {scriptstyle 25}/{scriptstyle 2}
& {scriptstyle 35}/{scriptstyle 2}, & & &
{scriptstyle 175}/{scriptstyle 2}, \
{scriptstyle 1}/{scriptstyle 3},& {scriptstyle 2}/{scriptstyle 3},&
{scriptstyle 5}/{scriptstyle 3},& {scriptstyle 7}/{scriptstyle 3},&
{scriptstyle 10}/{scriptstyle 3},&
{scriptstyle 14}/{scriptstyle 3},& {scriptstyle 25}/{scriptstyle 3},&
{scriptstyle 35}/{scriptstyle 3},& {scriptstyle 50}/{scriptstyle 3},&
{scriptstyle 70}/{scriptstyle 3},& {scriptstyle 175}/{scriptstyle 3}, \
{scriptstyle 1}/{scriptstyle 6},& &
{scriptstyle 5}/{scriptstyle 6}, & {scriptstyle 7}/{scriptstyle 6}, &
& &
{scriptstyle 25}/{scriptstyle 6},& {scriptstyle 35}/{scriptstyle 6},& &
& {scriptstyle 175}/{scriptstyle 6}
end{array}
right}
$$
Подставляем все эти значения со знаками $ +_{} $ и $ — $ в $ f(x)_{} $ и проверяем (например, с использованием схемы Хорнера ) на равенство нулю.
Ответ. $ 10,, {scriptstyle 5}/{scriptstyle 2},, -{scriptstyle 7}/{scriptstyle 3} $.
Из того факта, что полином $ f(x) in mathbb Z[x] $ не имеет рациональных корней не
следует, что он неприводим в $ mathbb Z_{} $: в разложении $ f(x)equiv f_{1}(x)f_2(x) $ сомножители
могут оказаться и нелинейными — например, как указанный выше полином $ x^{2}+4 $. Как найти эти сомножители?
§
Подробнее о приводимости и неприводимости полиномов в
$ mathbb Z_{} $
☞
ЗДЕСЬ.
Локализация корней
Границы расположения корней
Т
Теорема [Маклорен].11) Все корни полинома
$$f(x)=a_0x^n+a_1x^{n-1}+dots+a_n in mathbb C [x], a_0 ne 0$$
удовлетворяют неравенству
$$
|lambda_j|<1+ A,quad npu quad A=
max_{kin{1,dots,n}} left| frac{a_k}{a_0} right| .
$$
Оценка Маклорена довольно грубая и для корней полиномов с вещественными коэффициентами
чаще применяется другой критерий.
Т
Теорема [Лагранж]. Все вещественные корни полинома
$$f(x)=a_0x^n+a_1x^{n-1}+dots+a_n in mathbb R [x], a_0>0$$
удовлетворяют неравенству
$$
lambda_j<1+ sqrt[r]{A},quad npu quad
A=max_{kin {1,dots,n}} left| frac{a_k}{a_0} right| ,
$$
где $ r $ — номер первого отрицательного коэффициента.
Оценка Лагранжа, являясь оценкой вещественных корней сверху, фактически ограничивает возможные положительные корни.
?
А как получить нижнюю оценку возможных отрицательных корней?
Это можно сделать с помощью преобразования
1
полинома, рассмотренного
☞
ЗДЕСЬ.
В самом деле, отрицательные корни полинома $ f(x) $ являются положительными
корнями полинома $ f(-x) $. Найдя верхнюю границу последних с помощью любого
из приведенных выше критериев, мы меняем у нее знак и в результате получаем
нижнюю оценку отрицательных корней $ f(x) $.
Преобразование
3
,
рассмотренное в том же пункте, позволяет получить отдельные
интервалы для возможных положительных и отрицательных корней.
П
Пример. Найти оценки положительных и отрицательных корней полинома
$$
f(x)=x^8+2, x^7-2, x^6 +6, x^5 -80, x^4 + 100, x^3 -400, x^2 + 15, x +30
.
$$
Решение. Сначала ограничим положительные корни сверху. В теореме
Лагранжа имеем $ r=2,, A=400 $, следовательно $ lambda_j<21 $.
