Как найти многочлен в результате умножения

Определение многочлена

Прежде чем мы расскажем, как умножить один многочлен на другой многочлен, разберемся в основных понятиях.

Одночлен — это произведение чисел, переменных и степеней.

Многочлен— алгебраическое выражение, которое представляет из себя сумму или разность нескольких одночленов.

Стандартный вид многочлена — представление многочлена в виде суммы одночленов стандартного вида, среди которых нет подобных одночленов.

Как привести многочлен к стандартному виду:

  1. Привести к стандартному виду все одночлены, которые входят в многочлен.
  2. Привести подобные члены.

Вспомним, как умножать многочлен на одночлен, двучлен на двучлен, трехчлен на трехчлен:

  • Правило умножения двучленов:

    (a + b) * (c + d) = ac + ad + bc + bd.

  • Правило умножения двучлена на трехчлен:

    (a + b + c) * (x + y) = ax + bx + cx + ay + by + cy.

  • Правило перемножения трехчленов:

    (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc.

Эти правила можно описать так: чтобы умножить один многочлен на другой, нужно каждый член первого умножить на каждый член второго многочлена. Затем полученные произведения сложить и привести результат к многочлену стандартного вида, если это возможно.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Правило умножения многочлена на многочлен

Рассмотрим пример, а после решения сформулируем правило умножения многочлена на многочлен:

  • Возьмем два многочлена (a + b) и (c + d) и выполним их умножение.
  • Сначала составим их произведение: (a + b)(c + d).
  • Теперь обозначим (c + d) как x. После этой замены произведение примет вид: (a + b)x.
  • Выполним умножение многочлена на одночлен: (a + b)x = ax + bx.
  • Проведем обратную замену x на (c + d):
    a(c + d) + b(c + d). Преобразуем: ac + ad + bc + bd.
  • Как изменилось произведение исходных многочленов:
    (a + b)(c + d) = ac + ad + bc + bd.
    Как раз так и выглядит формула умножения многочлена на многочлен.

Запоминаем!

Результат умножения многочлена на многочлен — всегда многочлен.

Правило умножения многочлена на многочлен

Чтобы умножить многочлен на многочлен, надо каждый член первого многочлена умножить на каждый член второго многочлена и все полученные произведения сложить.

Алгоритм умножения многочлена на многочлен:

  1. Первый член первого многочлена умножить на каждый член второго многочлена.
    Второй член первого многочлена умножить на каждый член второго многочлена.
    И так далее.
  2. Сложить полученные произведения.

  3. Преобразовать полученную сумму в многочлен стандартного вида.

Запоминаем!

Умножение трех, четырех и большего количества многочленов нужно свести к последовательному умножению двух многочленов. То есть, сначала умножаем первые два многочлена, затем результат умножаем на третий многочлен, и этот результат умножаем на четвертый многочлен и так далее.

Рассмотрим пример умножения многочлена на многочлен:
(6x – 2a) * (4 – 3x).

Как решаем:

  • Умножим последовательно первый одночлен 6x из первой скобки на оба одночлена второй скобки.
  • Уумножим второй одночлен −2a первой скобки на оба одночлена второй скобки.

пример решение

Ответ: (6x – 2a) * (4 – 3x) = 24x – 18x2 – 8a + 6ax.

Рассмотрим пример умножения трех многочленов:
(x – 2) * (3x + 1) * (4x – 3).

Как решаем:

Ответ: (x – 2) * (3x + 1) * (4x – 3) = 12x3 – 29x2 + 7x + 6.

Теперь мы знаем все из темы умножения многочлена на многочлен. Осталось отточить на практике новый навык и ловить хорошие и отличные отметки на контрольных.

Курсы ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Примеры умножения многочлена на многочлен

Рассмотрим еще несколько примеров, чтобы закрепить пройденный материал.

Пример 1. Выполнить умножение многочленов:
2 − 3x и x2 − 7x + 1.

Как решаем:

Запишем произведение: (2 − 3x)(x2 − 7x + 1).

Составим сумму произведений каждого члена многочлена (2 − 3x) на каждый член многочлена (x2 − 7x + 1). Для этого первый член первого многочлена «2» умножим на каждый член второго многочлена: 2x2, 2(−7x) и 2*1.

Теперь второй член первого многочлена «−3x» умножим на каждый член второго многочлена: −3xx2, −3x(−7x) и −3x*1.

Из полученных выражений составим сумму: 2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1.

Чтобы убедиться, что мы все сделали правильно, посчитаем количество членов в полученной сумме. Их шесть. Так и должно быть, так как исходные многочлены состоят из 2 и 3 членов: 2 * 3 = 6.

Осталось полученную сумму преобразовать в многочлен стандартного вида:

2x2 + 2(−7x) + 2*1 − 3xx2 − 3x(−7x) − 3x*1 = 2x2 − 14 x + 2 − 3x3 + 21x2 − 3x = (2x2 + 21x2) + (−14x − 3x) + 2 − 3x3 = 23x2 − 17x + 2 − 3x3.

Получается, что (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.

Ответ: (2 − 3x)(x2 − 7x + 1) = 23x2 − 17x + 2 − 3x3.

Пример 2. Найти произведение трех многочленов:
x2 + xy − 1, x + y и 2y − 3.

Как решаем:

Запишем их произведение: (x2 + xy − 1)(x + y)(2y − 3).

Умножим первые два многочлена:

(x2 + xy − 1)(x + y) = x2x + x2y + xyx + xyy − 1x − 1y = x3 + 2x2y + xy2 − x − y.

Таким образом: (x2+ xy − 1)(x + y)(2y − 3) = (x3 + 2x2y + xy2 − x − y)(2y − 3).

Снова выполним умножение двух многочленов:

(x3 + 2x2y + xy2 − x − y)(2y − 3) = x32y + x3(−3) + 2x2y2y + 2x2y(−3) + xy22y + xy2(−3) − x2y − x(−3) − y2y − y(−3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.

Ответ: (x2 + xy − 1)(x + y)(2y − 3) = 2x3y − 3x3 + 4x2y2 − 6x2y + 2xy3 − 3xy2 − 2xy + 3x − 2y2 + 3y.

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Умножение многочлена на многочлен

Поддержать сайтспасибо

Запомните!
!

Чтобы умножить многочлен на многочлен, нужно:

  1. каждый
    одночлен первого многочлена умножить на каждый одночлен второго многочлена;
  2. полученные произведения сложить (то есть записать друг за другом с учетом знаков полученных при умножении).

Рассмотрим пример умножения многочлена на многочлен.

как умножить многочлен на многочлен

Умножим последовательно первый одночлен «6x» из первой скобки на оба одночлена второй скобки.

Затем умножим второй одночлен «−2a» первой скобки на оба одночлена второй скобки.
Умножать одночлены будем по правилам
умножения одночленов.

пример умножения многочлен на многочлен

Важно!
Галка

Не забывайте при умножении одночленов использовать
правило знаков.

Результат умножения многочлена на многочлен будет всегда многочленом.

Примеры умножения многочлена на многочлен

  • (a − b)(−a − 2) = a · (−a) − 2a + ab + 2b =
    −a2 − 2a + ab + 2b
  • (a2 + ab + b2)(a − b) =
    = a2 · a − a2 · b + ab · a − ab · b + b2 ·
    a − b2 · b =

    =
    a2 + 1 − a2b + a1 + 1b − ab1 + 1 + b2a
    − b2 + 1 =
    = a3
    a2b +
    a2b
    ab2 +
    ab2
    − b3 =
    a3 − b3

Как умножить 3 многочлена

Запомните!
!

Чтобы умножить 3 или более многочленов нужно:

  1. перемножить первые два многочлена между собой и записать результат в скобки;
  2. умножить полученный новый многочлен из пункта 1 на следующий многочлен.

Другими словами, умножать несколько многочленов нужно последовательно.
Рассмотрим пример умножения трёх многочленов.

