Как найти множество решений неравенств по графику

ВИДЕО УРОК

Графическое решение линейных
неравенств.



ПРИМЕР:



Решите неравенство с помощью графика:



(х – 6)2 – (5 – х)2 < 3.



РЕШЕНИЕ:



Сначала проведём простейшие преобразования – раскроем
скобки полных квадратов и приведём подобные слагаемые
:



(х – 6)2 – (5 – х)2 < 3,

(х2 – 12х + 36) – (25 – 10х + х2) < 3,

х2 – 12х + 36 – 25 + 10хх2 < 3,

– 2х + 11 < 3,

– 2х < 3 – 11,

– 2х < –8,



Дальше делим обе части неравенства на отрицательное
число 
(–2), при этом надо поменять знак неравенства на
противоположный.



х ˃ 8/2,

х ˃ 4.



Неравенство нестрогое, поэтому  4  не включается в промежуток, и решением будут
являться все точки, которые находятся правее 
4, так как 
5 
больше 
4, 6  больше 
4  и так
далее.

ОТВЕТ:



х
(4; +
)



Графическое решение квадратных
неравенств.

Графиком
квадратичной функции

y = ах2 + bx + c

является парабола с
ветвями, направленными вверх, если 
а ˃ 0,
и вниз, если 
а < 0. При этом возможны три случая:

1)  парабола пересекает ось  х (то есть уравнение

ах2 + bx + c = 0

имеет два различных
корня);

2)  парабола имеет вершину на оси  х (то есть уравнение

ах2 + bx + c = 0

имеет один корень);

3)  парабола не пересекает ось  х (то есть уравнение

ах2 + bx + c = 0

не имеет корней).

Итого возможны
шесть положений параболы, служащей графиком функции

у = ах2 + bx
+ c

относительно оси  х, – они представлены на рисунку.

Опираясь на эти графические иллюстрации, можно
решать квадратные неравенства.

Квадратным неравенством называют неравенства вида



ax2
+
bx
+
c
˃ 0,



где вместо знака 
˃  может быть любой другой знак неравенства.



Для решения
квадратного неравенства с помощью графика нужно:



– определить направление ветвей параболы по знаку
старшего коэффициента квадратичной функции
;

– найти корни соответствующего квадратного уравнения
или установить, что их нет
;

– построить эскиз графика квадратичной функции,
учитывая точки пересечения
(или касания) с осью  Ох, если они есть;

– по графику определить промежутки, на которых
функция принимает нужные значения.


ПРИМЕР:



Решите неравенство графическим способом:



х2 + 10х –21 < 0.



РЕШЕНИЕ:



Сначала решаем квадратное уравнение:



х2 + 10х –21 = 0

D = b2 – 4ac,

D = 100 – 4 × (–1) × (–21)

= 100 – 84 = 16,


Затем схематично рисуем
параболу, не высчитывая, где у нё находится вершина, ведь по сути это не нужно,
у нас есть основное – точки пересечения параболы с осью 
Ох.


Возвращаемся к неравенству



х2 + 10х –2 < 0.



и отмечаем нужные нам промежутки:


Запишем теперь ответ.



ОТВЕТ:



х
(–
; 3) (7; +)



ПРИМЕР:



Решите неравенство графическим способом:



х2 – 2х – 3 ˃ 0.



РЕШЕНИЕ:



Рассмотрим параболу



у = х2
– 2
х – 3.


Решить неравенство



х2 – 2х – 3 ˃ 0



это значит ответить на вопрос, при каких значениях  х  ординаты точек параболы положительны.

Замечаем, что  у ˃ 0, то есть график функции расположен выше оси  х,
при 
х
< –1 
и при  х
˃ 3
. Значит, решениями неравенства служат все точки
интервалов


(–; –1) (3; +).



ПРИМЕР:



Решите неравенство графическим способом:



х2 – 2х – 3 < 0.

РЕШЕНИЕ:



Рассмотрим параболу



у = х2
– 2
х – 3.


Неравенство



х2 – 2х – 3 < 0



или  у < 0, где



у = х2 – 2х – 3,



также можно решить с помощью графика. График расположен
ниже оси 
х,
если



–1 < х < 3.



Поэтому решением данного неравенства служат все точки
интервала


(–1; 3).



ПРИМЕР:



Решите неравенство графическим способом:



х2 – 2х – 3 ≥ 0.