Теперь ограничим отрицательные корни снизу.
$$
f(-x)=x^8-2, x^7-2, x^6 -6, x^5 -80, x^4 — 100, x^3 -400, x^2 — 15, x +30
,
$$
и теперь $ r=1,, A=400 $, следовательно $ -lambda_j<401 Rightarrow
lambda_j > -401 $. Формируем полином
$$
f^{ast}(x) = x^8f(1/x)=
1+2, x-2, x^2 +6, x^3 -80, x^4 + 100, x^5 -400, x^6 + 15, x^7 +30,x^8
$$
для оценки нижней границы положительных корней:
$$1/lambda_j < 1 + sqrt{400/30}
Rightarrow lambda_j > frac{1}{1 +sqrt{40/3}}
.
$$
Наконец, оценка Лагранжа для полинома $ f^{ast}(-x) $:
$$-1/lambda_j < 1+ 40/3
Rightarrow lambda_j < — frac{1}{1 +40/3}
$$
позволяет ограничить сверху отрицательные корни полинома $ f(x) $.
Ответ. Положительные корни находятся в интервале $ ]0.214, ,21[ $,
а отрицательные — в интервале $ ]-401,-0.06[ $.
Проверка. Вещественные корни полинома:
$$-4.324358112, -0.2473416673, 0.3027275675, 2.716544138 .$$
Правило знаков Декарта
Для полиномов с вещественными коэффициентами следующий полезный результат очень прост в проверке.
Будем использовать сокращение $ operatorname{nrr} $ для числа вещественных корней12).
Т
Теорема [Декарт]. Число положительных корней полинома
$$f(x)=a_0x^n+a_1x^{n-1}+dots+a_{n-1}x+a_n in mathbb R[x], quad (a_0> 0,a_n ne 0)$$
с учетом их кратностей равно или меньше на четное число числа знакоперемен в ряду его коэффициентов:
$$
operatorname{nrr} { f(x)=0 mid x>0 } = {mathcal V}(a_0,a_1,dots,a_n)-2 k , quad
kin {0,1,2, dots } .
$$
Доказательство
☞
ЗДЕСЬ.
С помощью преобразования корней полинома (см. пункт
1
☞
ЗДЕСЬ ) можно доказать следствие:
=>
Число отрицательных корней полинома
$$f(x)=a_0x^n+a_1x^{n-1}+dots+a_{n-1}x+a_n, quad (a_0> 0,a_n ne 0)$$
с учетом их кратностей можно оценить по формуле
$$
operatorname{nrr} { f(x)=0 mid x<0 } = {mathcal V}(a_0,-a_1,a_2,dots,(-1)^na_n)-2 k’
,
$$
а если среди коэффициентов $ a_{j} $ нет нулевых, то — по формуле
$$
operatorname{nrr} { f(x)=0 mid x<0 } = {mathcal P}(a_0,a_1,a_2,dots,a_n)-2 k’ ,
$$
где $ k’in {0,1,2, dots } $ и $ {mathcal P} $ обозначает число знакопостоянств.
П
Пример. Оценить число положительных и число отрицательных корней
полинома
$$ f(x)=x^5-2, x^4-8,x^3-x^2-9, x+1 , .$$
Решение. $ {mathcal V}(1,-2,-8,-1,-9,1)=2 $.
$$ operatorname{nrr} { f(x)=0 mid x>0 } =2-2k ge 0
,$$
следовательно $ f_{}(x) $ имеет либо два, либо ни одного положительного
корня. Далее, по следствию:
$$
operatorname{nrr} { f(x)=0 mid x<0 } = {mathcal P}(1,-2,-8,-1,-9,1)=3-2k’ge 0
,
$$
следовательно $ f_{}(x) $ имеет либо три, либо один отрицательный корень.
Проверка. Вещественные корни полинома: $ -2.23233, 0.10863, 4.12369 $.
=>
Если каким-то образом заранее известно, что все корни полинома вещественны, то число положительных из них определяется по правилу знаков Декарта однозначно:
$$ operatorname{nrr} { f(x)=0 mid x>0 } = {mathcal V}(a_0,a_1,dots,a_n) . $$
П
Пример. Характеристический полином вещественной симметричной матрицы удовлетворяет условию следствия. См.
☞
ЗДЕСЬ.
Не смотря на кажущуюся грубость (приблизительность) оценки, правило знаков Декарта позволяет иногда делать достаточно глубокие выводы относительно корней полинома. В частности, из него следует, что чем больше коэффициентов полинома $ f_{}(x) $ обращается в нуль13), тем меньше у него потенциальных возможностей иметь вещественные корни!
Корни полинома в областях комплексной плоскости
Задача. Для полинома14) $ f(z) $ получить точную информацию о числе его корней в заданной области $ mathbb S $ комплексной плоскости $ mathbb C $.
