Определение многочлена
Прежде чем мы расскажем, как умножить один многочлен на другой многочлен, разберемся в основных понятиях.
Одночлен — это произведение чисел, переменных и степеней.
Многочлен— алгебраическое выражение, которое представляет из себя сумму или разность нескольких одночленов.
Стандартный вид многочлена — представление многочлена в виде суммы одночленов стандартного вида, среди которых нет подобных одночленов.
Как привести многочлен к стандартному виду:
- Привести к стандартному виду все одночлены, которые входят в многочлен.
- Привести подобные члены.
Вспомним, как умножать многочлен на одночлен, двучлен на двучлен, трехчлен на трехчлен:
- Правило умножения двучленов:
(a + b) * (c + d) = ac + ad + bc + bd.
- Правило умножения двучлена на трехчлен:
(a + b + c) * (x + y) = ax + bx + cx + ay + by + cy.
- Правило перемножения трехчленов:
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc.
Эти правила можно описать так: чтобы умножить один многочлен на другой, нужно каждый член первого умножить на каждый член второго многочлена. Затем полученные произведения сложить и привести результат к многочлену стандартного вида, если это возможно.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Правило умножения многочлена на многочлен
Рассмотрим пример, а после решения сформулируем правило умножения многочлена на многочлен:
- Возьмем два многочлена (a + b) и (c + d) и выполним их умножение.
- Сначала составим их произведение: (a + b)(c + d).
- Теперь обозначим (c + d) как x. После этой замены произведение примет вид: (a + b)x.
- Выполним умножение многочлена на одночлен: (a + b)x = ax + bx.
- Проведем обратную замену x на (c + d):
a(c + d) + b(c + d). Преобразуем: ac + ad + bc + bd. -
Как изменилось произведение исходных многочленов:
(a + b)(c + d) = ac + ad + bc + bd.
Как раз так и выглядит формула умножения многочлена на многочлен.
Запоминаем!
Результат умножения многочлена на многочлен — всегда многочлен.
Правило умножения многочлена на многочлен
Чтобы умножить многочлен на многочлен, надо каждый член первого многочлена умножить на каждый член второго многочлена и все полученные произведения сложить.
Алгоритм умножения многочлена на многочлен:
- Первый член первого многочлена умножить на каждый член второго многочлена.
Второй член первого многочлена умножить на каждый член второго многочлена.
И так далее. - Сложить полученные произведения.
- Преобразовать полученную сумму в многочлен стандартного вида.
Запоминаем!
Умножение трех, четырех и большего количества многочленов нужно свести к последовательному умножению двух многочленов. То есть, сначала умножаем первые два многочлена, затем результат умножаем на третий многочлен, и этот результат умножаем на четвертый многочлен и так далее.
Рассмотрим пример умножения многочлена на многочлен:
(6x – 2a) * (4 – 3x).
Как решаем:
- Умножим последовательно первый одночлен 6x из первой скобки на оба одночлена второй скобки.
- Уумножим второй одночлен −2a первой скобки на оба одночлена второй скобки.
Ответ: (6x – 2a) * (4 – 3x) = 24x – 18x2 – 8a + 6ax.
Рассмотрим пример умножения трех многочленов:
(x – 2) * (3x + 1) * (4x – 3).
Как решаем:
Ответ: (x – 2) * (3x + 1) * (4x – 3) = 12x3 – 29x2 + 7x + 6.
Теперь мы знаем все из темы умножения многочлена на многочлен. Осталось отточить на практике новый навык и ловить хорошие и отличные отметки на контрольных.
Курсы ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Примеры умножения многочлена на многочлен
Рассмотрим еще несколько примеров, чтобы закрепить пройденный материал.
Пример 1. Выполнить умножение многочленов:
2 − 3x и x2 − 7x + 1.
Как решаем:
Запишем произведение: (2 − 3x)(x2 − 7x + 1).
Составим сумму произведений каждого члена многочлена (2 − 3x) на каждый член многочлена (x2 − 7x + 1). Для этого первый член первого многочлена «2» умножим на каждый член второго многочлена: 2x2, 2(−7x) и 2*1.
Теперь второй член первого многочлена «−3x» умножим на каждый член второго многочлена: −3xx2, −3x(−7x) и −3x*1.
Из полученных выражений составим сумму: 2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1.
Чтобы убедиться, что мы все сделали правильно, посчитаем количество членов в полученной сумме. Их шесть. Так и должно быть, так как исходные многочлены состоят из 2 и 3 членов: 2 * 3 = 6.
Осталось полученную сумму преобразовать в многочлен стандартного вида:
2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1 = 2x2 − 14 x + 2 − 3x3 + 21x2 − 3x = (2x2 + 21x2) + (−14x − 3x) + 2 − 3x3 = 23x2 − 17x + 2 − 3x3.
Получается, что (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.
Ответ: (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.
Пример 2. Найти произведение трех многочленов:
x2 + xy − 1, x + y и 2y − 3.
Как решаем:
Запишем их произведение: (x2 + xy − 1)(x + y)(2y − 3).
Умножим первые два многочлена:
(x2 + xy − 1)(x + y) = x2x + x2y + xyx + xyy − 1x − 1y = x3 + 2x2y + xy2 − x − y.
Таким образом: (x2+ xy − 1)(x + y)(2y − 3) = (x3 + 2x2y + xy2 − x − y)(2y − 3).
Снова выполним умножение двух многочленов:
(x3 + 2x2y + xy2 − x − y)(2y − 3) = x32y + x3(−3) + 2x2y2y + 2x2y(−3) + xy22y + xy2(−3) − x2y − x(−3) − y2y − y(−3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.