РЕШЕНИЕ:



Рассмотрим параболу



у = х2
– 2
х – 3.


Неравенство



х2 – 2х – 3 ≥ 0



отличается от неравенства



х2 – 2х – 3 ˃ 0



тем, что в ответ надо включить и корни уравнения



х2 – 2х – 3 = 0



то есть точки



х1 = –1  и  х2 = 3.



Таким образом, решениями данного нестрогого неравенства
являются все точки интервалов


(–; –1] [3; +)



ПРИМЕР:



Решите неравенство графическим способом:



х2 – 2х – 3 ≤ 0.



РЕШЕНИЕ:



Рассмотрим параболу



у = х2
– 2
х – 3.

Неравенство



х2 – 2х – 3 ≤ 0



Отличается от неравенства



х2 – 2х – 3 < 0



тем, что в ответ надо включить и корни уравнения



х2 – 2х – 3 = 0,



то есть  х1 = –1  и  х2 = 3,



Следовательно, решениями данного нестрогого неравенства
служат все точки отрезка


[–1; 3].



ПРИМЕР:



Решите неравенство графическим способом:



х2х – 2 ≥ 0.



РЕШЕНИЕ:



Представим такое неравенство в виде



х2х + 2.



В одной и той же системе координат построим графики
функций



у1 = х2  (парабола) и  
у2 =  х + 2 (прямая
линия
).


Найдём абсциссы точек пересечения этих графиков. Приравняем
правые части функций и получим уравнение
:



х2 = х + 2



или



х2х – 2 = 0.



Корни этого квадратного уравнения



х1 = –1  и  х2 = 2.



Поэтому такие графики пересекаются в двух точках  А  и  В
абсциссы которых, соответственно, равны



х1 = –1  и  х2 = 2.



Неравенству



х2х + 2



или



у1у2



удовлетворяют те значения х,
при которых значения первой функции больше или равны значениям второй функции,
то есть при которых график первой функции расположен выше или на уровне второй
функции. Из рисунка видно, что такими значениями являются все числа из
промежутков


х11  и  х22.



Этот способ оказывается более полезным при решении
сложных неравенств
(кубических неравенств, неравенств с модулем
и так далее
).



ПРИМЕР:



Решите неравенство графическим способом:



х2 + 2х – 1 ≥ 0.



РЕШЕНИЕ:



Запишем неравенство в виде



–(х – 1)2 ≥ 0



и построим эскиз графика функции



у = –(х – 1)2.


Ветви этой параболы направлены вниз. Уравнение



–(х – 1)2 = 0



имеет один корень  х = 1.



Поэтому парабола касается оси  Ох  в точке 
(1; 0). Для решения неравенства



–(х – 1)2 ≥ 0



надо определить, при каких значениях  х  функции 
у  неотрицательны.

Из рисунка видно, что функция положительных значений не
имеет. Значение 
у = 0  получается
только при  
х = 0. Поэтому
данное неравенство



х2 + 2х – 1 ≥ 0



имеет единственное решение  х = 1.

ПРИМЕР:

Решите неравенство графическим способом:

2х2 + 5х + 2 ˃ 0.

РЕШЕНИЕ:

Уравнение

2х2 + 5х + 2 = 0

имеет два корня:

х1 = –2х2 = –1/2.

Парабола, служащая графиком функции

у = 2х2 + 5х + 2,

имеет вид, изображённый на рисунке.

Неравенство

2х2 + 5х + 2 ˃ 0

выполняется при тех значениях  х,
при которых точки параболы лежат выше оси 
х.
Это будет при

х < х1  или при  х ˃ х2,

то есть при  х < –2  или при 
х ˃ –1/2.

Значит решения неравенства таковы:

х < –2,  х ˃
1/2.

ОТВЕТ: 

х < –2,  х ˃
1/2

ПРИМЕР:

Решите неравенство графическим способом:

3х2 – 7х – 10 ≤ 0.

РЕШЕНИЕ:

Уравнение

3х2 – 7х – 10 = 0

имеет два корня:

х1 = –1х2 = 10/3.

Парабола, служащая графиком функции

у = 3х2 – 7х – 10,

имеет вид, изображённый на рисунке.