как умножить 3 многочлена

Сначала умножим первый многочлен на второй, и их результат запишем в скобках.

пример умножения нескольких многочленов

Теперь перемножим получившийся многочлен и третий многочлен. Не забудем после умножения
привести подобные одночлены.

умножение трех многочленов


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Содержание:

Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.

История многочелена:

Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена Многочлен - виды, определение с примерами решения

Многочлены от одной переменной и действия над ними

Определение многочленов от одной переменной и их тождественное равенство

Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной Многочлен - виды, определение с примерами решения

По определению одночлена числа и буквы (в нашем случае одна буква — Многочлен - виды, определение с примерами решения) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — некоторое число. Поэтому одночлен от одной переменной Многочлен - виды, определение с примерами решения — это выражение вида Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — некоторое число, Многочлен - виды, определение с примерами решения — целое неотрицательное число. Если Многочлен - виды, определение с примерами решения то показатель степени Многочлен - виды, определение с примерами решения переменной Многочлен - виды, определение с примерами решения называется степенью одночлена. Например, Многочлен - виды, определение с примерами решения — одночлен шестой степени, Многочлен - виды, определение с примерами решения — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку Многочлен - виды, определение с примерами решения).

По определению многочлен от одной переменной Многочлен - виды, определение с примерами решения — это сумма одночленов от одной переменной Многочлен - виды, определение с примерами решения. Поэтому

многочленом от одной переменной Многочлен - виды, определение с примерами решения: называется выражение вида

Многочлен - виды, определение с примерами решения (1)

где коэффициенты Многочлен - виды, определение с примерами решения — некоторые числа.

Если Многочлен - виды, определение с примерами решения, то этот многочлен называют многочленом Многочлен - виды, определение с примерами решения степени от переменной Многочлен - виды, определение с примерами решения. При этом член Многочлен - виды, определение с примерами решения называют старшим членом многочлена Многочлен - виды, определение с примерами решения, число Многочлен - виды, определение с примерами решениякоэффициентом при старшем члене, а член Многочлен - виды, определение с примерами решениясвободным членом. Например, Многочлен - виды, определение с примерами решения — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.

Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена Многочлен - виды, определение с примерами решения записывают так:

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения — некоторые числа.

Теорема 1. Одночлены Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения, тождественно равны тогда и только тогда, когда Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю тогда и только тогда, когда Многочлен - виды, определение с примерами решения

Поскольку равенство одночленов

Многочлен - виды, определение с примерами решения (2)

выполняется при всех значениях Многочлен - виды, определение с примерами решения (по условию эти одночлены тождественно равны), то, подставляя в это равенство Многочлен - виды, определение с примерами решения, получаем, что Многочлен - виды, определение с примерами решения Сокращая обе части равенства (2) на Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения по условию), получаем Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения из этого равенства имеем: Многочлен - виды, определение с примерами решения Поскольку 2Многочлен - виды, определение с примерами решения то равенство Многочлен - виды, определение с примерами решения возможно только тогда, когда Многочлен - виды, определение с примерами решения Таким образом, из тождественного равенства Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Если известно, что Многочлен - виды, определение с примерами решения для всех Многочлен - виды, определение с примерами решения то при Многочлен - виды, определение с примерами решения получаем Многочлен - виды, определение с примерами решения Поэтому одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю при Многочлен - виды, определение с примерами решения (тогда Многочлен - виды, определение с примерами решения).

Далее любой одночлен вида Многочлен - виды, определение с примерами решения будем заменять на 0.

Теорема 2. Если многочлен Многочлен - виды, определение с примерами решения тождественно равен нулю (то есть принимает нулевые значения при всех значениях Многочлен - виды, определение с примерами решения), то все его коэффициенты равны нулю.

Многочлен - виды, определение с примерами решенияЗначком Многочлен - виды, определение с примерами решенияобозначено тождественное равенство многочленов.

Для доказательства используем метод математической индукции. Пусть Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения поэтому Многочлен - виды, определение с примерами решения То есть в этом случае утверждение теоремы выполняется.

Предположим, что при Многочлен - виды, определение с примерами решения это утверждение также выполняется: если многочлен Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения

Докажем, что данное утверждение выполняется и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения (3)

Поскольку равенство (3) выполняется при всех значениях Многочлен - виды, определение с примерами решения, то, подставляя в это равенство Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения Тогда равенство (3) обращается в следующее равенство: Многочлен - виды, определение с примерами решения Вынесем Многочлен - виды, определение с примерами решения в левой части этого равенства за скобки и получим

Многочлен - виды, определение с примерами решения (4)

Равенство (4) должно выполняться при всех значениях Многочлен - виды, определение с примерами решения. Для того чтобы оно выполнялось при Многочлен - виды, определение с примерами решения должно выполняться тождество

Многочлен - виды, определение с примерами решения В левой части этого тождества стоит многочлен со степенями переменной от Многочлен - виды, определение с примерами решения до Многочлен - виды, определение с примерами решения Тогда по предположению индукции все его коэффициенты равны нулю: Многочлен - виды, определение с примерами решения Но мы также доказали, что Многочлен - виды, определение с примерами решения поэтому наше утверждение выполняется и при Многочлен - виды, определение с примерами решения Таким образом, утверждение теоремы справедливо для любого целого неотрицательного Многочлен - виды, определение с примерами решения то есть для всех многочленов.

Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают Многочлен - виды, определение с примерами решения или просто Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения).

Теорема 3. Если два многочлена Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).

Пусть многочлен Многочлен - виды, определение с примерами решения, а многочлен Многочлен - виды, определение с примерами решения Рассмотрим многочлен Многочлен - виды, определение с примерами решенияПоскольку многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по условию тождественно равны, то многочлен Многочлен - виды, определение с примерами решения тождественно равен 0. Таким образом, все его коэффициенты равны нулю.

Но Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения Отсюда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияКак видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, Многочлен - виды, определение с примерами решения больше Многочлен - виды, определение с примерами решения), то коэффициенты разности будут равны нулю. Поэтому начиная с (Многочлен - виды, определение с примерами решения-го номера все коэффициенты Многочлен - виды, определение с примерами решения также будут равны нулю. То есть действительно многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.

Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.

Пример:

Докажите, что выражение Многочлен - виды, определение с примерами решения

является полным квадратом.

Решение:

► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Многочлен - виды, определение с примерами решения Получаем тождество:

Многочлен - виды, определение с примерами решения (5)

Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:

Многочлен - виды, определение с примерами решения

Из первого равенства получаем Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения из второго равенства имеем а из третьего — Многочлен - виды, определение с примерами решения Как видим, при этих значениях Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения последние два равенства также выполняются. Следовательно, тождество (5) выполняется при Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения (аналогично можно также получить Многочлен - виды, определение с примерами решения). Таким образом, Многочлен - виды, определение с примерами решения

Действия над многочленами. Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, Многочлен - виды, определение с примерами решения При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.

Например, Многочлен - виды, определение с примерами решения Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число Многочлен - виды, определение с примерами решения делится на целое число Многочлен - виды, определение с примерами решения если существует такое целое число Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Определение: Многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения— не нулевой многочлен), если существует такой многочлен Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что

многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) с остатком, если существует такая пара многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения причем степень остатка Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения (в этом случае многочлен Многочлен - виды, определение с примерами решенияназывают неполным частным.)

Например, поскольку Многочлен - виды, определение с примерами решения то при делении многочлена Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения получаем неполное частное Многочлен - виды, определение с примерами решения: и остаток 2.

Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.