Ответ: (x2 + xy − 1)(x + y)(2y − 3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.
Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.
Пожалуйста, добавьте нас в исключения блокировщика.
на главную
Умножение многочлена на многочлен
Поддержать сайт
Запомните!
Чтобы умножить многочлен на многочлен, нужно:
- каждый
одночлен первого многочлена умножить на каждый одночлен второго многочлена; - полученные произведения сложить (то есть записать друг за другом с учетом знаков полученных при умножении).
Рассмотрим пример умножения многочлена на многочлен.
Умножим последовательно первый одночлен «6x» из первой скобки на оба одночлена второй скобки.
Затем умножим второй одночлен «−2a» первой скобки на оба одночлена второй скобки.
Умножать одночлены будем по правилам
умножения одночленов.
Важно!
Не забывайте при умножении одночленов использовать
правило знаков.
Результат умножения многочлена на многочлен будет всегда многочленом.
Примеры умножения многочлена на многочлен
-
(a − b)(−a − 2) = a · (−a) − 2a + ab + 2b =
−a2 − 2a + ab + 2b -
(a2 + ab + b2)(a − b) =
= a2 · a − a2 · b + ab · a − ab · b + b2 ·
a − b2 · b =
=
a2 + 1 − a2b + a1 + 1b − ab1 + 1 + b2a
− b2 + 1 =
= a3 −
a2b +
a2b
− ab2 +
ab2
− b3 =
a3 − b3
Как умножить 3 многочлена
Запомните!
Чтобы умножить 3 или более многочленов нужно:
- перемножить первые два многочлена между собой и записать результат в скобки;
- умножить полученный новый многочлен из пункта 1 на следующий многочлен.
Другими словами, умножать несколько многочленов нужно последовательно.
Рассмотрим пример умножения трёх многочленов.
Сначала умножим первый многочлен на второй, и их результат запишем в скобках.
Теперь перемножим получившийся многочлен и третий многочлен. Не забудем после умножения
привести подобные одночлены.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
Содержание:
Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.
История многочелена:
Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена
Многочлены от одной переменной и действия над ними
Определение многочленов от одной переменной и их тождественное равенство
Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной
По определению одночлена числа и буквы (в нашем случае одна буква — ) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида , где — некоторое число. Поэтому одночлен от одной переменной — это выражение вида где — некоторое число, — целое неотрицательное число. Если то показатель степени переменной называется степенью одночлена. Например, — одночлен шестой степени, — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку ).
По определению многочлен от одной переменной — это сумма одночленов от одной переменной . Поэтому
многочленом от одной переменной : называется выражение вида
(1)
где коэффициенты — некоторые числа.
Если , то этот многочлен называют многочленом степени от переменной . При этом член называют старшим членом многочлена , число — коэффициентом при старшем члене, а член — свободным членом. Например, — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.
Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена записывают так:
где — некоторые числа.
Теорема 1. Одночлены где и где , тождественно равны тогда и только тогда, когда и Одночлен тождественно равен нулю тогда и только тогда, когда
Поскольку равенство одночленов
(2)
выполняется при всех значениях (по условию эти одночлены тождественно равны), то, подставляя в это равенство , получаем, что Сокращая обе части равенства (2) на (где по условию), получаем При из этого равенства имеем: Поскольку 2 то равенство возможно только тогда, когда Таким образом, из тождественного равенства получаем, что и Если известно, что для всех то при получаем Поэтому одночлен тождественно равен нулю при (тогда ).
Далее любой одночлен вида будем заменять на 0.
Теорема 2. Если многочлен тождественно равен нулю (то есть принимает нулевые значения при всех значениях ), то все его коэффициенты равны нулю.
Значком обозначено тождественное равенство многочленов.
Для доказательства используем метод математической индукции. Пусть
При имеем поэтому То есть в этом случае утверждение теоремы выполняется.
Предположим, что при это утверждение также выполняется: если многочлен то
Докажем, что данное утверждение выполняется и при Пусть (3)
Поскольку равенство (3) выполняется при всех значениях , то, подставляя в это равенство получаем, что Тогда равенство (3) обращается в следующее равенство: Вынесем в левой части этого равенства за скобки и получим
(4)
Равенство (4) должно выполняться при всех значениях . Для того чтобы оно выполнялось при должно выполняться тождество
В левой части этого тождества стоит многочлен со степенями переменной от до Тогда по предположению индукции все его коэффициенты равны нулю: Но мы также доказали, что поэтому наше утверждение выполняется и при Таким образом, утверждение теоремы справедливо для любого целого неотрицательного то есть для всех многочленов.
Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают или просто (поскольку ).
Теорема 3. Если два многочлена и тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).
Пусть многочлен , а многочлен Рассмотрим многочлен Поскольку многочлены и по условию тождественно равны, то многочлен тождественно равен 0. Таким образом, все его коэффициенты равны нулю.
Но Тогда Отсюда Как видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, больше ), то коэффициенты разности будут равны нулю. Поэтому начиная с (-го номера все коэффициенты также будут равны нулю. То есть действительно многочлены и
имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.
Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.
Пример:
Докажите, что выражение
является полным квадратом.
Решение:
► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Получаем тождество:
(5)
Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:
Из первого равенства получаем или
При из второго равенства имеем а из третьего — Как видим, при этих значениях и последние два равенства также выполняются. Следовательно, тождество (5) выполняется при (аналогично можно также получить ). Таким образом,
Действия над многочленами. Деление многочлена на многочлен с остатком
Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.
Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.
При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.