Неравенство

3х2 – 7х – 10 ≤ 0

выполняется при тех значениях  х,
при которых точки параболы лежат на оси 
х  или ниже её. Это
будет при 
х  из промежутка

[х1; х2]

Значит множество решений неравенства есть отрезок

[–1; 10/3].

ОТВЕТ:  [–1; 10/3]

ПРИМЕР:

Решите неравенство графическим способом:

х2 + 4х – 4 ˃ 0.

РЕШЕНИЕ:

Уравнение

х2 + 4х – 4 = 0

имеет один корень:

х = 2.

Парабола, служащая графиком функции

у = х2 + 4х – 4,

имеет вид, изображённый на рисунке.

Неравенство

х2 + 4х – 4 ˃ 0

выполняется при тех значениях  х,
при которых точки параболы лежат выше оси 
х. Таких
точек нет. Значит, неравенство не имеет решений.

ОТВЕТ:  решений
нет

ПРИМЕР:

Решите неравенство графическим способом:

–3х2 + х – 5 < 0.

РЕШЕНИЕ:

Уравнение

–3х2 + х – 5 = 0

не имеет действительных корней.

Парабола, служащая графиком функции

у = –3х2 + х – 5,

имеет вид, изображённый на рисунке.

Неравенство

–3х2 + х – 5 < 0

выполняется при тех значениях  х,
при которых точки параболы лежат ниже оси 
х. Так
как вся парабола лежит ниже оси  х, то неравенство
выполняется при любых значениях  х.

ОТВЕТ:  –∞ < х < +∞

Графическое решение нелинейных
неравенств.

ПРИМЕР:

Решите неравенство графическим
способом
:

√͞͞͞͞͞x 
< 6 – х.

РЕШЕНИЕ:

Будуємо
графіки функцій

у = √͞͞͞͞͞x   и  у = 6 – х.

Графіки
перетинаються у точці
  (4; 2). Значення функції

у
= 6 – х

більші
від значень функції

у = √͞͞͞͞͞x,

якщо  х (0; 4)

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Неравенства

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x < b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x < c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x < c

x<c

x ∈ ( − ∞ ; c )
x ≤ c

x≤c

x ∈ ( − ∞ ; c ]
x > c

x>c

x ∈ ( c ; + ∞ )
x ≥ c

x≥c

x ∈ [ c ; + ∞ )

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x < b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 − 3 x > 18

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на (-3) – коэффициент, который стоит перед  x. Так как    − 3 < 0 ,   знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество    6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15         |     ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед  x. Так как 3 > 0,   знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ [ − 5 ;     + ∞ )

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 1 ≤ 6 x − 1

6 x − 6 x ≤ − 1 + 1

0 ≤ 0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство    x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    0 > 42

    Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Ответ: x ∈ ∅

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем   a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , < , точки будут выколотые.

    Решение квадратного неравенства, знак неравенства строгий

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    Решение квадратного неравенства, знак неравенства нестрогий

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах -+-

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах -+-

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

    1. Записать ответ.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство    x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 ≥ x + 12

    x 2 − x − 12 ≥ 0

    x 2 − x − 12 = 0

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2≥x+12

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство    − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    − 3 x − 2 ≥ x 2

    − x 2 − 3 x − 2 ≥ 0

    − x 2 − 3 x − 2 = 0

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства -3x-2≥x^2

    Поскольку знак неравенства   ≥ , выбираем в ответ интервал со знаком   +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство   4 < x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    4 < x 2 + 3 x

    − x 2 − 3 x + 4 < 0

    − x 2 − 3 x + 4 = 0

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c =   ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    x 1 = − 4, x 2 = 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0

    Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства 4<x^2+3x

    Поскольку знак неравенства   < ,  выбираем в ответ интервалы со знаком   − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство   x 2 − 5 x < 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 − 5 x < 6

    x 2 − 5 x − 6 < 0

    x 2 − 5 x − 6 = 0

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    x 1 = 6, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 =   44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2-5x<6

    Поскольку знак неравенства   < , выбираем в ответ интервал со знаком   -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ:   x ∈ ( − 1 ; 6 )

    №5. Решить неравенство   x 2 < 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    x 2 < 4

    x 2 − 4 < 0

    x 2 − 4 = 0

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0   [ x = 2 x = − 2

    x 1 = 2, x 2 = − 2

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2<4

    Поскольку знак неравенства   < ,   выбираем в ответ интервал со знаком   − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − 2 ; 2 )

    №6. Решить неравенство   x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения   x 2 + x = 0.

    x 2 + x ≥ 0

    x 2 + x = 0

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    x 1 = 0, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2+x≥0

    Поскольку знак неравенства   ≥ ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю   f ( x ) = 0.  Найти нули числителя.
    1. Приравнять знаменатель дроби к нулю   g ( x ) = 0.  Найти нули знаменателя.