Оказывается, для достаточно широкого класса областей $ mathbb S $ эту информацию можно получить без
применения численных, т.е. приближенных методов. Существуют алгоритмы,
позволяющие за конечное число элементарных алгебраических операций
($ +,-,times, div $) над коэффициентами $ f(z) $ установить количество корней
этого полинома в таких областях, как, к примеру,
$$
begin{array}{ccl}
mathbb S&=&{ zin mathbb R big| a<z<b } npu {a,b} subset mathbb R , \
&& \
mathbb S&=&{ zin mathbb C big| Re e (z) <0 } , \
&& \
mathbb S&=&{ zin mathbb C big| |z| <1 } .
end{array}
$$
Интервал вещественной оси
Задача. Для полинома $ f(x)_{}in mathbb R[x] $ установить точное число его
корней на заданном интервале $ ]a,b[ $:
$$ operatorname{nrr} {f(x)=0 | a<x<b } .$$
Система полиномов Штурма
Для полинома $ f_{}(x) $ система полиномов
$$
f_0(x)equiv f(x), f_1(x),dots, f_K(x)
$$
называется системой полиномов Штурма15) на заданном интервале $ ]a,b[ $ если на этом
интервале
1.
cоседние полиномы $ f_j(x) $ и $ f_{j+1}(x) $ не имеют общих корней;
2.
$ f_K(x)ne 0 $;
3.
если $ f_j(x_0)=0 $ при $ x_0 in ]a,b[ $ и $ jin {1,dots,k-1} $, то
числа $ f_{j-1}(x_0) $ и $ f_{j+1}(x_0) $ имеют разные знаки:
$ f_{j-1}(x_0)f_{j+1}(x_0)<0 $;
4.
произведение $ f_{0}(x)f_{1}(x) $ меняет знак с отрицательного на положительный когда $ x_{} $, возрастая, проходит корень $ lambdain ]a,b[ $ полинома $ f_0(x)equiv f(x) $.
Число знакоперемен
$$
{mathcal V}_x= {mathcal V}(f_0(x), f_1(x),dots, f_K(x))
$$
при $ x_{} $ возрастающем от $ a_{} $ к $ b_{} $, будет меняться когда $ x_{} $ проходит через
корень какого-либо полинома системы. Доказывается, что это число может
разве лишь уменьшаться, и уменьшается на единицу тогда и только тогда,
когда $ x_{} $ проходит через корень начального полинома системы, т.е. через корень $ f(x)_{} $.
Т
Теорема [Штурм]. Если $ f(a)ne 0, f(b)ne 0 $, и система $ f_0(x), f_1(x),dots, f_K(x) $
является системой полиномов Штурма для $ f(x_{}) $, то
$$
operatorname{nrr} {f(x)=0 mid a<x<b }= {mathcal V}_a — {mathcal V}_b=
$$
$$
={mathcal V}(f_0(a), f_1(a),dots, f_K(a))-
{mathcal V}(f_0(b), f_1(b),dots, f_K(b)) .
$$
Самый распространенный способ построение системы полиномов Штурма основан на алгоритме Евклида нахождения наибольшего общего делителя полинома $ f_{}(x) $ и его производной $ f{‘}(x) $.
Предположим, что $ f_{}(x) $ не имеет кратных корней. Это равносильно
тому, что $ operatorname{HOD} (f(x),f'(x))= const ne 0 $ (см.
☞
ЗДЕСЬ ). Установить этот факт можно по алгоритму Евклида нахождения $ operatorname{HOD} $. Оказывается, что в качестве полиномов системы Штурма можно взять последовательность остатков из алгоритма Евклида, если только домножить некоторые из них на $ -1_{} $. Именно, возьмем
$$f_1(x) equiv f'(x) .$$
Поделим $ f_{0}(x) equiv f(x) $ на $ f_{1}(x) $ и обозначим через $ f_{2}(x) $ остаток,
домноженный на $ -1_{} $:
$$f_0(x)equiv q_1(x) f_1(x)-f_2(x), quad deg f_2 < n-1 .$$
Поделим $ f_{1}(x) $ на $ f_{2}(x) $ и обозначим через $ f_{3}(x) $ остаток,
домноженный на $ -1_{} $:
$$f_1(x)equiv q_2(x) f_2(x)-f_3(x), quad deg f_3 < deg f_2 .$$
Продолжаем алгоритм далее, в конце концов дойдем до последнего ненулевого
остатка $ f_{K}(x) $, который совпадает с $ operatorname{HOD} (f(x),f'(x)) $. По предположению, этот последний $ f_{K}(x)equiv const ne 0 $.
§
Если на интервале $ ]a,b[ $ полином $ f_{}(x) $ имеет корень четной кратности, то построение системы полиномов Штурма невозможно.
П
Пример. Отделить корни полинома $ f (x)=x^{4}-x-1 $.