Например, Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число делится на целое число если существует такое целое число что
Определение: Многочлен делится на многочлен (где — не нулевой многочлен), если существует такой многочлен что
Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что
многочлен делится на многочлен (где — не нулевой многочлен) с остатком, если существует такая пара многочленов и что причем степень остатка меньше степени делителя (в этом случае многочлен называют неполным частным.)
Например, поскольку то при делении многочлена на многочлен получаем неполное частное : и остаток 2.
Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.
Пример №1
Разделим многочлен на многочлен
Решение:
Докажем, что полученный результат действительно является результатом деления на с остатком.
Если обозначить результат выполнения первого шага алгоритма через второго шага — через третьего — через то операцию деления, выполненную выше, можно записать в виде системы равенств:
(1)
(2)
(3)
Сложим почленно равенства (1), (2), (3) и получим
(4)
Учитывая, что степень многочлена меньше степени делителя обозначим (остаток), а (неполное частное). Тогда из равенства (4) имеем: то есть
а это и означает, что мы разделили на с остатком.
Очевидно, что приведенное обоснование можно провести для любой пары многочленов и в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого и делителя (где — не нулевой многочлен) найти неполное частное и остаток
Отметим, что в случае, когда степень делимого меньше степени делителя , считают, что неполное частное а остаток
Теорема Безу. Корни многочлена. Формулы Виета
Рассмотрим деление многочлена на двучлен Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен на двучлен , то получим
Это равенство выполняется тождественно, то есть при любом значении При имеем Полученный результат называют теоремой Безу.
Теорема 1 (теорема Безу). Остаток от деления многочлена на двучлен равен (то есть значению многочлена при ).
Пример №2
Докажите, что делится на без остатка.
Решение:
► Подставив в вместо значение 1, получаем: . Таким образом, остаток от деления на равен 0, то есть делится на без остатка. <]
Определение: Число называют корнем многочлена если
Если многочлен делится на то — корень этого многочлена.
Безу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.
Действительно, если делится на то и поэтому Таким образом, — корень многочлена
Справедливо и обратное утверждение. Оно является следствием теоремы Безу.
Теорема 2. Если число является корнем многочлена то этот многочлен делится на двучлен без остатка.
По теореме Безу остаток от деления на равен Но по условию — корень таким образом,
Обобщением теоремы 2 является следующее утверждение.
Теорема 3. Если многочлен имеет попарно разные корни то он делится без остатка на произведение
Для доказательства используем метод математической индукции.
При утверждение доказано в теореме 2.
Допустим, что утверждение справедливо при То есть если попарно разные корни многочлена то он делится на произведение Тогда
(1)
Докажем, что утверждение теоремы справедливо и при Пусть — попарно разные корни многочлена Поскольку — корень то . Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:
По условию все корни разные, поэтому ни одно из чисел не равно нулю. Тогда Таким образом, — корень многочлена Тогда по теореме 2 многочлен делится на то есть и из равенства (1) имеем
Это означает, что делится на произведение
то есть теорема доказана и при
Таким образом, теорема справедлива для любого натурального
Следствие. Многочлен степени имеет не больше разных корней.
Допустим, что многочлен степени имеет разных корней: Тогда делится на произведение многочлен степени но это невозможно. Поэтому многочлен степени не может иметь больше чем корней.
Пусть теперь многочлен степени имеет разных корней Тогда этот многочлен делится без остатка на произведение Это произведение является многочленом той же
степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,
(2)
Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что то есть
(3)
Сравнивая коэффициенты при одинаковых степенях в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:
(4)
Например, при имеем:
а при
(5)
Выполнение таких равенств является необходимым и достаточным
условием того, чтобы числа были корнями многочлена
Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена разные. Введем понятие кратного корня многочлена.
Если многочлен делится без остатка на но не делится без остатка на то говорят, что число является корнем кратности многочлена
Например, если произведение записать в виде многочлена, то для этого многочлена число является корнем кратности 3, число 1 — корнем кратности 2, а число — корнем кратности 1.
При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.
Пример №3
Проверьте справедливость формул Виета для многочлена
Решение:
►
Поэтому имеет корни: (поскольку — корень кратности 2).
Проверим справедливость формулы (5). В нашем случае: Тогда
Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.
Пример №4
Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения
Решение:
► Обозначим корни уравнения через и Тогда корнями искомого уравнения должны быть числа и Поэтому искомое уравнение имеет вид где
По формулам Виета имеем Отсюда находим, что а Таким образом, искомое уравнение имеет вид
Схема Горнера
Делить многочлен на двучлен иногда удобно с помощью
специальной схемы, которую называют схемой Горнера.
Пусть многочлен необходимо разделить на двучлен В результате деления многочлена степени на многочлен первой степени получим некоторый многочлен степени (то есть , где ) и остаток Тогда то есть
Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях
Найдем из этих равенств коэффициенты и остаток
Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент неполного частного, достаточно предыдущий найденный коэффициент умножить на и добавить коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.
Пример №5
Разделите по схеме Горнера многочлен на двучлен
Решение:
► Запишем сначала все коэффициенты многочлена (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:
Таким образом,
Пример №6
Проверьте, является ли корнем многочлена
Решение:
► По теореме Безу остаток от деления многочлена на равен поэтому найдем с помощью схемы Горнера остаток от деления на
Поскольку то — корень многочлена
Нахождение рациональных корней многочлена с целыми коэффициентами
Теорема 4. Если многочлен с целыми коэффициентами имеет рациональный корень , то является делителем свободного члена a — делителем коэффициента при старшем члене
Если является корнем многочлена то Подставляем
вместо в и из последнего равенства имеем
(1)
Умножим обе части равенства (1) на Получаем
(2)
В равенстве (2) все слагаемые, кроме последнего, делятся на Поэтому делится на
Но когда мы записываем рациональное число в виде то эта дробь считается несократимой, то есть и не имеют общих делителей. Произведение может делиться на (если и — взаимно простые числа) только тогда, когда делится на Таким образом, — делитель свободного члена
Аналогично все слагаемые равенства (2), кроме первого, делятся на Тогда делится на Поскольку и взаимно простые числа, то делится на , следовательно, — делитель коэффициента при старшем члене.
