Как найти множество решений неравенства на функции

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Неравенства

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x < b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x < c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x < c

x<c

x ∈ ( − ∞ ; c )
x ≤ c

x≤c

x ∈ ( − ∞ ; c ]
x > c

x>c

x ∈ ( c ; + ∞ )
x ≥ c

x≥c

x ∈ [ c ; + ∞ )

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x < b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 − 3 x > 18

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на (-3) – коэффициент, который стоит перед  x. Так как    − 3 < 0 ,   знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество    6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15         |     ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед  x. Так как 3 > 0,   знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ [ − 5 ;     + ∞ )

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 1 ≤ 6 x − 1

6 x − 6 x ≤ − 1 + 1

0 ≤ 0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство    x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    0 > 42

    Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Ответ: x ∈ ∅

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем   a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , < , точки будут выколотые.

    Решение квадратного неравенства, знак неравенства строгий

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    Решение квадратного неравенства, знак неравенства нестрогий

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах -+-

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах -+-

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

    1. Записать ответ.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство    x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 ≥ x + 12

    x 2 − x − 12 ≥ 0

    x 2 − x − 12 = 0

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2≥x+12

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство    − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    − 3 x − 2 ≥ x 2

    − x 2 − 3 x − 2 ≥ 0

    − x 2 − 3 x − 2 = 0

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства -3x-2≥x^2

    Поскольку знак неравенства   ≥ , выбираем в ответ интервал со знаком   +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство   4 < x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    4 < x 2 + 3 x

    − x 2 − 3 x + 4 < 0

    − x 2 − 3 x + 4 = 0

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c =   ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    x 1 = − 4, x 2 = 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0

    Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства 4<x^2+3x

    Поскольку знак неравенства   < ,  выбираем в ответ интервалы со знаком   − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство   x 2 − 5 x < 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 − 5 x < 6

    x 2 − 5 x − 6 < 0

    x 2 − 5 x − 6 = 0

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    x 1 = 6, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 =   44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2-5x<6

    Поскольку знак неравенства   < , выбираем в ответ интервал со знаком   -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ:   x ∈ ( − 1 ; 6 )

    №5. Решить неравенство   x 2 < 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    x 2 < 4

    x 2 − 4 < 0

    x 2 − 4 = 0

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0   [ x = 2 x = − 2

    x 1 = 2, x 2 = − 2

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2<4

    Поскольку знак неравенства   < ,   выбираем в ответ интервал со знаком   − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − 2 ; 2 )

    №6. Решить неравенство   x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения   x 2 + x = 0.

    x 2 + x ≥ 0

    x 2 + x = 0

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    x 1 = 0, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2+x≥0

    Поскольку знак неравенства   ≥ ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю   f ( x ) = 0.  Найти нули числителя.
    1. Приравнять знаменатель дроби к нулю   g ( x ) = 0.  Найти нули знаменателя.

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x.

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые.

    Если знак неравенства строгий,
    при нанесении на ось x нули числителя выколотые.

    Если знак неравенства нестрогий,
    при нанесении на ось x нули числителя жирные.

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство   x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю  f ( x ) = 0.

    x − 1 = 0

    x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю  g ( x ) = 0.

    x + 3 = 0

    x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3   =   2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Решение дробно рационального неравенства (x-1)/(x+3)<0

    Ответ:   x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство   3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду  f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) ≤ 5

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю  f ( x ) = 0.

    − 5 x − 37 = 0

    − 5 x = 37

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю  g ( x ) = 0.

    x + 8 = 0

    x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   ≤ ,  выбираем в ответ интервалы со знаком   -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Решение дробно рационального неравенства 3/(x+8)≤5

    Ответ:   x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство   x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю  f ( x ) = 0.

    x 2 − 1 = 0

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Решение дробно рационального неравенства (x^2-1)/x>0

    Ответ:   x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    { x + 4 > 0 2 x + 3 ≤ x 2

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x.
    1. Решить второе неравенство системы, изобразить его графически на оси x.
    1. Нанести решения первого и второго неравенств на ось x.
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств   { 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 3 ≤ 5  

    2 x ≤ 8 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 4 ;

    Графическая интерпретация:

    Решение неравенства 2x-3≤5

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    7 − 3 x ≤ 1

    − 3 x ≤ 1 − 7

    − 3 x ≤ − 6 | ÷ ( − 3 ),  поскольку  − 3 < 0,  знак неравенства после деления меняется на противоположный.

    x ≥ 2

    Графическая интерпретация решения:

    Решение неравенства 7-3x<=1

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-3≤=5; 7-3x≤=1

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    Ответ:   x ∈ [ 2 ; 4 ]

    №2. Решить систему неравенств   { 2 x − 1 ≤ 5 1 < − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 1 ≤ 5

    2 x ≤ 6 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 3

    Графическая интерпретация:

    Решение неравенства 2x-1≤5

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    1 < − 3 x − 2

    3 x < − 1 − 2

    3 x < − 3 | ÷ 3 ,  поскольку  3 > 0,  знак неравенства после деления сохраняется.

    x < − 1

    Графическая интерпретация решения:

    Решение неравенства 1<-3x-2

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-1≤5; 1<-3x-2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ:   x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств   { 3 x + 1 ≤ 2 x x − 7 > 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    3 x + 1 ≤ 2 x

    3 x − 2 x ≤ − 1

    x ≤ − 1

    Графическая интерпретация решения:

    Решение неравенства 3x+1≤2x-1

    1. Решаем второе неравенство системы

    x − 7 > 5 − x

    x + x > 5 + 7

    2 x > 12 |   ÷ 2 ,  поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x > 6

    Графическая интерпретация решения:

    Решение неравенства x-7>5-x

    1. Наносим оба решения на ось x.