Пример №1

Разделим многочлен Многочлен - виды, определение с примерами решения на многочленМногочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения Докажем, что полученный результат действительно является результатом деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Если обозначить результат выполнения первого шага алгоритма через Многочлен - виды, определение с примерами решениявторого шага — через Многочлен - виды, определение с примерами решения третьего — через Многочлен - виды, определение с примерами решениято операцию деления, выполненную выше, можно записать в виде системы равенств:

Многочлен - виды, определение с примерами решения (1)

Многочлен - виды, определение с примерами решения (2)

Многочлен - виды, определение с примерами решения (3)

Сложим почленно равенства (1), (2), (3) и получим

Многочлен - виды, определение с примерами решения (4)

Учитывая, что степень многочлена Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения обозначим Многочлен - виды, определение с примерами решения (остаток), а Многочлен - виды, определение с примерами решения (неполное частное). Тогда из равенства (4) имеем: Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения а это и означает, что мы разделили Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) найти неполное частное Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Отметим, что в случае, когда степень делимого Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения, считают, что неполное частное Многочлен - виды, определение с примерами решения а остаток Многочлен - виды, определение с примерами решения

Теорема Безу. Корни многочлена. Формулы Виета

Рассмотрим деление многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, то получим

Многочлен - виды, определение с примерами решения

Это равенство выполняется тождественно, то есть при любом значении Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения Полученный результат называют теоремой БезуМногочлен - виды, определение с примерами решения.

Теорема 1 (теорема Безу). Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решенияравен Многочлен - виды, определение с примерами решения (то есть значению многочлена при Многочлен - виды, определение с примерами решения).

Пример №2

Докажите, что Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка.

Решение:

► Подставив в Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения значение 1, получаем: Многочлен - виды, определение с примерами решения. Таким образом, остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен 0, то есть Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка. <]

Определение: Число Многочлен - виды, определение с примерами решения называют корнем многочлена Многочлен - виды, определение с примерами решения если

Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень этого многочлена.

Многочлен - виды, определение с примерами решенияБезу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.

Действительно, если Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения и поэтому Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Справедливо и обратное утверждение. Оно является следствием теоремы Безу.

Теорема 2. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то этот многочлен делится на двучлен Многочлен - виды, определение с примерами решения без остатка.

По теореме Безу остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решения Но по условию Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения таким образом, Многочлен - виды, определение с примерами решения

Обобщением теоремы 2 является следующее утверждение.

Теорема 3. Если многочлен Многочлен - виды, определение с примерами решения имеет попарно разные корни Многочлен - виды, определение с примерами решения то он делится без остатка на произведение Многочлен - виды, определение с примерами решения

Для доказательства используем метод математической индукции.

При Многочлен - виды, определение с примерами решения утверждение доказано в теореме 2.

Допустим, что утверждение справедливо при Многочлен - виды, определение с примерами решения То есть если Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решенияпопарно разные корни многочлена Многочлен - виды, определение с примерами решения то он делится на произведение Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения (1)

Докажем, что утверждение теоремы справедливо и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения — попарно разные корни многочлена Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения. Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:

Многочлен - виды, определение с примерами решения

По условию все корни Многочлен - виды, определение с примерами решения разные, поэтому ни одно из чисел Многочлен - виды, определение с примерами решения не равно нулю. Тогда Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения Тогда по теореме 2 многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения и из равенства (1) имеем

Многочлен - виды, определение с примерами решения

Это означает, что Многочлен - виды, определение с примерами решения делится на произведение

Многочлен - виды, определение с примерами решения то есть теорема доказана и при Многочлен - виды, определение с примерами решения

Таким образом, теорема справедлива для любого натурального Многочлен - виды, определение с примерами решения

Следствие. Многочлен степени Многочлен - виды, определение с примерами решенияимеет не больше Многочлен - виды, определение с примерами решения разных корней.

Допустим, что многочлен Многочлен - виды, определение с примерами решения степени имеет Многочлен - виды, определение с примерами решения разных корней: Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения многочлен степени Многочлен - виды, определение с примерами решения но это невозможно. Поэтому многочлен Многочлен - виды, определение с примерами решения степени не может иметь больше чем Многочлен - виды, определение с примерами решения корней.

Пусть теперь многочлен Многочлен - виды, определение с примерами решения степени Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения имеет Многочлен - виды, определение с примерами решения разных корней Многочлен - виды, определение с примерами решения Тогда этот многочлен делится без остатка на произведение Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Это произведение является многочленом той же

Многочлен - виды, определение с примерами решения степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,

Многочлен - виды, определение с примерами решения (2)

Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения (3)

Сравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:

Многочлен - виды, определение с примерами решения (4)

Например, при Многочлен - виды, определение с примерами решения имеем:

Многочлен - виды, определение с примерами решения

а при Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения (5)

Выполнение таких равенств является необходимым и достаточным

условием того, чтобы числа Многочлен - виды, определение с примерами решения были корнями многочлена

Многочлен - виды, определение с примерами решения

Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена Многочлен - виды, определение с примерами решения разные. Введем понятие кратного корня многочлена.

Если многочлен Многочлен - виды, определение с примерами решения делится без остатка на Многочлен - виды, определение с примерами решения но не делится без остатка на Многочлен - виды, определение с примерами решения то говорят, что число Многочлен - виды, определение с примерами решения является корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения

Например, если произведение Многочлен - виды, определение с примерами решения записать в виде многочлена, то для этого многочлена число Многочлен - виды, определение с примерами решения является корнем кратности 3, число 1 — корнем кратности 2, а число Многочлен - виды, определение с примерами решения — корнем кратности 1.

При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.

Пример №3

Проверьте справедливость формул Виета для многочлена Многочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поэтому Многочлен - виды, определение с примерами решения имеет корни: Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения — корень кратности 2).

Проверим справедливость формулы (5). В нашем случае: Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения

Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.

Пример №4

Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения Многочлен - виды, определение с примерами решения

Решение:

► Обозначим корни уравнения Многочлен - виды, определение с примерами решения через Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Тогда корнями искомого уравнения должны быть числа Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Поэтому искомое уравнение имеет вид Многочлен - виды, определение с примерами решения где

Многочлен - виды, определение с примерами решения

По формулам Виета имеем Многочлен - виды, определение с примерами решения Отсюда находим, что Многочлен - виды, определение с примерами решения а Многочлен - виды, определение с примерами решения Таким образом, искомое уравнение имеет вид Многочлен - виды, определение с примерами решения

Схема Горнера

Делить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения иногда удобно с помощью

специальной схемы, которую называют схемой Горнера.

Пусть многочлен Многочлен - виды, определение с примерами решения необходимо разделить на двучлен Многочлен - виды, определение с примерами решения В результате деления многочлена Многочлен - виды, определение с примерами решения степени на многочлен первой степени получим некоторый многочлен Многочлен - виды, определение с примерами решения степени (то есть Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения) и остаток Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения

Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Найдем из этих равенств коэффициенты Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент Многочлен - виды, определение с примерами решениянеполного частного, достаточно предыдущий найденный коэффициент Многочлен - виды, определение с примерами решения умножить на Многочлен - виды, определение с примерами решения и добавить Многочлен - виды, определение с примерами решения коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.

Многочлен - виды, определение с примерами решения

Пример №5

Разделите по схеме Горнера многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения

Решение:

► Запишем сначала все коэффициенты многочлена Многочлен - виды, определение с примерами решения (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:

Многочлен - виды, определение с примерами решения

Таким образом, Многочлен - виды, определение с примерами решения

Пример №6

Проверьте, является ли Многочлен - виды, определение с примерами решения корнем многочлена Многочлен - виды, определение с примерами решения

Решение:

► По теореме Безу остаток от деления многочлена Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решенияпоэтому найдем с помощью схемы Горнера остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поскольку Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Нахождение рациональных корней многочлена с целыми коэффициентами

Теорема 4. Если многочлен с целыми коэффициентами Многочлен - виды, определение с примерами решения имеет рациональный корень Многочлен - виды, определение с примерами решения, то Многочлен - виды, определение с примерами решения является делителем свободного члена Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — делителем коэффициента при старшем члене Многочлен - виды, определение с примерами решения

Если Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения Подставляем

Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения в Многочлен - виды, определение с примерами решения и из последнего равенства имеем

Многочлен - виды, определение с примерами решения (1)

Умножим обе части равенства (1) на Многочлен - виды, определение с примерами решения Получаем

Многочлен - виды, определение с примерами решения (2)

В равенстве (2) все слагаемые, кроме последнего, делятся на Многочлен - виды, определение с примерами решения Поэтому Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения

Но когда мы записываем рациональное число в виде Многочлен - виды, определение с примерами решения то эта дробь считается несократимой, то есть Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют общих делителей. Произведение Многочлен - виды, определение с примерами решения может делиться на Многочлен - виды, определение с примерами решения (если Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения— взаимно простые числа) только тогда, когда Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — делитель свободного члена Многочлен - виды, определение с примерами решения

Аналогично все слагаемые равенства (2), кроме первого, делятся на Многочлен - виды, определение с примерами решения ТогдаМногочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения взаимно простые числа, то Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения, следовательно, Многочлен - виды, определение с примерами решения — делитель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять Многочлен - виды, определение с примерами решения то корнем многочлена будет целое число Многочлен - виды, определение с примерами решения — делитель Многочлен - виды, определение с примерами решения Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.