Решение. $ f_1=f'(x)=4, x^{3}-1 $.
$$
begin{array}{rrrrrr|l}
x^4+ &{}0x^3 +&{}0x^2 &-x &-1 &&,4, x^3-1\
x^{4}+& & &
— frac{scriptstyle 1}{scriptstyle 4} x & &&,
overline{quad frac{scriptstyle 1}{scriptstyle 4}, x quad } \
hline
& & &- frac{scriptstyle 3}{scriptstyle 4} , x &-1 \
end{array}
$$
Полагаем $ f_2(x)= frac{scriptstyle 3}{scriptstyle 4} , x+1 $.
$$
begin{array}{rrrrr|l}
4x^3 +&{}0x^2 &+0x &-{}1 &&frac{scriptstyle 3}{scriptstyle 4}, x+1\
4x^3 +&frac{scriptstyle 16}{scriptstyle 3}, x^2 & & &
& overline{ frac{scriptstyle 16}{scriptstyle 3},x^{2}-frac{scriptstyle 64}{scriptstyle 9}, x+
frac{scriptstyle 256}{scriptstyle 27}} \
hline
&-frac{scriptstyle 16}{scriptstyle 3}, x^{2} & &{}-1 \
&-frac{scriptstyle 16}{scriptstyle 3}, x^2 &-frac{scriptstyle 64}{scriptstyle 9}, x & \
hline
& & frac{scriptstyle 64}{scriptstyle 9}, x & -1 \
& & frac{scriptstyle 64}{scriptstyle 9}, x & +frac{scriptstyle 256}{scriptstyle 27} \
hline
& & & — frac{scriptstyle 283}{scriptstyle 27}
end{array}
$$
Полагаем $ f_3(x)=frac{scriptstyle 283}{scriptstyle 27} $.
$ x_{} $ | $ f_{}(x) $ | $ f_{1}(x) $ | $ f_{2}(x) $ | $ f_{3}(x) $ | $ {mathcal V}_x $ | Комментарии |
---|---|---|---|---|---|---|
$ -infty $ | $ +_{} $ | — | — | $ +_{} $ | $ 2_{} $ | сначала устанавливаем |
$ +infty $ | $ +_{} $ | $ +_{} $ | $ +_{} $ | $ +_{} $ | $ 0_{} $ | число вещественных корней, |
$ 0_{} $ | — | — | $ +_{} $ | $ +_{} $ | $ 1_{} $ | затем положительных и отрицательных, |
$ -1 $ | $ +_{} $ | — | $ +_{} $ | $ +_{} $ | $ 2_{} $ | затем просто дробим |
$ 1_{} $ | — | $ +_{} $ | $ +_{} $ | $ +_{} $ | $ 1_{} $ | промежутки, отыскивая такие, |
$ 2_{} $ | $ +_{} $ | $ +_{} $ | $ +_{} $ | $ +_{} $ | $ 0_{} $ | чтобы на каждом $ {mathcal V}_{a}-{mathcal V}_{b}=1 $ |
Ответ. Полином $ f_{}(x) $ имеет два различных вещественных корня, один на
интервале $ ]-1,0_{}[ $, другой — на $ ]1,2_{}[ $.
§
Более подробный анализ алгоритма, а также альтернативный способ локализации корней полинома, основанный на ганкелевых матрицах
☞
ЗДЕСЬ
Левая полуплоскость: устойчивость
Полином $ f(z) $ с комплексными коэффициентами называется устойчивым, если все его корни удовлетворяют условию $ {mathfrak Re}(z)<0 $.
Понятие устойчивого полинома важно в теории оптимального управления.
Т
Теорема [Раус, Гурвиц]. Для устойчивости
полинома $ f(z)=a_0z^n+a_1z^{n-1}+dots+a_n $ с вещественными коэффициентами и $ a_0 > 0 $ необходимо и достаточно, чтобы были выполнены неравенства
$$
a_1>0, left| begin{array}{ll} a_1 & a_3 \
a_0 & a_2
end{array}
right|>0,
left| begin{array}{lll} a_1 & a_3 & a_5\
a_0 & a_2 & a_4 \
0 & a_1 & a_3
end{array}
right|>0,dots,
left| begin{array}{lllcl} a_1 & a_3 & a_5 & dots & 0\
a_0 & a_2 & a_4 & dots & 0 \
0 & a_1 & a_3 & dots & 0 \
0 & a_0 & a_2 & dots & 0 \
dots & & & ddots & dots \
dots & & & dots & a_n
end{array}
right|>0 .
$$
Условия теоремы Рауса-Гурвица являются избыточными: примерно от половины неравенств можно избавиться. См.
☞
Теорема Льенара-Шипара ).