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x.

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые.

    Если знак неравенства строгий,
    при нанесении на ось x нули числителя выколотые.

    Если знак неравенства нестрогий,
    при нанесении на ось x нули числителя жирные.

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство   x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю  f ( x ) = 0.

    x − 1 = 0

    x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю  g ( x ) = 0.

    x + 3 = 0

    x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3   =   2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Решение дробно рационального неравенства (x-1)/(x+3)<0

    Ответ:   x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство   3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду  f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) ≤ 5

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю  f ( x ) = 0.

    − 5 x − 37 = 0

    − 5 x = 37

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю  g ( x ) = 0.

    x + 8 = 0

    x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   ≤ ,  выбираем в ответ интервалы со знаком   -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Решение дробно рационального неравенства 3/(x+8)≤5

    Ответ:   x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство   x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю  f ( x ) = 0.

    x 2 − 1 = 0

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Решение дробно рационального неравенства (x^2-1)/x>0

    Ответ:   x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    { x + 4 > 0 2 x + 3 ≤ x 2

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x.
    1. Решить второе неравенство системы, изобразить его графически на оси x.
    1. Нанести решения первого и второго неравенств на ось x.
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств   { 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 3 ≤ 5  

    2 x ≤ 8 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 4 ;

    Графическая интерпретация:

    Решение неравенства 2x-3≤5

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    7 − 3 x ≤ 1

    − 3 x ≤ 1 − 7

    − 3 x ≤ − 6 | ÷ ( − 3 ),  поскольку  − 3 < 0,  знак неравенства после деления меняется на противоположный.

    x ≥ 2

    Графическая интерпретация решения:

    Решение неравенства 7-3x<=1

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-3≤=5; 7-3x≤=1

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    Ответ:   x ∈ [ 2 ; 4 ]

    №2. Решить систему неравенств   { 2 x − 1 ≤ 5 1 < − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 1 ≤ 5

    2 x ≤ 6 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 3

    Графическая интерпретация:

    Решение неравенства 2x-1≤5

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    1 < − 3 x − 2

    3 x < − 1 − 2

    3 x < − 3 | ÷ 3 ,  поскольку  3 > 0,  знак неравенства после деления сохраняется.

    x < − 1

    Графическая интерпретация решения:

    Решение неравенства 1<-3x-2

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-1≤5; 1<-3x-2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ:   x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств   { 3 x + 1 ≤ 2 x x − 7 > 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    3 x + 1 ≤ 2 x

    3 x − 2 x ≤ − 1

    x ≤ − 1

    Графическая интерпретация решения:

    Решение неравенства 3x+1≤2x-1

    1. Решаем второе неравенство системы

    x − 7 > 5 − x

    x + x > 5 + 7

    2 x > 12 |   ÷ 2 ,  поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x > 6

    Графическая интерпретация решения:

    Решение неравенства x-7>5-x

    1. Наносим оба решения на ось x.

    Решение системы неравенств 3x+1≤2x-1; x-7>5-x

    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    Ответ:   x ∈ ∅

    №4. Решить систему неравенств   { x + 4 > 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    x + 4 > 0

    x > − 4

    Графическая интерпретация решения первого неравенства:

    Решение неравенства x+4>0

    1. Решаем второе неравенство системы

    2 x + 3 ≤ x 2

    − x 2 + 2 x + 3 ≤ 0

    Решаем методом интервалов.

    − x 2 + 2 x + 3 = 0

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Решение квадратного неравенства 2x+3≤x^2

    Графическая интерпретация решения второго неравенства:

    Решение квадратного неравенства 2x+3≤x^2

    1. Наносим оба решения на ось x.

    Решение системы неравенств x+4>0; 2x+3<=x^2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Ответ:   x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )

    Скачать домашнее задание к уроку 8.