Если в заданном многочлене Многочлен - виды, определение с примерами решения коэффициент Многочлен - виды, определение с примерами решения то делителями Многочлен - виды, определение с примерами решения могут быть только числа Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Пример №7

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения

Решение:

► Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена. Тогда Многочлен - виды, определение с примерами решениянеобходимо искать среди делителей свободного члена, то есть среди чисел Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — среди делителей старшего коэффициента: Многочлен - виды, определение с примерами решения

Таким образом, рациональные корни многочлена необходимо искать среди чисел Многочлен - виды, определение с примерами решения Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.

При Многочлен - виды, определение с примерами решения имеем следующую таблицу.

Многочлен - виды, определение с примерами решения

Кроме того, по схеме Горнера можно записать, что

Многочлен - виды, определение с примерами решения

Многочлен Многочлен - виды, определение с примерами решения не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень Многочлен - виды, определение с примерами решения

Пример №8

Разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение:

► Ищем целые корни многочлена среди делителей свободного члена: Многочлен - виды, определение с примерами решения

Подходит 1. Делим Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с помощью схемы Горнера.

Многочлен - виды, определение с примерами решения

Тогда Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения

Ищем целые корни кубического многочлена Многочлен - виды, определение с примерами решения среди делителей его свободного члена: Многочлен - виды, определение с примерами решения Подходит Многочлен - виды, определение с примерами решения Делим на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Имеем Многочлен - виды, определение с примерами решения

Квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней и на линейные множители не раскладывается.

Ответ: Многочлен - виды, определение с примерами решения

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней). Таким образом, многочлен Многочлен - виды, определение с примерами решения степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.

Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.

Пример №9

Разложите на множители многочлен Многочлен - виды, определение с примерами решения

Решение:

► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

Многочлен - виды, определение с примерами решения (3)

где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Многочлен - виды, определение с примерами решения

Получаем систему

Многочлен - виды, определение с примерами решения (4)

Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.

Многочлен - виды, определение с примерами решения

Коэффициенты Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в равенстве (3) равноправны, поэтому мы не рассматриваем случаи Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения и т. д.

Для каждой пары значений Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения из третьего равенства системы (4) найдем Многочлен - виды, определение с примерами решения а из второго равенства имеем Многочлен - виды, определение с примерами решения Зная Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения Многочлен - виды, определение с примерами решения подставим в четвертое равенство системы (4) Многочлен - виды, определение с примерами решения чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Многочлен - виды, определение с примерами решения

Как видим, системе (4) удовлетворяет набор целых чисел Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда равенство (3) имеет вид

Многочлен - виды, определение с примерами решения (5)

Поскольку квадратные трехчлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Деление многочлена на многочлен

Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией Многочлен - виды, определение с примерами решения — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции Многочлен - виды, определение с примерами решения, то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.

Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.

Многочлен - виды, определение с примерами решения

a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.

b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?

c) Как вы убедились,что каждое из двух делений выполнено правильно?

Выражение вида Многочлен - виды, определение с примерами решения называется многочленом Многочлен - виды, определение с примерами решения степени от одной переменной. Здесь Многочлен - виды, определение с примерами решения — переменная, Многочлен - виды, определение с примерами решения — определенные числа и Многочлен - виды, определение с примерами решения — старший член, Многочлен - виды, определение с примерами решения— коэффициент при старшем члене, Многочлен - виды, определение с примерами решения-свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.

Деление целого числа па целое число можно проверить равенством

Многочлен - виды, определение с примерами решения

Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен Многочлен - виды, определение с примерами решения -делимое, Многочлен - виды, определение с примерами решения — делитель, Многочлен - виды, определение с примерами решения — неполное частное, Многочлен - виды, определение с примерами решения — остаток, то справедливо равенство

Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения.

Здесь, степень многочлена Многочлен - виды, определение с примерами решения ниже степени многочлена Многочлен - виды, определение с примерами решения Если делителем является двучлен Многочлен - виды, определение с примерами решения, то остатком может являться определенное число Многочлен - виды, определение с примерами решения

В этом случае: Многочлен - виды, определение с примерами решения

Пример №10

а) Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения.

Ответ запишите в виде Многочлен - виды, определение с примерами решения

b) Определите множество допустимых значений переменной.

c) Выполните проверку.

Решение:

Многочлен - виды, определение с примерами решения

b) При этом Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения, иначе возникает деление на нуль.

c) Должно выполняться тождество

Многочлен - виды, определение с примерами решения

Пример №11

Разделите Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения.

Решение:

запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0. Многочлен - виды, определение с примерами решения

Пример №12

1) Исследуйте деление столбиком многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения .

2) На каждом шаге деления делимое делится на старший член делителя, на Многочлен - виды, определение с примерами решения и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.

Многочлен - виды, определение с примерами решения Правило синтетического деления многочлена на двучлен Многочлен - виды, определение с примерами решения(схема Горнера)

При делении многочлена на двучлен вида Многочлен - виды, определение с примерами решения можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.

Пример №13

Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения методом синтетического деления.

Решение:

коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид Многочлен - виды, определение с примерами решения, то его записывают в виде Многочлен - виды, определение с примерами решения.

Запишем двучлен Многочлен - виды, определение с примерами решения в виде Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Таким образом, для делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решениячастным будет Многочлен - виды, определение с примерами решения, а остатком Многочлен - виды, определение с примерами решения.

Деление можно записать в виде: Многочлен - виды, определение с примерами решения В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.

Многочлен - виды, определение с примерами решения

Теорема об остатке

Теорема об остатке (Теорема Безу)

Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения равен значению многочлена Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Доказательство: В равенстве Многочлен - виды, определение с примерами решения запишем Многочлен - виды, определение с примерами решения. Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения.

Пример №14

Найдите остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, применив теорему об остатке.

Решение: запишем делитель в виде Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения. По теореме об остатке получим, что остаток равен Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения.

Проверим решение.

Многочлен - виды, определение с примерами решения

Теорема о разложении многочлена на множители

Значения переменной Многочлен - виды, определение с примерами решения, которые обращают многочлен Многочлен - виды, определение с примерами решения в нуль (т.е. корни уравнения Многочлен - виды, определение с примерами решения), называются корнями (или нулями) многочлена.

Теорема. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Действительно, если Многочлен - виды, определение с примерами решения, то из равенства Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения. Верно и обратное утверждение, т.е. если двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Пример №15

При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены Многочлен - виды, определение с примерами решения множителями многочлена Многочлен - виды, определение с примерами решения.

Решение: вычислим значение многочлена Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения не является множителем, а Многочлен - виды, определение с примерами решения является одним из множителей данного многочлена.

Пример №16

Зная, что Многочлен - виды, определение с примерами решения, разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение: так как Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения один из множителей многочленаМногочлен - виды, определение с примерами решения . Другой множитель найдем, используя метод синтетического деления.