Единичный круг
Единичным кругом на комплексной плоскости назовем круг $ |z|le 1 $.
Задача. Найти необходимые и достаточные условия на коэффициенты
полинома $ f(z)=a_0z^n+dots+ a_n $, при которых все его корни $ lambda_1,dots, lambda_n $
находятся внутри единичного круга, т.е. удовлетворяют условию $ |z|<1 $.
По аналогии с предыдущим случаем, иногда такой полином называют дискретно устойчивым; также употребляется и название устойчивый по Шуру.
Решить эту задачу можно сведением ее к задаче установления критерия
устойчивости некоторого вспомогательного полинома.
Т
Теорема. Замена переменной
$$ z = frac{w+1}{w-1} $$
производит взаимно-однозначное отображение внутренности единичного круга
плоскости $ z $ в левую полуплоскость плоскости $ w $.
Т
Теорема. Полином $ f(z)=a_0z^n+dots+a_n $ имеет все свои корни
лежащими внутри единичного круга тогда и только тогда, когда полином
$$
F(w) = (w-1)^n fleft( frac{w+1}{w-1} right) =
a_0(w+1)^n+a_1(w+1)^{n-1}(w-1)+dots+a_n(w-1)^n
$$
будет устойчив.
П
Пример. Определить все вещественные значения параметра
$ {color{Red} alpha } $, при которых полином
$$f(z)=3,z^3+{color{Red} alpha } , z^2+z+2 $$
будет иметь все корни лежащими внутри единичного круга.
Решение. Строим полином из теоремы
$$
F(w)=underbrace{(6+{color{Red} alpha })}_{A_0}w^3+underbrace{(2+{color{Red} alpha })}_{A_1}w^2
+underbrace{(14-{color{Red} alpha })}_{A_2}w+underbrace{2-{color{Red} alpha }}_{A_3} .
$$
Теорема Льенара-Шипара дает условия устойчивости $ F(w) $
в виде
$$A_0>0, A_1>0, A_2>0, A_3>0, A_1A_2-A_0A_3>0 ; $$
и
$$A_0<0, A_1<0, A_2<0, A_3<0, A_1A_2-A_0A_3>0 .$$
Подставляя сюда выражения для коэффициентов, получим, что первая система ограничений
имеет решение $ -1< {color{Red} alpha } < 2 $, вторая же — несовместна.
Косвенной проверкой истинности полученного интервала могут служить его границы:
$$
f(z)equiv
left{ begin{array}{rl}
(3z+2)(z^2-z+1)
& npu {color{Red} alpha }=-1 ; \
(z+1)(3,z^2-z+2)
& npu {color{Red} alpha }=2 .
end{array}
right.
$$
В обоих случаях имеются корни, удовлетворяющие условию $ |z|=1 $: в первом
случае это будет комплексно-сопряженная пара
$ 1/2 pm {mathbf i} sqrt{3}/2 $,
во втором — корень $ (-1) $.
Ответ. $ -1< {color{Red} alpha } < 2 $.
Известен еще один результат, позволяющий решить поставленную задачу.
Т
Теорема [Шур, Кон]. Полином $ f(z)=a_0z^n+dots+a_n $ с вещественными коэффициентами имеет все свои корни лежащими внутри единичного круга тогда и только тогда, когда
$$
|mbox{ старший коэффициент } f(z) |>|mbox{ свободный член } f(z)| ,
$$
т.е. $ |a_0| > |a_n| $, и полином
$$
f_1(z) = frac{a_0f(z)-a_nf^{*}(z)}{z} quad npu quad f^{*}(z) = z^nf(1/z) equiv a_0+a_1z+dots+a_nz^n
$$
имеет все свои корни лежащими внутри единичного круга.
На первый взгляд, конструктивность этого результата не очень очевидна:
исходная задача для полинома $ f(z) $ сводится к аналогичной задаче для
полинома $ f_1(z) $. Обратим, однако, внимание на то, что полином
$$
begin{matrix}
f_1(z)&=& left[a_0(a_0z^n+dots+a_n)-a_n (a_0+a_1z+dots+a_nz^n) right] big/ z = \
&=& left[(a_0^2-a_n^2)z^n+(a_0a_1-a_{n-1}a_n)z^{n-1} + dots +
(a_0a_{n-1}-a_{1}a_n)z right] big/ z = \
&=& (a_0^2-a_n^2)z^{n-1}+(a_0a_1-a_{n-1}a_n)z^{n-2} + dots +
(a_0a_{n-1}-a_{1}a_n)
end{matrix}
$$
имеет степень меньшую, чем $ deg f $. Таким образом, алгоритм конструктивен
в том смысле, что он сводит исходную задачу к более простой. Применяя
к полиному $ f_1(z) $ снова критерий Шура-Кона, получим следующее необходимое
условие
$$
|mbox{ старший коэффициент } f_1(z) | > | mbox{ свободный член }
f_1(z)|
iff quad |a_0^2-a_n^2| > |a_0a_{n-1}-a_{1}a_n| ,
$$
при выполнении которого дальнейшему исследованию подлежит полином
$$
f_2(z) = frac{(a_0^2-a_n^2)f_1(z)-(a_0a_{n-1}-a_{1}a_n)f^{*}_1(z)}{z} .