    Загрузить PDF


    Загрузить PDF

    График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

    1. Изображение с названием Graph Inequalities Step 1

      1

      Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения.[1]
      Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    2. Изображение с названием Graph Inequalities Step 2

      2

      Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

      • Например, если вы вычислили, что y>1, на числовой прямой отметьте значение 1.
    3. Изображение с названием Graph Inequalities Step 3

      3

    4. Изображение с названием Graph Inequalities Step 4

      4

      На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.[3]

      • Например, если дано неравенство y>1, на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

      Реклама

    1. Изображение с названием Graph Inequalities Step 5

      1

      Решите неравенство (найдите значение y). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов.[4]
      В правой части должна остаться переменная x и, возможно, некоторая постоянная.

    2. Изображение с названием Graph Inequalities Step 6

      2

      На координатной плоскости постройте график линейного уравнения. Для этого преобразуйте неравенство в уравнение и постройте график, как строите график любого линейного уравнения.[5]
      Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

    3. Изображение с названием Graph Inequalities Step 7

      3

    4. Изображение с названием Graph Inequalities Step 8

      4

      Реклама

    1. Изображение с названием Graph Inequalities Step 9

      1

    2. Изображение с названием Graph Inequalities Step 10

      2

      На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график, как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.[9]

    3. Изображение с названием Graph Inequalities Step 11

      3

    4. Изображение с названием Graph Inequalities Step 12

      4

      Выберите несколько контрольных точек. Чтобы определить, какую область заштриховать, выберите точки внутри и снаружи параболы.

    5. Изображение с названием Graph Inequalities Step 13

      5

      Заштрихуйте соответствующую область. Чтобы определить, какую область заштриховать, в исходное неравенство подставьте значения x и y контрольных точек. Если при подстановке координат некоторой точки неравенство выполняется, заштрихуйте область, в которой лежит эта точка.[11]

      Реклама

    Советы

    • Всегда упрощайте неравенство, прежде чем строить его график.
    • Если вы не можете решить задачу, введите неравенство в графический калькулятор и попытайтесь справиться с задачей, действуя в обратном направлении.

    Реклама

    Об этой статье

    Эту страницу просматривали 55 045 раз.

    Была ли эта статья полезной?

    Решение уравнений с помощью графиков

    Решение линейных уравнений

    Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.

    Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.

    Сейчас же я покажу тебе, как это сделать графическим способом.

    Итак, у тебя есть уравнение: ( displaystyle 2{x} -10=2)

    Как его решить?

    Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:

    ( displaystyle 2x=2+10)

    ( displaystyle 2x=12)

    Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.

    Иными словами, у нас будет:

    ( displaystyle {{y}_{1}}=2x)

    ( displaystyle {{y}_{2}}=12)

    А теперь строим. Что у тебя получилось?

    Как ты думаешь, что является корнем нашего уравнения? Правильно, координата ( displaystyle x) точки пересечения графиков:

    Наш ответ: ( displaystyle x=6)

    Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число ( displaystyle 6)!

    Вариант 1. Напрямую

    Просто строим параболу по данному уравнению: ( displaystyle {{x}^{2}}+2{x} -8=0)

    Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

    ( displaystyle x=-frac{b}{2a})

    ( displaystyle y=-frac{{{b}^{2}}-4ac}{4a})

    Ты скажешь «Стоп! Формула для ( displaystyle y) очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни.

    Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

    Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

    ( displaystyle x=frac{-2}{2}=-1)

    ( displaystyle y=-frac{{{2}^{2}}-4cdot left( -8 right)}{4}=-frac{4+32}{4}=-9)

    Точно такой же ответ? Молодец!

    И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, ( displaystyle 3).

    Ты знаешь, что парабола симметрична относительно своей вершины, например:

    Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

    Возвращаемся к нашей параболе.

    Для нашего случая точка ( displaystyle Aleft( -1;-9 right)). Нам необходимо еще две точки, соответственно, ( displaystyle x) можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней?

    Мне удобней работать с положительными, поэтому я рассчитаю при ( displaystyle x=0) и ( displaystyle x=2).

    При ( displaystyle x=0):

    ( displaystyle y={{0}^{2}}+0-8=-8)

    При ( displaystyle x=2):

    ( displaystyle y={{2}^{2}}+2cdot 2-8=0)

    Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

    Как ты думаешь, что является решением уравнения?