Отметим два следствия из этой теоремы. Если взять то корнем многочлена будет целое число — делитель Таким образом, имеет место:
Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
Если в заданном многочлене коэффициент то делителями могут быть только числа то есть и имеет место:
Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.
Пример №7
Найдите рациональные корни многочлена
Решение:
► Пусть несократимая дробь является корнем многочлена. Тогда необходимо искать среди делителей свободного члена, то есть среди чисел a — среди делителей старшего коэффициента:
Таким образом, рациональные корни многочлена необходимо искать среди чисел Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.
При имеем следующую таблицу.
Кроме того, по схеме Горнера можно записать, что
Многочлен не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень
Пример №8
Разложите многочлен на множители.
Решение:
► Ищем целые корни многочлена среди делителей свободного члена:
Подходит 1. Делим на с помощью схемы Горнера.
Тогда
Ищем целые корни кубического многочлена среди делителей его свободного члена: Подходит Делим на
Имеем
Квадратный трехчлен не имеет действительных корней и на линейные множители не раскладывается.
Ответ:
Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен не имеет действительных корней). Таким образом, многочлен степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.
Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.
Пример №9
Разложите на множители многочлен
Решение:
► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.
Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:
(3)
где и — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:
Получаем систему
(4)
Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что и могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.
Коэффициенты и в равенстве (3) равноправны, поэтому мы не рассматриваем случаи и или и и т. д.
Для каждой пары значений и из третьего равенства системы (4) найдем а из второго равенства имеем Зная и по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения подставим в четвертое равенство системы (4) чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:
Как видим, системе (4) удовлетворяет набор целых чисел Тогда равенство (3) имеет вид
(5)
Поскольку квадратные трехчлены и не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.
Деление многочлена на многочлен
Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции , то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.
Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.
a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.
b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?
c) Как вы убедились,что каждое из двух делений выполнено правильно?
Выражение вида называется многочленом степени от одной переменной. Здесь — переменная, — определенные числа и — старший член, — коэффициент при старшем члене, -свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.
Деление целого числа па целое число можно проверить равенством
Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен -делимое, — делитель, — неполное частное, — остаток, то справедливо равенство
или .
Здесь, степень многочлена ниже степени многочлена Если делителем является двучлен , то остатком может являться определенное число
В этом случае:
Пример №10
а) Разделите многочлен на двучлен .
Ответ запишите в виде
b) Определите множество допустимых значений переменной.
c) Выполните проверку.
Решение:
b) При этом или , иначе возникает деление на нуль.
c) Должно выполняться тождество
Пример №11
Разделите на многочлен .
Решение:
запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0.
Пример №12
1) Исследуйте деление столбиком многочлена на двучлен .
2) На каждом шаге деления делимое делится на старший член делителя, на и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.
Правило синтетического деления многочлена на двучлен (схема Горнера)
При делении многочлена на двучлен вида можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.
Пример №13
Разделите многочлен на двучлен методом синтетического деления.
Решение:
коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид , то его записывают в виде .
Запишем двучлен в виде .
Таким образом, для делимого и делителя частным будет , а остатком .
Деление можно записать в виде: В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.
Теорема об остатке
Теорема об остатке (Теорема Безу)
Остаток от деления многочлена на двучлен равен значению многочлена в точке
Доказательство: В равенстве запишем . , тогда .
Пример №14
Найдите остаток от деления многочлена на двучлен , применив теорему об остатке.
Решение: запишем делитель в виде , тогда . По теореме об остатке получим, что остаток равен
.
Проверим решение.
Теорема о разложении многочлена на множители
Значения переменной , которые обращают многочлен в нуль (т.е. корни уравнения ), называются корнями (или нулями) многочлена.
Теорема. Если число является корнем многочлена , то двучлен является множителем многочлена .
Действительно, если , то из равенства имеем . Верно и обратное утверждение, т.е. если двучлен является множителем многочлена .
Пример №15
При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены множителями многочлена .
Решение: вычислим значение многочлена при .
Значит, не является множителем, а является одним из множителей данного многочлена.
Пример №16
Зная, что , разложите многочлен на множители.
Решение: так как , то двучлен один из множителей многочлена . Другой множитель найдем, используя метод синтетического деления.
Учитывая, что получим: .
Отсюда получаем, что являются нулями многочлена.
Примечание: Если многочлен задан в виде (здесь ), то число является кратным корнем многочлена (повторяется раз). Например, если разложение многочлена на множители имеет вид , то число является корнем кратности 3.
Нахождение рациональных корней
Теорема о рациональных корнях
Если для многочлена с целыми коэффициентами существует рациональный корень, то этот корень имеет вид
Доказательство. Пусть несократимая дробь является корнем многочлена с целыми коэффициентами:
Умножим обе части равенства на
Так как в последнем равенстве каждый член, кроме члена , содержит множитель и каждый член, кроме члена , содержит множитель .то коэффициент должен делится на , а коэффициент должен делится на .