$$
Продолжая процедуру, за конечное число шагов мы дойдем до полинома первой
степени. Окончательно, необходимые и достаточные условия нахождения
всех корней полинома $ f(z) $ степени $ n_{} $ внутри единичного круга получаются
объединением $ n_{} $ условий
$$
|mbox{ старший коэффициент } f(z) |>|mbox{ свободный член } f(z)|
,
$$
$$
|mbox{ старший коэффициент } f_1(z) | > |mbox{ свободный член } f_1(z)|
,
$$
$$
vdots qquad qquad qquad vdots
$$
$$
|mbox{ старший коэффициент } f_{n-1}(z) |>|mbox{ свободный член }
f_{n-1}(z)| .
$$
§
Пример на применение этой теоремы
☞
ЗДЕСЬ.
Численные методы поиска корней полинома
Как упоминалось
☝
ВЫШЕ, корни полинома $ f_{}(z) $, как правило,
не выражаются в радикалах уже при $ deg f=5 $ . Но даже в тех случаях, когда
выражаются, как, например,
$$lambda=frac{sqrt{5}-1 + sqrt{10- sqrt{20}}}{2} quad mbox{ для }
f(x)=x^4+2x^3-6x^2-2x+1 ,
$$
толку от такого представления мало: на каком интервале вещественной оси лежит $ lambda $?
Поэтому наряду с поиском аналитических формул для корней полиномов
практический интерес представляет нахождение их приближенных значений.
Эту задачу будем решать, в основном, для полиномов над $ mathbb R_{} $ (т.е. полиномов с вещественными коэффициентами), с которыми чаще всего и приходится иметь дело на практике.
Задачу поиска мнимых корней таких полиномов можно свести к поиску вещественных решений системы алгебраических уравнений от двух переменных и специальными приемами свести к поиску вещественных корней одного уравнения от одной переменной. Подробнее см.
☞
ЗДЕСЬ. Имеются и другие способы поиска мнимых корней, (например, метод Греффе-Лобачевского), но я о них еще нескоро напишу.
Нас, прежде всего, будут интересовать именно вещественные корни полиномов. В дальнейшем переменную этих полиномов будем обозначать через $ x_{} $ и считать ее вещественной. Для поиска вещественных корней полинома, как правило, требуется их предварительно отделить, т.е. найти интервалы
$ ]a,b_{}[ $, каждый из которых содержит только один корень $ f_{}(x) $. Поиск такого интервала
можно производить разными способами, самый общий из которых изложен
☝
ВЫШЕ. Однако, для предварительного понимания изложенных ниже методов, достаточно будет ориентироваться на теорему Больцано: полином имеет корень на $ ]a,b_{}[ $, если на концах интервала он принимает значения разных знаков.
Этот корень будет единственным, если дополнительно предположить, что функция $ f_{}(x) $ монотонна на $ ]a,b_{}[ $.
Последнее условие будет очевидно выполнено, если производная $ f^{prime}(x) $ не меняет знака на $ ]a,b_{}[ $, т.е. полином $ f^{prime}(x) $
не имеет корней на рассматриваемом интервале. Действительно, если
предположить существование двух корней у $ f_{}(x) $ на $ ]a,b_{}[ $, то, по соображениям, упомянутым
☞
ЗДЕСЬ16), должна существовать точка этого интервала, в которой $ f^{prime}(x) $ обращается в нуль. Анализ знака $ f^{prime}(x) $ на $ ]a,b_{}[ $ часто удается произвести элементарными рассуждениями.
Метод Руффини-Хорнера
Метод Лагранжа (непрерывных дробей)
Метод Ньютона
Универсальный метод: подходит не только для полиномов.
Рассматривается
☞
ЗДЕСЬ.
Метод Бернулли и его развитие
Подходит для полиномов в том числе и с комплексными коэффициентами (и мнимые корни тоже ищет). Не предполагает предварительного отделения корней. Рассматривается
☞
ЗДЕСЬ.