    Правильно, точки, в которых ( displaystyle y=0), то есть ( displaystyle x=2) и ( displaystyle x=-4). Потому что ( displaystyle {{x}^{2}}+2{x} -8=0).

    И если мы говорим, что ( displaystyle y={{x}^{2}}+2{x} -8), то значит, что ( displaystyle y) тоже должен быть равен ( displaystyle 0), или ( displaystyle y={{x}^{2}}+2{x} -8=0).

    Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

    Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.

    Что у тебя получилось? То же самое?

    Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

    Решение смешанных неравенств

    Теперь перейдем к более сложным неравенствам!

    Как тебе такое:

    ( displaystyle 4x<{{x}^{3}})?

    Жуть, правда? Честно говоря, я понятия не имею, как решить такое алгебраически… Но, оно и не надо. Графически ничего сложного в этом нет! Глаза боятся, а руки делают!

    Первое, с чего мы начнем, – это с построения двух графиков:

    ( displaystyle {{y}_{1}}=4x)

    ( displaystyle {{y}_{2}}={{x}^{3}})

    Я не буду расписывать для каждого таблицу – уверена, ты отлично справишься с этим самостоятельно (еще бы, столько прорешать примеров!).

    Расписал? Теперь строй два графика.

    Сравним наши рисунки?

    У тебя так же? Отлично!

    Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть ( displaystyle {{y}_{2}}={{x}^{3}}).

    Смотри, что получилось в итоге:

    А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график ( displaystyle {{y}_{1}}=4x)? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

    На каких промежутках по оси ( displaystyle Ox) у нас ( displaystyle {{y}_{2}}={{x}^{3}}) находится выше, чем ( displaystyle {{y}_{1}}=4x)? Верно, ( displaystyle xin left( -2;0 right)cup left( 2;+infty right)).

    Это и есть ответ!

    Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

    В данной статье я отвечаю на очередной вопрос от моих подписчиков. Вопросы приходят разные. Не все из них корректно сформулированы. А некоторые из них сформулированы так, что не сразу получается понять, о чём хочет спросить автор. Поэтому среди огромного множества присылаемых вопросов приходится отбирать действительно интересные, такие «жемчужины», отвечать на которые не просто увлекательно, но ещё и полезно, как мне кажется, для других моих читателей. И сегодня я отвечаю на один из таких вопросов. Как изобразить множество решений системы неравенств?

    Это действительно хороший вопрос. Потому что метод графического решения задач в математике — это очень мощный метод. Человек так устроен, что ему удобнее воспринимать информацию с помощью различных наглядных материалов. Поэтому если вы овладеете этим методом, то поверьте, он для вас окажется незаменимым как при решении заданий из ЕГЭ, особенно из второй части, других экзаменов, так и при решении задач оптимизации и так далее, и так далее.

    Так вот. Как же нам ответить на этот вопрос. Давайте начнём с простого. Пусть в системе неравенств содержится только одна переменная x.

    Пример 1. Изобразите множество решений системы неравенств:

        [ begin{cases} 2x-7leqslant 9 \ x-4>2. end{cases} ]

    Упростим эту систему. Для этого прибавим к обеим частям первого неравенства 7 и поделим обе части на 2, не меняя при этом знак неравенства, так как 2 — положительное число. К обеим частям второго неравенства прибавим 4. В результате получим следующую систему неравенств:

        [ begin{cases} xleqslant 8 \ x>6. end{cases} ]

    Обычно такую задачу называют одномерной. Почему? Да потому что для того, чтобы изобразить множество её решений, достаточно прямой. Числовой прямой, если быть точным. Отметим точки 6 и 8 на этой числовой прямой. Понятно, что точка 8 будет находиться правее, чем точка 6, потому что на числовой прямой большие числа находятся правее меньших. Кроме того, точка 8 будет закрашенной, так как согласно записи первого неравенства она входит в его решение. Наоборот, точка 6 будет незакрашенной, так как она не входит в решение второго неравенства:

    Числа 6 и 8 на числовой прямой

    Отметим теперь стрелочной сверху значения x, которые меньше или равны 8, как того требует первое неравенство системы, а стрелочкой снизу — значения x, которые больше 6, как того требует второе неравенство системы:

    Числовая прямая с отмеченными на ней интервалами, соответствующими неравенствам x>6 и x<=8

    Осталось ответить на вопрос, где на числовой прямой находятся решения системы неравенств. Запомните раз и навсегда. Знак системы — фигурная скобка — в математике заменяет союз «И». То есть, переводя язык формул на человеческий язык, можно сказать, что от нас требуется указать значения x, которые больше 6 И меньше или равны 8. То есть искомый промежуток лежит на пересечении отмеченных промежутков:

    Изображение решения системы неравенств на числовой прямой

    Вот мы и изобразили множество решений системы неравенств на числовой прямой в случае, если в системе неравенств содержится только одна переменная. В этот заштрихованный промежуток входят все значения x, при которых все неравенства, записанные в системе, выполняются.