Пример №17
Найдите рациональные корни многочлена .
Решение: свободный член 6, старший коэффициент 2.
Для , запишем все возможные числа вида
, т.е. одним из множителей является двучлен . Другие множители найдем, используя синтетическое деление:
Так как, , получим, что являются корнями многочлена.
Следствие 1. Если старший коэффициент и многочлен имеет рациональный корень, то он является целым числом.
Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.
Пример №18
Найдите корни многочлена
Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.
Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.
Так как то, решив квадратное уравнение получим другие корни: Значит данный многочлен третьей степени имеет три корня:
Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена
надо умножить все члены уравнения на 12, а затем решить полученное
уравнение
Для нахождения рациональных корней выполните следующие действия.
1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.
2. Из этих чисел выбирается число (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен на который многочлен делится без остатка.
3. Для данного многочлена при помощи синтетического деления на двучлен определяется другой множитель.
4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.
5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена могут являться числа ±1.
Проверим: Значит, многочлен не имеет рациональных корней.
Основная теорема алгебры
Покажем на примере, что многочлен ой степени имеет корней.
Пример №19
Найдите все корни многочлена
Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:
Значит, является корнем данного многочлена Другие корни найдем синтетическим делением.
В выражении для множителя вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Решим уравнение
( корень кратности 2);
Корни:
Во всех рассмотренных нами примерах уравнение ой степени всегда имеет корней, включая кратные корни (действительных или комплексных).
Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.
Если является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень По теореме о разложении многочлена на множители получим При этом многочлен имеет степень Если то если то согласно той же теореме, многочлен имеет хотя бы один корень. Обозначим его через тогда справедливо разложение где — многочлен степени Значит, можно записать Аналогично, если то при на основании той же теоремы, многочлен имеет хотя бы один корень. Обозначим его через получим т. е. можно записать
Продолжая процесс раз, получаем Тогда для многочлена можно записать следующее разложение:
здесь числа являются нулями многочлена Эти нули могут и не быть различными.
Следствие. Многочлен ой степени на множестве комплексных чисел имеет ровно корней, включая кратные корни.
Отметим, что если комплексное число является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число гак же является корнем данного многочлена.
Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида соответствующих действительным корням, и трехчленов вида соответствующих сопряженным комплексным корням.
Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.
Пример №20
Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и
Решение: так как число является корнем многочлена, то сопряженное комплексное число также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде
- Заказать решение задач по высшей математике
Пример №21
При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?
Решение: во всех случаях, кроме значений равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.
1. Проверим, является ли число корнем.
2. Число является корнем, значит одним из множителей данного многочлена является Другие корни найдем при помощи синтетического деления.
Учитывая, что запишем многочлен в виде т. е. являются корнями уравнения. Значения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.
Функция-многочлен
График функции-многочлен
В стандартном виде функция — многочлен записывается как В частном случае, при получаем линейную функцию (график — прямая линия), при получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.
При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Ниже показаны примеры графиков функции — многочлен и их свойства.
Пример №22
Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.
a) б)
Решение: а) степень многочлена нечетная (равна 3). Коэффициент старшего члена равен По таблице видно, что в данном случае при а при
b) степень многочлена четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при при
Пример №23
По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.
Решение:
при
при
Многочлен нечетной степени
Решение:
при
при
Многочлен четной степени
Отметим, что если нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если четно, то их вообще может и не быть.
Алгоритм построения эскиза графика функции — многочлен.
1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.
2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.
3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.
4. На основе полученных данных строят схематически график.
Пример №24
Постройте график функции
Решение:
1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.
По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа
Проверим
Значит, двучлен является одним из множителей. Остальные множители найдем синтетическим делением.
Зная, что запишем все линейные множители многочлена:
Отсюда находим нули Т. е. график пересекает ось абсцисс в точках и Так как то точка является точкой пересечения с осью Отметим эти точки на координатной плоскости.
2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках и
Отметим точки
3. Определим, как меняется график при уменьшении или увеличении значений Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при при
4. Соединим отмеченные точки и получим схематический график функции
Рациональная функция
Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:
Самым простым примером рациональной функции является функция
График функции называется гиперболой.
При стремлении значений к нулю точки гиперболы стремятся к оси ординат, т е. к прямой при неограниченном увеличении но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Прямая называется вертикальной асимптотой, а прямая называется горизонтальной асимптотой гиперболы При параллельном переносе гиперболы на вектор получается график функции . В этом случае начало координат преобразуется в точку и вертикальной асимптотой становится прямая а горизонтальной- прямая
Пример №25
Постройте график функции
Решение: точки пересечения с осью найдем из уравнения
При получим и график пересекает ось в точке Разделим почленно числитель функции на знаменатель и запишем ее в виде Прямая является вертикальной асимптотой, а прямая — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты
Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках и
В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции определяются в соответствии со степенью и данных многочленов и
Для т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид и является линейной функцией. При возрастании по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая является наклонной асимптотой.
Пример №26
Найдите асимптоты и схематично изобразите график функции
Решение: Точки пересечения с осью найдем из уравнения При получим и график пересекает ось в точке При знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Разделив числитель на знаменатель, запишем функцию в виде:
Для больших, но модулю, значений дробь по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой т. е. прямая является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.
Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.
Многочлены в линейной алгебре
Многочленом от переменной х степени n называется выражение вида:
, где — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.
Если коэффициент примногочлена отличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, — старшим коэффициентом, а — старшим членом многочлена. Коэффициент называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.
Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.
Суммой многочленов и называется многочлен
Произведением многочленов и называется многочлен:
Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.