Характеристический полином матрицы
рассматривается
☞
ЗДЕСЬ
Полином нескольких переменных
рассматривается
☞
ЗДЕСЬ
Задачи
Источники
Формулы для многочленов и операции над многочленами
Напомним
какое выражение называется многочленом.
Одночленом
степени (здесь )
называется следующее выражение
где —
коэффициент, —
переменная.
Многочленом —
ой степени (здесь )
с вещественными коэффициентами называется
следующее выражение:
здесь —
переменная. Можно сказать, что многочлен
— это линейная комбинация одночленнов
разных степеней.
Операции
над многочленами:
Пусть два
многочлена степени и соответственно,
т.е.
предположим,
что .
-
Сумма
и разность многочленов: .
Суммой
и разностью многочленов и называется
следующий многочлен:
Степень
полученного многочлена не
превосходит максимальной степени
многочленов и .
-
Умножение
на одночлен: .
Умножим
одночлен на
многочлен :
т.е.
каждый член многочлена умножается на
одночлен. Здесь применяем правило работы
со степенями.
-
Умножение
многочленов: .
Умножим
многочлен на :
В
итоге свели операцию умножения многочленов
к умножению одночлена на многочлен.
Заметим, что при умножении многочленов
степени и получается
многочлен степени .
При умножении многочленов необходимо
каждый член одного многочлена умножить
на каждый член другого многочлена.
-
Деление
многочленов: .
Разделим
многочлен на ,
т.е. представим выражение в
следующем виде:
где —
частное от деления, —
делимое, —
делитель, —
остаток.
При
делении многочлена на
многочлен ,
где ,
нужно найти многочлены и такие,
чтобы выполнялось равенство
Существует
много способов поиска таких многочленов.
В основном используются школьные
способы, а именно, деление «уголком»
(«столбиком») и метод неопределенных
коэффициентов (будут рассмотрены ниже).
2. Деление с остатком. Теорема Безу
Деление
с остатком
Определение.Пустьи—многочлены,.
Будем говорить, чтоподелен
нас
остатком, еслипредставлен
в виде,
гдеи—
многочлены, причем.
Полином называется
остатком от деленияна,—
неполным частным.
Пример..
.
Теорема.(о
делении с остатком). Пустьи—
полиномы над полем,.
Тогда существуют единственные
многочленыинад
полемтакие,
чтои.
Доказательство.Существование.
Пусть .Положим.
.
Предположим,
что теорема верна не для любого
полинома (фиксируем).
Среди всех многочленов,
для которых теорема неверна, выберем
многочлен наименьшей степени и обозначим
его:
Пусть .
Положим
Коэффициент
при в
многочленеравен.
Следовательно,.
Значит, для многочленатеорема
верна. Существуют такиеи,
что.
Тогда
Получили
противоречие с тем предположением, что
есть многочлены, для которых теорема
неверна.
Единственность.
Предположим, что
1) .
Значит,,
2) .
Получили
противоречие. Этот случай невозможен.
Теорема
Безу
Теорема.Остаток
от деления многочленана
многочленравен.
Доказательство.Степень
остатка меньше 1, следовательно, остаток
— константа. Пусть—
остаток.
Это
равенство верно при любых
значениях .Положим:
Задачи.
1. Проверьте,
выполняются ли условия:
1) делится
на;
2)делится
на.
2.Докажите,
что
делится
на .
3.Найдите
значения параметрови,
при которых
делится
на .
4.Найдите
все значения параметрови,
такие, что остаток от деления
на равен.
5.Найдите
все натуральные,
такие, что
делится
на .
6.Известно,
что остаток от деления полиноманаравен
2, от делениянаравен
1. Найдите остаток от деленияна.
7.Найдите
остаток от деления многочленана.
8.Полиномс
целыми коэффициентами принимает значение
5 в пяти различных целых точках. Может
ли он иметь целый корень?
Комментарии(RSS) |Трекбек
-
Відношення
подільності. Схема Горнера.
Схема
Горнера.
Схема
Горнера– это алгоритм деления
(деление схемой Горнера) многочленов,
записываемый для
частного случая,
если частное равно двучлену .
Построим
этот алгоритм:
Предположим,
что —
делимое
—
частное (его степень, вероятно, будет
на удиницу меньше),
r— остаток (т.к. деление осуществляется
на многочлен1-ойстепени, то
степень остатка будет на
единицу меньше,
т.е. нулевая, таким образом, остаток это
константа).
По
определению деления с остатком P(x)
= Q(x) (x–a) + r. После подстановки
выражений многочленов
получаем:
Раскрываем
скобки и приравниваем коэффициенты при
одинаковых степенях, после чего выражаем
коэффициенты
частного через коэффициенты делимого
и делителя:
Удобно
вычисления сводить в такую таблицу:
В
ней выделены те клетки, содержимое
которых участвует в вычислениях на
очередном шаге.