    Рассмотрим теперь более сложный случай. Пусть в нашей системе содержатся неравенства с двумя переменными x и y. В этом случае обойтись только прямой для изображения решений такой системы не получится. Мы выходим за рамки одномерного мира и добавляем к нему ещё одно измерение. Здесь нам понадобится уже целая плоскость. Рассмотрим ситуацию на конкретном примере.

    Пример 2. Изобразите на координатной плоскости множество решений системы неравенств:

        [ begin{cases} x+2yleqslant 8 \ xgeqslant 0 \ ygeqslant x. end{cases} ]

    Итак, как же можно изобразить множество решений данной системы неравенств с двумя переменными в прямоугольной системе координат на плоскости? Начнём с самого простого. Зададимся вопросом, какую область этой плоскости задаёт неравенство xgeqslant 0. Уравнение x=0 задаёт прямую, проходящую перпендикулярно оси OX через точку (0;0). То есть фактически это прямая совпадает с осью OY. Ну а раз нас интересуют значения x, которые больше или равны 0, то подойдёт вся полуплоскость, лежащая справа от прямой x=0:

    Положительная полуплоскость

    Причём все точки, которые лежат на оси OY, нам тоже подходят, потому что неравенство xgeqslant 0 — нестрогое.

    Чтобы понять, какую область на координатной плоскости задаёт третье неравенство, нужно построить график функции y=x. Это прямая, проходящая через начало координат и, например, точку (1;1). То есть фактически это прямая, содержащая биссектрису угла, образующего первую координатную четверть.

    А теперь посмотрим на третье неравенство в системе и подумаем. Какую область нам нужно найти? Смотрим: ygeqslnt x. Знак «больше или равно». То есть ситуация аналогична той, что была в предыдущем примере. Только здесь «больше» означает не «правее», а «выше». Потому что OY — это у нас вертикальная ось. То есть область, задаваемая на плоскости третьим неравенством, — это множество точек, находящихся выше прямой y=x или на ней:

    Часть координатной плоскости, задаваемой неравенствами x>0 и y>x

    С первым неравенством системы чуть менее удобно. Но после того, как мы смогли определить область, задаваемую третьим неравенством, я думаю, что уже понятно, как нужно действовать.

    Нужно представить это неравенство в таком виде, чтобы слева находилась только переменная y, а справа — только переменная x. Для этого вычтем из обеих частей неравенства x и поделим обе части на 2, не меняя при этом знак неравенства, потому что 2 — это положительное число. В результате получаем следующее неравенство: yleqslant 4-frac{x}{2}.

    Осталось только изобразить на координатной плоскости прямую y=4-frac{x}{2}, которая пересекает ось OY в точке A(0;4) и прямую y=x в точке Bleft(frac{8}{3};frac{8}{3}right). Последнее я узнал, приравняв правые части уравнений прямых и получив уравнение x=4-frac{x}{2}. Из этого уравнения находится координата x точки пересечения, а координата y, я думаю вы догадались, равна координате x. Для тех, кто всё-таки не догадался, это потому что у нас уравнение одной из пересекающихся прямых: y=x.

    Как только мы нарисовали эту прямую, сразу можно отметить искомую область. Знак неравенства у нас здесь «меньше или равно». Значит, искомая область находится ниже или непосредственно на изображённой прямой:

    Линии на координатной плоскости разделяют ее на 4 части

    Ну и последний вопрос. Где же всё-таки находится искомая область, удовлетворяющая всем трём неравенствами системы? Очевидно, что она находится на пересечении всех трёх отмеченных областей. Опять пересечение! Запомните: знак системы в математике означает пересечение. Вот она, эта область:

    Заштрихованная область на координатной плоскости, задаваемая тремя неравенствами в системе

    Ну и последний пример. Ещё более общий. Предположим теперь что у нас не одна переменная в системе и ни две, а аж целых три!