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения получим: Многочлен - виды, определение с примерами решения .

Отсюда получаем, что Многочлен - виды, определение с примерами решения являются нулями многочлена.

Примечание: Если многочлен задан в виде Многочлен - виды, определение с примерами решения (здесь Многочлен - виды, определение с примерами решения), то число Многочлен - виды, определение с примерами решения является Многочлен - виды, определение с примерами решения кратным корнем многочлена Многочлен - виды, определение с примерами решения (повторяется Многочлен - виды, определение с примерами решения раз). Например, если разложение многочлена на множители имеет вид Многочлен - виды, определение с примерами решения, то число Многочлен - виды, определение с примерами решения является корнем кратности 3.

Нахождение рациональных корней

Теорема о рациональных корнях

Если для многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами существует рациональный корень, то этот корень имеет вид

Многочлен - виды, определение с примерами решения

Доказательство. Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами:

Многочлен - виды, определение с примерами решения

Умножим обе части равенства на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Так как в последнем равенстве каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения и каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения.то коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения, а коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения.

Пример №17

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения.

Решение: свободный член 6, старший коэффициент 2.

Для Многочлен - виды, определение с примерами решения, запишем все возможные числа вида Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения, т.е. одним из множителей является двучлен Многочлен - виды, определение с примерами решения. Другие множители найдем, используя синтетическое деление: Многочлен - виды, определение с примерами решения

Так как, Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, получим, что Многочлен - виды, определение с примерами решения являются корнями многочлена.

Следствие 1. Если старший коэффициент Многочлен - виды, определение с примерами решения и многочлен имеет рациональный корень, то он является целым числом.

Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.

Пример №18

Найдите корни многочлена Многочлен - виды, определение с примерами решения

Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.

Многочлен - виды, определение с примерами решения

Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.

Так как Многочлен - виды, определение с примерами решения то, решив квадратное уравнение Многочлен - виды, определение с примерами решения получим другие корни: Многочлен - виды, определение с примерами решения Значит данный многочлен третьей степени имеет три корня: Многочлен - виды, определение с примерами решения

Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения Многочлен - виды, определение с примерами решения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена

Многочлен - виды, определение с примерами решения надо умножить все члены уравнения Многочлен - виды, определение с примерами решения на 12, а затем решить полученное

уравнение Многочлен - виды, определение с примерами решения

Для нахождения рациональных корней выполните следующие действия.

1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.

2. Из этих чисел выбирается число Многочлен - виды, определение с примерами решения (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен Многочлен - виды, определение с примерами решения на который многочлен делится без остатка.

3. Для данного многочлена при помощи синтетического деления на двучлен Многочлен - виды, определение с примерами решения определяется другой множитель.

4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.

5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена Многочлен - виды, определение с примерами решения могут являться числа ±1.

Проверим: Многочлен - виды, определение с примерами решения Значит, многочлен Многочлен - виды, определение с примерами решения не имеет рациональных корней.

Основная теорема алгебры

Покажем на примере, что многочлен Многочлен - виды, определение с примерами решенияой степени имеет Многочлен - виды, определение с примерами решения корней.

Пример №19

Найдите все корни многочлена Многочлен - виды, определение с примерами решения

Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения является корнем данного многочлена Многочлен - виды, определение с примерами решения Другие корни найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

В выражении Многочлен - виды, определение с примерами решения для множителя Многочлен - виды, определение с примерами решения вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияРешим уравнение Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения ( корень кратности 2);

Многочлен - виды, определение с примерами решения

Корни: Многочлен - виды, определение с примерами решения

Во всех рассмотренных нами примерах уравнение Многочлен - виды, определение с примерами решенияой степени всегда имеет Многочлен - виды, определение с примерами решения корней, включая кратные корни (действительных или комплексных).

Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.

Если Многочлен - виды, определение с примерами решения является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень Многочлен - виды, определение с примерами решенияПо теореме о разложении многочлена на множители получим Многочлен - виды, определение с примерами решения При этом многочлен Многочлен - виды, определение с примерами решения имеет степень Многочлен - виды, определение с примерами решения Если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения если Многочлен - виды, определение с примерами решения то согласно той же теореме, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения тогда справедливо разложение Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — многочлен степени Многочлен - виды, определение с примерами решения Значит, можно записать Многочлен - виды, определение с примерами решения Аналогично, если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения на основании той же теоремы, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения т. е. можно записать Многочлен - виды, определение с примерами решения

Продолжая процесс Многочлен - виды, определение с примерами решения раз, получаем Многочлен - виды, определение с примерами решения Тогда для многочлена Многочлен - виды, определение с примерами решения можно записать следующее разложение:

Многочлен - виды, определение с примерами решения

здесь числа Многочлен - виды, определение с примерами решения являются нулями многочлена Многочлен - виды, определение с примерами решения Эти нули могут и не быть различными.

Следствие. Многочлен Многочлен - виды, определение с примерами решенияой степени Многочлен - виды, определение с примерами решения на множестве комплексных чисел имеет ровно Многочлен - виды, определение с примерами решения корней, включая кратные корни.

Отметим, что если комплексное число Многочлен - виды, определение с примерами решения является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число Многочлен - виды, определение с примерами решения гак же является корнем данного многочлена.

Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида Многочлен - виды, определение с примерами решения соответствующих действительным корням, и трехчленов вида Многочлен - виды, определение с примерами решения соответствующих сопряженным комплексным корням.

Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.

Пример №20

Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и Многочлен - виды, определение с примерами решения

Решение: так как число Многочлен - виды, определение с примерами решения является корнем многочлена, то сопряженное комплексное число Многочлен - виды, определение с примерами решения также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде

Многочлен - виды, определение с примерами решения

  • Заказать решение задач по высшей математике
Пример №21

При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией Многочлен - виды, определение с примерами решения В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?

Решение: во всех случаях, кроме значений Многочлен - виды, определение с примерами решения равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.

1. Проверим, является ли число Многочлен - виды, определение с примерами решения корнем.

Многочлен - виды, определение с примерами решения

2. Число Многочлен - виды, определение с примерами решения является корнем, значит одним из множителей данного многочлена является Многочлен - виды, определение с примерами решения Другие корни найдем при помощи синтетического деления.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения запишем многочлен в виде Многочлен - виды, определение с примерами решения т. е. Многочлен - виды, определение с примерами решения являются корнями уравнения. Значения Многочлен - виды, определение с примерами решения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.

Многочлен - виды, определение с примерами решения

Функция-многочлен

График функции-многочлен

В стандартном виде функция — многочлен записывается как Многочлен - виды, определение с примерами решения В частном случае, при Многочлен - виды, определение с примерами решения получаем линейную функцию (график — прямая линия), при Многочлен - виды, определение с примерами решения получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.

При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Многочлен - виды, определение с примерами решения Ниже показаны примеры графиков функции — многочлен и их свойства.

Многочлен - виды, определение с примерами решения

Пример №22

Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.

a) Многочлен - виды, определение с примерами решения б) Многочлен - виды, определение с примерами решения

Решение: а) степень многочлена Многочлен - виды, определение с примерами решения нечетная (равна 3). Коэффициент старшего члена равен Многочлен - виды, определение с примерами решения По таблице видно, что в данном случае при Многочлен - виды, определение с примерами решения а при Многочлен - виды, определение с примерами решения

b) степень многочлена Многочлен - виды, определение с примерами решения четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

Пример №23

По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен нечетной степени

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен четной степени

Многочлен - виды, определение с примерами решения

Отметим, что если Многочлен - виды, определение с примерами решения нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если Многочлен - виды, определение с примерами решения четно, то их вообще может и не быть.

Алгоритм построения эскиза графика функции — многочлен.

1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.

2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.

3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.

4. На основе полученных данных строят схематически график.

Пример №24

Постройте график функции Многочлен - виды, определение с примерами решения

Решение:

1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.