Многочлен называется делителем многочлена , если существует многочлен такой, что
Теорема о делении с остатком
Для любых многочленов существуют многочлены такие, что причем степень меньше степени g(x) или. Многочлены g(x) и r(x) определены однозначно.
Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит , то остаток .
Число с называется корнем многочлена , если .
Теорема Безу
Число с является корнем многочлена тогда и только тогда, когда делится на x — с.
Пусть с — корень многочлена , т.е.. Разделим на
где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, . Так как , то из последнего равенства следует, что r=0, т.е.
Обратно, пусть (х-с) делит , т.е. . Тогда
Следствие. Остаток от деления многочлена на (x-с) равен .
Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена равносильно разысканию его линейных делителей со старшим коэффициентом 1.
Многочлен можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.
Пусть и пусть где Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:
Число с-называется корнем кратности к многочлена , если делит , но уже не делит .
Чтобы поверить, будет ли число с корнем многочлена и какой кратности, можно воспользоваться схемой Горнера. Сначала делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.
Число различных корней многочлена не превосходит его степени.
Большое значение имеет следующая основная теорема.
Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).
Следствие. Всякий многочлен степени имеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.
где — корни , т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: где уже различные корни , — кратность корня
Если многочлен , с действительными коэффициентами имеет корень с, то число с также корень
Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.
Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.
Пусть корни Тогда делится на х-с и , но так как у и х-с, нет общих делителей, то делится на произведение
Утверждение 2. Многочлен с действительными коэффициентами степени всегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.
При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.
Рациональной дробью называется дробь где многочлены с действительными коэффициентами, причем многочлен Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде некоторые многочлены, а правильная рациональная дробь.
Лемма 1, Если правильная рациональная дробь, а число является вещественным корнем кратности многочлена , т.е., то существует вещественное число A и многочлен с вещественными коэффициентами, такие, что где дробь является правильной.
При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.
Лемма 2. Если правильная рациональная дробь, а числоявляется корнем кратности многочлена g(x), т.е. и если , то существуют вещественные числа M и N многочлен с вещественными коэффициентами, такие, где дробь , также является правильной.
Рациональные дроби вида — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.
Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.
При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.
Он состоит в следующем:
При этом если степень многочлена равна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен коэффициентами.
Число неизвестных ‘ также равняется n:
Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.
- Квадратичные формы — определение и понятие
- Системы линейных уравнений с примерами
- Линейное программирование
- Дифференциальное исчисление функций одной переменной
- Кривые второго порядка
- Евклидово пространство
- Матрица — виды, операции и действия с примерами
- Линейный оператор — свойства и определение
План урока:
Многочлен, вычисление значений многочлена
Стандартный вид многочлена
Сложение и вычитание многочленов
Умножение одночлена на многочлен
Умножение многочлена на многочлен
Многочлен, вычисление значений многочлена
В предыдущем уроке мы познакомились с понятием одночлена. При записи одночленов не используется операция сложения. Если же возникает необходимость сложить несколько одночленов, то в результате получается многочлен.
В качестве примера многочленов можно привести следующие выражения:
Стоит обратить внимание, что в записи многочлена может использоваться и знак минус, при этом его всё равно можно считать суммой одночленов, а не разностью. Дело в том, что можно условно считать, что знак минус относится к коэффициенту одночлена, например:
Для некоторых видов многочленов существуют особые названия. Если многочлен состоит из двух одночленов, то его называют двучленом. Многочлен, состоящий из 3 одночленов, называют трехчленом.
Иногда в литературе используются такие термины, как «моном» (синоним «одночлена»), «бином» (синоним «двучлена»), «полином» (синоним «многочлена»).
Если известно значение переменных, входящих в полином, то возможно вычисление значения многочлена.
Пример. Найдем значение полинома x3+2x2+5y+1 при значении x=2 и y = 3.
Решение.
Пример. Вычислим значение полинома v4– d4при значении переменных v = 4 и d = 3.
Решение.
Стандартный вид многочлена
Иногда некоторые мономы, входящие в состав полинома, имеют одинаковую буквенную часть. Например, в выражении
первый и третий мономы отличаются лишь своими коэффициентами. Такие слагаемые называются подобными.
У подобных слагаемых одинаковый набор переменных, и при этом они возведены в одинаковые степени. Так, подобными являются мономы:
- 7a2s3 и 2a2s3, так как совпадает буквенная часть a2s3;
- 5v9m7t5 и – 4v9m7t5, так как у них одинаковая буквенная часть – 4v9m7t5;
- a2 и 1000a2, так как есть одинаковая буквенная часть a2.
Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.
В качестве примеров неподобных слагаемых можно привести:
- 7a2s3и 2a2s4 – у переменной s разные степени (3 и 4) в этих мономах;
- 4x2yи 5x2– в буквенной части первого монома есть переменная y, а у второго его нет.
У подобных слагаемых может быть изменен порядок множителей. Так, подобными являются мономы 5p2u4и 9u4p2, так как у одних и тех же переменных стоят одинаковые показатели.
Подобные слагаемые можно складывать друг с другом. В этом случае буквенная часть останется неизменной, а коэффициенты сложатся друг с другом. Например:
Такое действие называется приведением подобных слагаемых.
Пример. Приведите подобные слагаемые полинома:
Решение. В данном полиноме есть три пары подобных слагаемых:
Сгруппируем подобные слагаемые друг с другом, после чего сложим их:
Если в полиноме нет подобных слагаемых, а все входящие в него мономы записаны в стандартном виде, то его называют многочленом стандартного вида.