Схема
Горнера примеры:
Пусть
надо поделить многочлен на
двучленx–2.
Составляем
таблицу с двумя строками. В 1 строку
выписываем коэффициенты нашего
многочлена. Во
второй
строке будем получать коэффициенты
неполного частного по следующей схеме:
в первую очередь
переписываем
старший коэффициент данного многочлена,
далее, дабы получить очередной коэффициент,
умножаем
последний найденный на а=2и складываем с соответствующим
коэффициентом
многочлена F(x).
Самый последний коэффициент будет
остатком, а все предыдущие – коэффициентами
неполного
частного.
-
Найбільший
спільний дільник (НСД). Алгоритм Евкліда.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Download Article
Download Article
A polynomial is an expression made up of adding and subtracting terms. A terms can consist of constants, coefficients, and variables. When solving polynomials, you usually trying to figure out for which x-values y=0. Lower-degree polynomials will have zero, one or two real solutions, depending on whether they are linear polynomials or quadratic polynomials. These types of polynomials can be easily solved using basic algebra and factoring methods. For help solving polynomials of a higher degree, read Solve Higher Degree Polynomials.
-
1
Determine whether you have a linear polynomial. A linear polynomial is a polynomial of the first degree.[1]
This means that no variable will have an exponent greater than one. Because this is a first-degree polynomial, it will have exactly one real root, or solution.[2]
-
2
Set the equation to equal zero. This is a necessary step for solving all polynomials.[3]
- For example,
Advertisement
-
3
Isolate the variable term. To do this, add or subtract the constant from both sides of the equation.[4]
A constant is a term without a variable.[5]
-
4
Solve for the variable. Usually you will need to divide each side of the equation by the coefficient. This will give you the root, or solution, to your polynomial.[6]
Advertisement
-
1
Determine whether you have a quadratic polynomial. A quadratic polynomial is a polynomial of the second degree.[7]
This means that no variable will have an exponent greater than 2. Because this is a second-degree polynomial, it will have two real roots, or solutions.[8]
-
2
Make sure the polynomial is written in order of degree. This means that the term with the exponent of is listed first, followed by the first-degree term, followed by the constant.[9]
-
3
Set the equation to equal zero. This is a necessary step for solving all polynomials.[10]
- For example, .
-
4
Rewrite the expression as a four-term expression. To do this, split up the first-degree term (the term). You are looking for two numbers whose sum is equal to the first degree coefficient, and whose product is equal to the constant. [11]
-
5
Factor by grouping. To do this, factor out a term common to the first two terms in the polynomial.[12]
-
6
Factor the second group. To do this, factor out a term common to the second two terms in the polynomial.[13]
-
7
Rewrite the polynomial as two binomials. A binomial is a two-term expression. You already have one binomial, which is the expression in parentheses for each group. This expression should be the same for each group. The second binomial is created by combining the two terms that were factored out of each group.[14]
-
8
Find the first root, or solution. To do this, solve for in the first binomial.[15]
-
9
Find the second root, or solution. To do this, solve for in the second binomial.[16]
Advertisement
Add New Question
-
Question
How did you get -2 in the second binomial?
The original equation was 5x + 2 = 0. Then 2 was subtracted from both sides of the equation in order to begin the process of solving for x. This resulted in 5x = -2.
-
Question
What do I get if I add x — 2 and 1/x?
You get x — 2 + 1/x.
-
Question
For trinomials, would I turn them into a quadratic polynomials and then binomials?
Yes. To factor a trinomial, you must split it into a quadratic polynomial.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
Remember the order of operations while you work — First work in the parenthesis, then do the multiplication and division, and finally do the addition and subtraction.[17]
-
Don’t fret if you get different variables, like t, or if you see an equation set to f(x) instead of 0. If the question wants roots, zeros, or factors, just treat it like any other problem.
Advertisement
References
About This Article
Article SummaryX
To solve a linear polynomial, set the equation to equal zero, then isolate and solve for the variable. A linear polynomial will have only one answer. If you need to solve a quadratic polynomial, write the equation in order of the highest degree to the lowest, then set the equation to equal zero. Rewrite the expression as a 4-term expression and factor the equation by grouping. Rewrite the polynomial as 2 binomials and solve each one. If you want to learn how to simplify and solve your terms in a polynomial equation, keep reading the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 304,742 times.
Reader Success Stories
-
Shruti Pawar
Feb 24, 2017
«Very happy to see this page because these are the simple steps to understand, especially polynomials. It was quite…» more