По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа Многочлен - виды, определение с примерами решения

Проверим Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

Значит, двучлен Многочлен - виды, определение с примерами решения является одним из множителей. Остальные множители найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Зная, что Многочлен - виды, определение с примерами решения запишем все линейные множители многочлена: Многочлен - виды, определение с примерами решения

Отсюда находим нули Многочлен - виды, определение с примерами решения Т. е. график пересекает ось абсцисс в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Так как Многочлен - виды, определение с примерами решения то точка Многочлен - виды, определение с примерами решения является точкой пересечения с осью Многочлен - виды, определение с примерами решения Отметим эти точки на координатной плоскости.

2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Отметим точки Многочлен - виды, определение с примерами решения

3. Определим, как меняется график при уменьшении или увеличении значений Многочлен - виды, определение с примерами решения Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

4. Соединим отмеченные точки и получим схематический график функции Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Рациональная функция

Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:

Многочлен - виды, определение с примерами решения

Самым простым примером рациональной функции является функция Многочлен - виды, определение с примерами решения

График функции Многочлен - виды, определение с примерами решения называется гиперболой.

Многочлен - виды, определение с примерами решения

При стремлении значений Многочлен - виды, определение с примерами решения к нулю точки гиперболы стремятся к оси ординат, т е. к прямой Многочлен - виды, определение с примерами решения при неограниченном увеличении Многочлен - виды, определение с примерами решения но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения называется вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения называется горизонтальной асимптотой гиперболы Многочлен - виды, определение с примерами решения При параллельном переносе гиперболы Многочлен - виды, определение с примерами решения на вектор Многочлен - виды, определение с примерами решения получается график функции Многочлен - виды, определение с примерами решения. В этом случае начало координат преобразуется в точку Многочлен - виды, определение с примерами решения и вертикальной асимптотой становится прямая Многочлен - виды, определение с примерами решения а горизонтальной- прямая Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Пример №25

Постройте график функции Многочлен - виды, определение с примерами решения

Решение: точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения Разделим почленно числитель функции на знаменатель и запишем ее в виде Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты

Многочлен - виды, определение с примерами решения

Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке Многочлен - виды, определение с примерами решения а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции Многочлен - виды, определение с примерами решения определяются в соответствии со степенью Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения данных многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Для Многочлен - виды, определение с примерами решения т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид Многочлен - виды, определение с примерами решения и является линейной функцией. При возрастании Многочлен - виды, определение с примерами решения по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой.

Пример №26

Найдите асимптоты и схематично изобразите график функции

Многочлен - виды, определение с примерами решения

Решение: Точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Многочлен - виды, определение с примерами решения Разделив числитель на знаменатель, запишем функцию в виде:

Многочлен - виды, определение с примерами решения

Для больших, но модулю, значений Многочлен - виды, определение с примерами решения дробь Многочлен - виды, определение с примерами решения по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой Многочлен - виды, определение с примерами решения т. е. прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.

Многочлен - виды, определение с примерами решения

Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.

Многочлен - виды, определение с примерами решения

Многочлены в линейной алгебре

Многочленом от переменной х степени n называется выражение вида:

Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.

Если коэффициент Многочлен - виды, определение с примерами решения приМногочлен - виды, определение с примерами решениямногочлена Многочлен - виды, определение с примерами решенияотличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, Многочлен - виды, определение с примерами решения — старшим коэффициентом, а Многочлен - виды, определение с примерами решения — старшим членом многочлена. Коэффициент Многочлен - виды, определение с примерами решения называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.

Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.

Суммой многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен

Многочлен - виды, определение с примерами решения

Произведением многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен: Многочлен - виды, определение с примерами решения

Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.

Многочлен Многочлен - виды, определение с примерами решения называется делителем многочлена Многочлен - виды, определение с примерами решения , если существует многочлен Многочлен - виды, определение с примерами решениятакой, что Многочлен - виды, определение с примерами решения

Теорема о делении с остатком

Для любых многочленов Многочлен - виды, определение с примерами решения существуют многочлены Многочлен - виды, определение с примерами решения такие, что Многочлен - виды, определение с примерами решения причем степень Многочлен - виды, определение с примерами решенияменьше степени g(x) илиМногочлен - виды, определение с примерами решения. Многочлены g(x) и r(x) определены однозначно.

Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит Многочлен - виды, определение с примерами решения, то остаток Многочлен - виды, определение с примерами решения.

Число с называется корнем многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения.

Теорема Безу

Число с является корнем многочлена Многочлен - виды, определение с примерами решения тогда и только тогда, когда Многочлен - виды, определение с примерами решения делится на x — с.

Пусть с — корень многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения. Разделим Многочлен - виды, определение с примерами решения на

Многочлен - виды, определение с примерами решения где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, Многочлен - виды, определение с примерами решения. Так как Многочлен - виды, определение с примерами решения, то из последнего равенства следует, что r=0, т.е. Многочлен - виды, определение с примерами решения

Обратно, пусть (х-с) делит Многочлен - виды, определение с примерами решения, т.е. Многочлен - виды, определение с примерами решения. Тогда Многочлен - виды, определение с примерами решения

Следствие. Остаток от деления многочлена Многочлен - виды, определение с примерами решения на (x-с) равен Многочлен - виды, определение с примерами решения.

Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена Многочлен - виды, определение с примерами решения равносильно разысканию его линейных делителей со старшим коэффициентом 1.

Многочлен Многочлен - виды, определение с примерами решения можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.

Пусть Многочлен - виды, определение с примерами решения и пустьМногочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:

Многочлен - виды, определение с примерами решения

Число с-называется корнем кратности к многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения делит Многочлен - виды, определение с примерами решения, но Многочлен - виды, определение с примерами решения уже не делит Многочлен - виды, определение с примерами решения.

Чтобы поверить, будет ли число с корнем многочлена Многочлен - виды, определение с примерами решения и какой кратности, можно воспользоваться схемой Горнера. Сначала Многочлен - виды, определение с примерами решения делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.

Число различных корней многочлена не превосходит его степени.

Большое значение имеет следующая основная теорема.

Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).

Следствие. Всякий многочлен степени Многочлен - виды, определение с примерами решенияимеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения— корни Многочлен - виды, определение с примерами решения, т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: Многочлен - виды, определение с примерами решениягде Многочлен - виды, определение с примерами решения уже различные корни Многочлен - виды, определение с примерами решения, Многочлен - виды, определение с примерами решения — кратность корня Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения, с действительными коэффициентами имеет корень с, то число с также корень Многочлен - виды, определение с примерами решения

Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.

Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.

Пусть Многочлен - виды, определение с примерами решения корни Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на х-с и Многочлен - виды, определение с примерами решения, но так как у Многочлен - виды, определение с примерами решения и х-с, нет общих делителей, то Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения

Утверждение 2. Многочлен с действительными коэффициентами степени Многочлен - виды, определение с примерами решениявсегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.

При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.

Рациональной дробью называется дробь гдеМногочлен - виды, определение с примерами решения многочлены с действительными коэффициентами, причем многочлен Многочлен - виды, определение с примерами решения Рациональная дробь Многочлен - виды, определение с примерами решения называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде Многочлен - виды, определение с примерами решения некоторые многочлены, а Многочлен - виды, определение с примерами решения правильная рациональная дробь.

Лемма 1, Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а число Многочлен - виды, определение с примерами решения является вещественным корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения, то существует вещественное число A и многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, что Многочлен - виды, определение с примерами решения где дробь Многочлен - виды, определение с примерами решения является правильной.

При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.

Лемма 2. Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а числоМногочлен - виды, определение с примерами решенияявляется корнем кратности Многочлен - виды, определение с примерами решения многочлена g(x), т.е. Многочлен - виды, определение с примерами решения и если Многочлен - виды, определение с примерами решения, то существуют вещественные числа M и N многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, Многочлен - виды, определение с примерами решения где дробь , Многочлен - виды, определение с примерами решениятакже является правильной.