Что такое одночлен стандартного вида, можно узнать из ранее изученного урока. Примерами полиномов стандартного вида являются:
Далее рассмотрим понятие степени многочлена. Каждый из входящих в полином мономов имеет свой показатель степени(см. урок 3). Степенью полинома стандартного вида называется наибольшая из всех степеней одночленов, входящих в его состав.
Рассмотрим пример. Дан трехчлен 2y2 + x3y + 5y2x, требуется найти его степень.
Решение. Рассматриваемый трехчлен находится в стандартном виде. Он состоит из трех мономов:
Найдем степень каждого из них:
- 2y2 – степень равна 2;
- x3y – степень равна 4 = (3+1);
- 5y2x – степень равна 3 = (2+1).
Получается, что максимальную степень, равную 4, имеет моном x3y. Соответственно, и степень трехчлена также равна 4.
Ответ: 4.
Если же рассматривается полином, не находящийся в стандартном виде, то для вычисления его степени сначала надо привести полином к этому виду.
Пример. Найдите степень полинома с6 + ac2 + 9 – с6.
Решение. На первый взгляд может показаться, что она равна 6, так как один из его мономов, с6, имеет показатель, равный 6. Но это не так. Приведем полином к стандартному виду:
Оказалось, что подобные мономы c6 и – с6 сократились. Получившийся полином состоит из двух мономов, ac2 и 9, чьи степени равны 3 и 0 соответственно. Значит, и степень всего двучлена равна трём.
Ответ: 3.
Определение степени полинома потребуется для решения уравнений в старших классах. Если в одной части уравнения стоит полином, например, третьей степени, в другой части – ноль, то его называют уравнением третьей степени:
Аналогично выделяют уравнения первой, второй, четвертой и любой другой степени.
В зависимости от степени уравнения используются различные методы их решения. Ранее (ссылка на урок уравнения) мы уже научились решать линейные уравнения, которые являются уравнениями 1-ой степени. Обычно чем выше степень уравнения, тем сложнее его решать. Также существует интересная зависимость – количество корней уравнения не превышает его степень (за исключением одного частного случая, при котором есть бесконечное множество решений).
Особое значение в алгебре имеют те полиномы, в которых содержится только одна переменная, например:
- m2 + 4m4 + 5m3 +9(здесь переменная m);
- c6 + 1(единственная переменная – с);
- 3x + 10(запись содержит только x);
- – y4 + 89y10– 2,56y100(используется только y).
Их называют полиномами с одной переменной. Обычно их принято записывать по мере убывания степеней одночленов. То есть впереди пишется моном с максимальной степенью, а в самом конце – число без буквенной части:
То число, которое стоит перед одночленом в наибольшей степени, называют старшим коэффициентом, а число, не имеющее буквенной части – свободным членом (реже свободным коэффициентом):
Для некоторых полиномов с одной переменной есть особое название. Так, многочлен второй степени называют квадратным трехчленом. Дело в том, вторую степень в математике часто называют квадратом, а состоит квадратный трехчлен из трех монов. В качестве примера можно привести:
Конечно, квадратный многочлен может содержать и меньше трех одночленов:
В этом случае иногда бывает удобно добавить «недостающее» слагаемое, поставив перед ним коэффициент, равный нулю:
В общем случае квадратным трехчленом называют выражение вида
где x – произвольная переменная, а, b и c являются произвольными действительными числами. При этом a не должно равняться нулю, иначе получится полином уже только 1-ой степени.
Квадратные трехчлены будут изучены подробнее в старших классах при изучении темы «Квадратные уравнения».
Сложение и вычитание многочленов
Полиномы можно складывать друг с другом, а также вычитать. При этом, возможно, придется приводить подобные слагаемые.
Пример. Произведите сложение многочленов 8z2 + 3z +12 и 2z4 + 9z.
Решение. Запишем интересующую нас сумму:
Если перед скобками стоит знак «+», то можно просто опустить скобки:
Осталось привести полином к стандартному виду. Здесь есть лишь одна пара подобных одночленов, 3z и 9z:
При вычитании многочленов надо учитывать следующее правило:
Пример. Вычтите из полинома x5 + 3x3– 7y3 + 9x2 + 17 трехчлен 2y4 + 0,4y3– 25.
Решение:
Запишем разность полиномов:
Первые скобки можно опустить, так как перед ними нет никакого знака. Перед вторыми скобками стоит минус, а потому для раскрытия скобок знаки слагаемых в них надо поменять на противоположные. Вместо 2y4 надо написать – 2y4, вместо 0,4y3 поставим – 0,4y3, а – 25 заменим на + 25:
Осталось привести подобные слагаемые:
Стоит заметить, что при сложении и вычитании полиномов их степени не могут увеличиться. Так, если складываются два полинома 5-ой и 4-ой степени, то в результате получится многочлен, чья степень будет не больше 5.
Рассмотрим более сложный пример с вложенными (внутренними) скобками. Необходимо упростить выражение
Решение. Раскроем первые скобки. Перед ними стоит минус, поэтому знаки слагаемых должны поменяться на противоположные. Однако обратите внимание, что здесь есть вложенные скобки (2a2b – ab) и (ab2 + 2a2b). Менять следует только знак перед ними, а знаки внутри вложенных скобок не меняются! Они рассматриваются как единые, неизменяемые слагаемые:
Теперь раскроем оставшиеся две скобки:
Приведем подобные слагаемые. Для наглядности пары подобных мономов подчеркнуты. Одной чертой подчеркнуты мономы с буквенной частью ab2, двумя чертами – мономы с a2b, а штриховой линией выделены мономы с буквенной частью ab:
Умножение одночлена на многочлен
Напомним распределительный закон умножения:
Используя этот закон, можно производить умножение одночлена на многочлен.