    Пример 3. Изобразите множество решений следующей системы неравенств:

        [ begin{cases} (x-1)^2+(y-3)^2+(z-2)^2leqslant 4 \ x+y+zgeqslant 4 end{cases} ]

    Поскольку переменных целых три, то для изображения множества решений такой системы неравенств нам потребуется третье измерение в добавок к двум, с которыми мы работали в предыдущем примере. То есть мы вылезаем из плоскости в пространство и изображаем уже пространственную систему координат с тремя измерениями: X, Y и Z. Что соответствует длине, ширине и высоте.

    Начнём с того, что изобразим в этой системе координат поверхность, задаваемую уравнением (x-1)^2+(y-3)^2+(z-2)^2 = 4. По форме оно очень напоминает уравнение окружности на плоскости, только добавляется ещё одно слагаемое с переменной z. Несложно догадаться, что это уравнение сферы с центром в точке (1;3;2), квадрат радиуса которой равен 4. То есть сам радиус равен 2.

    Тогда вопрос. А что тогда задаёт само неравенство? Для тех, кого этот вопрос ставит в тупик, предлагаю рассудить следующим образом. Переводя язык формул на человеческий, можно сказать, что требуется указать все сферы с центром в точке (1;3;2), радиусы которых меньше или равны 2. Но тогда все эти сферы будут находиться внутри изображённой сферы! То есть фактически данным неравенством задаётся вся внутренняя область изображённой сферы. Если хотите, задаётся шар, ограниченный изображённой сферой:

    Сфера в прямоугольной системе координат

    Поверхность, которую задаёт уравнение x+y+z=4 — это плоскость, которая пересекает оси координат в точках (0;0;4), (0;4;0) и (4;0;0). Ну и понятно, что чем больше будет число справа от знака равенства, тем дальше от центра координат будут находиться точки пересечения этой плоскости с осями координат. То есть второе неравенство задаёт полупространство, находящееся «выше» данной плоскости. Используя условный термин «выше», я имею ввиду дальше в сторону увеличения значений координат по осям.

    Данная плоскость пересекает изображённую сферу. При этом сечение пересечения — это окружность. Можно даже посчитать, на каком расстоянии от центра системы координат находится центр этой окружности. Кстати, кто догадается, как это сделать, пишите свои решения и ответы в комментариях. Таким образом исходная система неравенств задаёт область пространства, которая находится дальше от этой плоскости в сторону увеличения координат, но заключённая в изображённую сферу:

    Сфера, срезанная плоскостью, в прямоугольной системе координат

    Вот таким образом изображают множество решений системы неравенств. В случае, если переменных в системе больше, чем 3 (например, 4), наглядно изобразить множество решений уже не получится. Потому что для этого потребовалась бы 4-х мерная система координат. Но нормальный человек не способен представить себе, как могли бы располагаться 4 взаимно перпендикулярные оси координат. Хотя у меня есть знакомый, который утверждает, что может сделать это, причём с лёгкостью. Не знаю, правду ли он говорит, может быть и правду. Но всё-таки нормальное человеческое воображение этого сделать не позволяет.

    Надеюсь, сегодняшний урок оказался для вас полезным. Чтобы проверить, насколько хорошо вы его усвоили, выполните записанное ниже домашнее задание.

    Изобразите множество решений системы неравенств:

        [ 1. begin{cases} y-x>-2 \ xgeqslant 0 \ 2x+3y<7 end{cases} 2. begin{cases} x^2+y^2leqslant 9 \ y-2xgeqslant 4 end{cases} ]

        [ 3. begin{cases} x^2+y^2leqslant 16 \ (x-5)^2+y^2geqslant 4 . end{cases} 4. begin{cases} x^2+y^2+z^2leqslant 16 \ x>0. end{cases} ]

    Материал подготовил репетитор по математике и физике в Москве, Сергей Валерьевич

    Понравилась статья? Поделить с друзьями:
  1. Ошибка в сзв корр код результата 30 как исправить
  2. Как найти ссылку своего аккаунта вконтакте
  3. Как найти формулу симметрии
  4. Психологический портрет по дате рождения как составить
  5. Как составить договор купли продажи автомобиля у ооо