Рациональные дроби видаМногочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.

Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.

При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.

Он состоит в следующем:

При этом если степень многочлена Многочлен - виды, определение с примерами решенияравна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен Многочлен - виды, определение с примерами решения коэффициентами.

Число неизвестных Многочлен - виды, определение с примерами решения‘ также равняется n: Многочлен - виды, определение с примерами решения

Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.

  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами
  • Линейное программирование
  • Дифференциальное исчисление функций одной переменной
  • Кривые второго порядка
  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Линейный оператор — свойства и определение

План урока:

Многочлен, вычисление значений многочлена

Стандартный вид многочлена

Сложение и вычитание многочленов

Умножение одночлена на многочлен

Умножение многочлена на многочлен

Многочлен, вычисление значений многочлена

В предыдущем уроке мы познакомились с понятием одночлена. При записи одночленов не используется операция сложения. Если же возникает необходимость сложить несколько одночленов, то в результате получается многочлен.

1 opredelenie

В качестве примера многочленов можно привести следующие выражения:

2 formula

Стоит обратить внимание, что в записи многочлена может использоваться и знак минус, при этом его всё равно можно считать суммой одночленов, а не разностью. Дело в том, что можно условно считать, что знак минус относится к коэффициенту одночлена, например:

3 formula

Для некоторых видов многочленов существуют особые названия. Если многочлен состоит из двух одночленов, то его называют двучленом. Многочлен, состоящий из 3 одночленов, называют трехчленом.

Иногда в литературе используются такие термины, как «моном» (синоним «одночлена»), «бином» (синоним «двучлена»), «полином» (синоним «многочлена»).

Если известно значение переменных, входящих в полином, то возможно вычисление значения многочлена.

Пример. Найдем значение полинома x3+2x2+5y+1 при значении x=2 и y = 3.

Решение.

4 formula

Пример. Вычислим значение полинома v4– d4при значении переменных v = 4 и d = 3.

Решение.

5 formula

Стандартный вид многочлена

Иногда некоторые мономы, входящие в состав полинома, имеют одинаковую буквенную часть. Например, в выражении

6 formula

первый и третий мономы отличаются лишь своими коэффициентами. Такие слагаемые называются подобными.

7 opredelenie

У подобных слагаемых одинаковый набор переменных, и при этом они возведены в одинаковые степени. Так, подобными являются мономы:

  • 7a2s3 и 2a2s3, так как совпадает буквенная часть a2s3;
  • 5v9m7t5 и – 4v9m7t5, так как у них одинаковая буквенная часть – 4v9m7t5;
  • a2 и 1000a2, так как есть одинаковая буквенная часть a2.

Также подобными слагаемыми можно считать и числа без буквенной части, например 8 и 2.

В качестве примеров неподобных слагаемых можно привести:

  • 7a2s3и 2a2s4 – у переменной s разные степени (3 и 4) в этих мономах;
  • 4x2yи 5x2– в буквенной части первого монома есть переменная y, а у второго его нет.

У подобных слагаемых может быть изменен порядок множителей. Так, подобными являются мономы 5p2u4и 9u4p2, так как у одних и тех же переменных стоят одинаковые показатели.

Подобные слагаемые можно складывать друг с другом. В этом случае буквенная часть останется неизменной, а коэффициенты сложатся друг с другом. Например:

8 formula

Такое действие называется приведением подобных слагаемых.

Пример. Приведите подобные слагаемые полинома:

9 formula

Решение. В данном полиноме есть три пары подобных слагаемых:

10 formula

Сгруппируем подобные слагаемые друг с другом, после чего сложим их:

11 formula

Если в полиноме нет подобных слагаемых, а все входящие в него мономы записаны в стандартном виде, то его называют многочленом стандартного вида.

12 opredelenie

Что такое одночлен стандартного вида, можно узнать из ранее изученного урока. Примерами полиномов стандартного вида являются:

13 formula

Далее рассмотрим понятие степени многочлена. Каждый из входящих в полином мономов имеет свой показатель степени(см. урок 3). Степенью полинома стандартного вида называется наибольшая из всех степеней одночленов, входящих в его состав.

14 opredelenie

Рассмотрим пример. Дан трехчлен 2y2 + x3y + 5y2x, требуется найти его степень.

Решение. Рассматриваемый трехчлен находится в стандартном виде. Он состоит из трех мономов:

15 formula

Найдем степень каждого из них:

  • 2y2 – степень равна 2;
  • x3y – степень равна 4 = (3+1);
  • 5y2x – степень равна 3 = (2+1).

Получается, что максимальную степень, равную 4, имеет моном x3y. Соответственно, и степень трехчлена также равна 4.

Ответ: 4.

Если же рассматривается полином, не находящийся в стандартном виде, то для вычисления его степени сначала надо привести полином к этому виду.

Пример. Найдите степень полинома с6 + ac2 + 9 – с6.

Решение. На первый взгляд может показаться, что она равна 6, так как один из его мономов, с6, имеет показатель, равный 6. Но это не так. Приведем полином к стандартному виду:

16 formula

Оказалось, что подобные мономы c6 и – с6 сократились. Получившийся полином состоит из двух мономов, ac2 и 9, чьи степени равны 3 и 0 соответственно. Значит, и степень всего двучлена равна трём.

Ответ: 3.

Определение степени полинома потребуется для решения уравнений в старших классах. Если в одной части уравнения стоит полином, например, третьей степени, в другой части – ноль, то его называют уравнением третьей степени:

17 formula

Аналогично выделяют уравнения первой, второй, четвертой и любой другой степени.

В зависимости от степени уравнения используются различные методы их решения. Ранее (ссылка на урок уравнения) мы уже научились решать линейные уравнения, которые являются уравнениями 1-ой степени. Обычно чем выше степень уравнения, тем сложнее его решать. Также существует интересная зависимость – количество корней уравнения не превышает его степень (за исключением одного частного случая, при котором есть бесконечное множество решений).

Особое значение в алгебре имеют те полиномы, в которых содержится только одна переменная, например:

  • m2 + 4m4 + 5m3 +9(здесь переменная m);
  • c6 + 1(единственная переменная – с);
  • 3x + 10(запись содержит только x);
  • – y4 + 89y10– 2,56y100(используется только y).

Их называют полиномами с одной переменной. Обычно их принято записывать по мере убывания степеней одночленов. То есть впереди пишется моном с максимальной степенью, а в самом конце – число без буквенной части:

18 formula

То число, которое стоит перед одночленом в наибольшей степени, называют старшим коэффициентом, а число, не имеющее буквенной части – свободным членом (реже свободным коэффициентом):

19 formula

Для некоторых полиномов с одной переменной есть особое название. Так, многочлен второй степени называют квадратным трехчленом. Дело в том, вторую степень в математике часто называют квадратом, а состоит квадратный трехчлен из трех монов. В качестве примера можно привести:

20 formula

21 formula

Конечно, квадратный многочлен может содержать и меньше трех одночленов:

22 formula

В этом случае иногда бывает удобно добавить «недостающее» слагаемое, поставив перед ним коэффициент, равный нулю:

23 formula

В общем случае квадратным трехчленом называют выражение вида

24 formula

где x – произвольная переменная, а, b и c являются произвольными действительными числами. При этом a не должно равняться нулю, иначе получится полином уже только 1-ой степени.

Квадратные трехчлены будут изучены подробнее в старших классах при изучении темы «Квадратные уравнения».

Сложение и вычитание многочленов

Полиномы можно складывать друг с другом, а также вычитать. При этом, возможно, придется приводить подобные слагаемые.

Пример. Произведите сложение многочленов 8z2 + 3z +12 и 2z4 + 9z.