Пример. Перемножьте выражения 5v2 и 9v3 + 2t4.
Решение: Запишем произведение выражений:
Такое раскрытие скобок можно объяснить с помощью «метода фонтанчика»:
От множителя 5v2 строят линии (синего цвета к) КАЖДОМУ слагаемому в скобке. Каждой такой линии соответствует отдельное произведение в получаемом полиноме.
После раскрытия скобок получили два произведения одночлена на одночлен, которые считаем по отдельности (см. урок 3):
Можно сформулировать следующее правило умножения многочлена на одночлен:
Ещё один пример. Перемножьте полином 2x2y + 4xy2 – 1 и моном – 3ху.
Решение:
Здесь метод «фонтанчика» будет выглядеть так:
Можно заметить, что после умножения монома на полином получится столько одночленов, сколько их было в исходном полиноме. Это правило можно использовать для самоконтроля.
Умножение многочлена на многочлен
Пусть нам надо перемножить два полинома, a+bи c+d. Запишем их произведение:
Заменим выражение a + b переменной k:
Теперь исходное произведение можно выразить как произведение монома и полинома:
Проведем обратное преобразование, заменив k на a + b:
Наконец, раскроем скобки в этом выражении:
Эту формулу можно проиллюстрировать геометрически. Рассмотрим прямоугольник со сторонами a + b и c + d:
Площадь этого прямоугольника, как и любого другого, равна произведению его сторон, то есть(a + b)(c + d).С другой стороны, она состоит из 4 прямоугольников, чьи площади также вычисляются как произведения их сторон, и составляют ac, bc, ad и bd. Поэтому можно записать равенство
Получается, что для умножения многочлена на многочлен нужно перемножать попарно все мономы, входящие в их состав, после чего сложить их.
Если в одном полиноме содержится m слагаемых, а в другом n, то результатом их перемножения окажется новый полином, содержащий m•n мономов (до приведения подобных слагаемых). Для перемножения многочленов также используется метод «фонтанчика».
Пример. Найдем произведение выражений 3a2 – 4ab + b2и 2a– b.
Решение: В первом полиноме содержится 3 монома, а во втором – 2, поэтому после их перемножения мы получим сумму 3•2 = 6 одночленов:
Раскрытие скобок «фонтанчиком» будет выглядеть так:
В результате действительно получилась сумма 6 мономов. Осталось вычислить каждый из них, после чего привести подобные слагаемые:
Заметим, что при перемножении полиномов происходит сложение степеней многочленов. Действительно, в рассмотренном выше примере мы умножили полином второй степени 3a2 – 4ab + b2 на полином первой степени 2a– b, и получили в результате многочлен 3-ей (2+1) степени.
Также возможно умножение многочленов в столбик. Особенно это удобно делать в случае с полиномами с одной переменной.
Пример. Найдите произведение выражений 2x3 + 3x2 +5x + 9 и x2 + 4x + 7.
Решение: Запишем полиномы в столбик, один под другим:
Далее умножим самый правый моном второго многочлена, то есть число 7, на первый полином, и запишем его ниже:
Далее умножим следующий моном, 4х, на первый полином, и запишем результат ещё ниже, причем сместим запись чуть влево, чтобы подобные члены оказались друг под другом:
Также умножим последний одночлен, x2, на первый полином:
Осталось сложить подобные слагаемые (то есть переменные х с одинаковыми степенями), которые записаны друг под другом:
Ещё раз цветом выделим подобные слагаемые и результаты их суммирования:
Ответ: 2х5 + 11х4 + 31х3 + 50х2 + 71х +63.
Умножение одночлена на многочлен
Чтобы умножить одночлен на многочлен, надо умножить на этот одночлен каждый член многочлена и полученные произведения сложить.
При умножении одночлена на многочлен используется распределительное свойство умножения:
a(b + c) = ab + ac,
правило умножения степеней с одинаковыми основаниями:
ax · ay = ax + y
и правило знаков при умножении.
Произведением одночлена и многочлена будет многочлен.
Пример 1. Умножить одночлен -5a на многочлен 3a + 4b2.
Решение: Составим произведение одночлена и многочлена и с помощью распределительного свойства умножения раскроем скобки:
Теперь осталось выполнить умножение одночленов друг на друга:
-5a · 3a + (-5a) · 4b2 = -15a2 — 20ab2.
Так как в получившемся результате нет подобных членов, то многочлен -15a2 — 20ab2 — это окончательный результат умножения одночлена -5a на многочлен 3a + 4b2.
Пример 2. Выполните умножение многочлена x — xy + 2 на одночлен 2y.
Решение: Составим произведение многочлена и одночлена:
(x — xy + 2)2y.
Для удобства можно записать одночлен перед многочленом, используя переместительное свойство умножения. После этого раскроем скобки:
Теперь надо перемножить одночлены:
2y · x — 2y · xy + 2y · 2 = 2xy — 2xy2 + 4y.
Решение данного примера можно записать короче, не выписывая промежуточные результаты:
(x — xy + 2)2y = 2xy — 2xy2 + 4y.
Пример 3. Упростите выражение:
3x2 — x(4x — 6y).
Решение: Раскроем скобки, выполнив умножение —x на 4x — 6y, и затем сделаем приведение подобных членов (если они будут):
3x2 — x(4x — 6y) = 3x2 — 4x2 + 6xy = -1x2 + 6xy.
Так как получившийся в результате многочлен является алгебраической суммой, то его можно записать так:
6xy — 1x2.