Решение. Запишем интересующую нас сумму:

25 formula

Если перед скобками стоит знак «+», то можно просто опустить скобки:

26 formula

Осталось привести полином к стандартному виду. Здесь есть лишь одна пара подобных одночленов, 3z и 9z:

27 formula

При вычитании многочленов надо учитывать следующее правило:

28 opredelenie

Пример. Вычтите из полинома x5 + 3x3– 7y3 + 9x2 + 17 трехчлен 2y4 + 0,4y3– 25.

Решение:

Запишем разность полиномов:

29 formula

Первые скобки можно опустить, так как перед ними нет никакого знака. Перед вторыми скобками стоит минус, а потому для раскрытия скобок знаки слагаемых в них надо поменять на противоположные. Вместо 2y4 надо написать – 2y4, вместо 0,4y3 поставим – 0,4y3, а – 25 заменим на + 25:

30 formula

Осталось привести подобные слагаемые:

31 formula

Стоит заметить, что при сложении и вычитании полиномов их степени не могут увеличиться. Так, если складываются два полинома 5-ой и 4-ой степени, то в результате получится многочлен, чья степень будет не больше 5.

Рассмотрим более сложный пример с вложенными (внутренними) скобками. Необходимо упростить выражение

32 formula

33 formula

Решение. Раскроем первые скобки. Перед ними стоит минус, поэтому знаки слагаемых должны поменяться на противоположные. Однако обратите внимание, что здесь есть вложенные скобки (2a2b – ab) и (ab2 + 2a2b). Менять следует только знак перед ними, а знаки внутри вложенных скобок не меняются! Они рассматриваются как единые, неизменяемые слагаемые:

34 formula

Теперь раскроем оставшиеся две скобки:

35 formula

Приведем подобные слагаемые. Для наглядности пары подобных мономов подчеркнуты. Одной чертой подчеркнуты мономы с буквенной частью ab2, двумя чертами – мономы с a2b, а штриховой линией выделены мономы с буквенной частью ab:

36 formula

Умножение одночлена на многочлен

Напомним распределительный закон умножения:

37 formula

Используя этот закон, можно производить умножение одночлена на многочлен.

Пример. Перемножьте выражения 5v2 и 9v3 + 2t4.

Решение: Запишем произведение выражений:

38 formula

Такое раскрытие скобок можно объяснить с помощью «метода фонтанчика»:

39 formula

От множителя 5v2 строят линии (синего цвета к) КАЖДОМУ слагаемому в скобке. Каждой такой линии соответствует отдельное произведение в получаемом полиноме.

После раскрытия скобок получили два произведения одночлена на одночлен, которые считаем по отдельности (см. урок 3):

40 formula

Можно сформулировать следующее правило умножения многочлена на одночлен:

41 opredelenie

Ещё один пример. Перемножьте полином 2x2y + 4xy2 – 1 и моном – 3ху.

Решение:

42 formula

Здесь метод «фонтанчика» будет выглядеть так:

43 formula

Можно заметить, что после умножения монома на полином получится столько одночленов, сколько их было в исходном полиноме. Это правило можно использовать для самоконтроля.

Умножение многочлена на многочлен

Пусть нам надо перемножить два полинома, a+bи c+d. Запишем их произведение:

44 formula

Заменим выражение a + b переменной k:

45 formula

Теперь исходное произведение можно выразить как произведение монома и полинома:

46 formula

Проведем обратное преобразование, заменив k на a + b:

47 formula

Наконец, раскроем скобки в этом выражении:

48 formula

Эту формулу можно проиллюстрировать геометрически. Рассмотрим прямоугольник со сторонами a + b и c + d:

49 raschety

Площадь этого прямоугольника, как и любого другого, равна произведению его сторон, то есть(a + b)(c + d).С другой стороны, она состоит из 4 прямоугольников, чьи площади также вычисляются как произведения их сторон, и составляют ac, bc, ad и bd. Поэтому можно записать равенство

50 formula

Получается, что для умножения многочлена на многочлен нужно перемножать попарно все мономы, входящие в их состав, после чего сложить их.

51 opredelenie

Если в одном полиноме содержится m слагаемых, а в другом n, то результатом их перемножения окажется новый полином, содержащий m•n мономов (до приведения подобных слагаемых). Для перемножения многочленов также используется метод «фонтанчика».

Пример. Найдем произведение выражений 3a2 – 4ab + b2и 2a– b.

Решение: В первом полиноме содержится 3 монома, а во втором – 2, поэтому после их перемножения мы получим сумму 3•2 = 6 одночленов:

52 formula

Раскрытие скобок «фонтанчиком» будет выглядеть так:

53 formula

В результате действительно получилась сумма 6 мономов. Осталось вычислить каждый из них, после чего привести подобные слагаемые:

54 formula

Заметим, что при перемножении полиномов происходит сложение степеней многочленов. Действительно, в рассмотренном выше примере мы умножили полином второй степени 3a2 – 4ab + b2 на полином первой степени 2a– b, и получили в результате многочлен 3-ей (2+1) степени.

Также возможно умножение многочленов в столбик. Особенно это удобно делать в случае с полиномами с одной переменной.

Пример. Найдите произведение выражений 2x3 + 3x2 +5x + 9 и x2 + 4x + 7.

Решение: Запишем полиномы в столбик, один под другим:

55 formula

Далее умножим самый правый моном второго многочлена, то есть число 7, на первый полином, и запишем его ниже:

56 raschety

Далее умножим следующий моном, 4х, на первый полином, и запишем результат ещё ниже, причем сместим запись чуть влево, чтобы подобные члены оказались друг под другом:

57 raschety

Также умножим последний одночлен, x2, на первый полином:

58 raschety

Осталось сложить подобные слагаемые (то есть переменные х с одинаковыми степенями), которые записаны друг под другом:

59 raschety

Ещё раз цветом выделим подобные слагаемые и результаты их суммирования:

60 raschety

Ответ: 2х5 + 11х4 + 31х3 + 50х2 + 71х +63.

Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, надо умножить на этот одночлен каждый член многочлена и полученные произведения сложить.

При умножении одночлена на многочлен используется распределительное свойство умножения:

a(b + c) = ab + ac,

правило умножения степеней с одинаковыми основаниями:

ax · ay = ax + y

и правило знаков при умножении.

Произведением одночлена и многочлена будет многочлен.

Пример 1. Умножить одночлен  -5a  на многочлен  3a + 4b2.

Решение: Составим произведение одночлена и многочлена и с помощью распределительного свойства умножения раскроем скобки:

алгебра 7 класс умножение одночлена на многочлен

Теперь осталось выполнить умножение одночленов друг на друга:

-5a · 3a + (-5a) · 4b2 = -15a2 — 20ab2.

Так как в получившемся результате нет подобных членов, то многочлен  -15a2 — 20ab2  — это окончательный результат умножения одночлена  -5a  на многочлен  3a + 4b2.

Пример 2. Выполните умножение многочлена  x — xy + 2  на одночлен  2y.

Решение: Составим произведение многочлена и одночлена:

(xxy + 2)2y.

Для удобства можно записать одночлен перед многочленом, используя переместительное свойство умножения. После этого раскроем скобки:

правило умножения одночлена на многочлен

Теперь надо перемножить одночлены:

2y · x — 2y · xy + 2y · 2 = 2xy — 2xy2 + 4y.

Решение данного примера можно записать короче, не выписывая промежуточные результаты:

(xxy + 2)2y = 2xy — 2xy2 + 4y.

Пример 3. Упростите выражение:

3x2x(4x — 6y).

Решение: Раскроем скобки, выполнив умножение  —x  на  4x — 6y, и затем сделаем приведение подобных членов (если они будут):

3x2x(4x — 6y) = 3x2 — 4x2 + 6xy = -1x2 + 6xy.

Так как получившийся в результате многочлен является алгебраической суммой, то его можно записать так:

6xy — 1x2.

Понравилась статья? Поделить с друзьями:
  • Как можно не найти дырку
  • Как найти спин в елайбрари
  • Как ближе найти неприятельский лагерь он
  • Как найти на клавиатуре символ евро
  • Дарксайдерс 2 как найти книжника