    Решение системы неравенств 3x+1≤2x-1; x-7>5-x

    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    Ответ:   x ∈ ∅

    №4. Решить систему неравенств   { x + 4 > 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    x + 4 > 0

    x > − 4

    Графическая интерпретация решения первого неравенства:

    Решение неравенства x+4>0

    1. Решаем второе неравенство системы

    2 x + 3 ≤ x 2

    − x 2 + 2 x + 3 ≤ 0

    Решаем методом интервалов.

    − x 2 + 2 x + 3 = 0

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Решение квадратного неравенства 2x+3≤x^2

    Графическая интерпретация решения второго неравенства:

    Решение квадратного неравенства 2x+3≤x^2

    1. Наносим оба решения на ось x.

    Решение системы неравенств x+4>0; 2x+3<=x^2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Ответ:   x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )

    Скачать домашнее задание к уроку 8.

        При решении неравенств вы должны свободно владеть понятием числового неравенства, знать, что такое решение неравенства, что значит решить неравенство, помнить свойства неравенств. То же относится и к системам числовых неравенств. Все эти сведения вы можете найти в любом пособии для поступающих в вузы. 
        Напомним свойства числовых неравенств.
        1. Если а > b , то b < а; наоборот, если а < b, то b > а.
        2. Если а > b и b > c, то а > c. Точно так же, если а < b и b < c, то а < c.
        3. Если а > b, то а + c > b+ c (и  а – c > b – c). Если же а < b, то а + c < b+ c (и а – c < b – c). Т. е. к обеим частям неравенства можно прибавлять (или из них вычесть) одну и ту же величину.
        4. Если а > b и c > d, то а + c > b + d; точно так же, если а < b и c < d, то а + c < b + d, т. е. два неравенства одинакового смысла можно почленно складывать.

    Замечание.

    Два неравенства одинакового смысла нельзя почленно вычитать друг из друга, так как результат может быть верным, но может быть и неверным. Например, если из неравенства 11 > 9 почленно вычесть неравенство 3 > 2, то получим верное неравенство 8 > 7. Если из неравенства 11 > 9 почленно вычесть неравенство 7 > 2, то полученное неравенство будет неверным.
        5. Если а > b и c < d, то а – c > b – d; если а < b и c > d, то а – c < b – d, т.е. из одного неравенства можно почленно вычесть другое неравенство противоположного смысла, оставляя знак того неравенства, из которого вычиталось другое.
        6. Если а > b и m – положительное число, то m а > m b и  , т.е. обе части неравенства можно умножить или разделить на одно и то же положительное число ( знак неравенства остаётся тем же ).
        Если же а > b и n – отрицательное число, то n а < n b и , т.е. обе части неравенства можно умножить или разделить на одно и то же отрицательное число, но при этом знак неравенства нужно переменить на противоположный.
        7. Если а > b и c > d , где а, b, c, d > 0, то а c > b d и если а < b и c < d, где а, b, c, d > 0, то аc < bd, т.е. неравенства одного смысла на множестве положительных чисел можно почленно перемножать.
    Следствие. Если а > b, где а, b > 0, то а2 > b2, и если а < b, то а2 < b2, т.е. на множестве положительных чисел обе части неравенства можно возводить в квадрат.

        8. Если а > b, где а, b > 0, то  и если а < b , то .

    Виды неравенств и способы их решения

    1. Линейные неравенства и системы неравенств

    Пример 1. Решить неравенство .
        Решение:
              .
        Ответ: х < – 2.

    Пример 2. Решить систему неравенств  
        Решение:
             .
        Ответ: (– 2; 0].

    Пример 3. Найти наименьшее целое решение системы неравенств 

        Решение:
            
        Ответ: 

    2. Квадратные неравенства

    Пример 4. Решить неравенство х2 > 4.
        Решение:
            х2 > 4   (х – 2)∙(х + 2) > 0.
            Решаем методом интервалов.

            

            

    Ответ:

    3. Неравенства высших степеней

    Пример 5. Решить неравенство (х + 3)∙(х2 – 2х + 1) > 0. 
        Решение:
              
        Ответ: 

    Пример 6. Найти середину отрезка, который является решением неравенства 4х2 – 24х + 24 < 4у2, где   .
        Решение:
            Область определения неравенства: .
            С учётом области определения 4х2 – 24х + 24 < 4у2 будет равносильно неравенству

            

            Решаем методом интервалов.

            
            Решение неравенства: .
            Середина отрезка: .
        Ответ: .

    4. Рациональные неравенства

    Пример 7. Найти все целые решения, удовлетворяющие неравенству .
        Решение:
                 
            

            

            Методом интервалов:

            

            Решение неравенства: .
            Целые числа, принадлежащие полученным полуинтервалам: – 6; – 5; – 4; 1. 
        Ответ:  – 6; – 5; – 4; 1.

    5. Иррациональные неравенства

    Помните! Начинать решение иррациональных неравенств нужно с нахождения области определения.

    Пример 8. Решить неравенство .
        Решение:    
            Область определения: .
            Так как арифметический корень не может быть отрицательным числом, то .
        Ответ: .

    Пример 9. Найти все целые решения неравенства .

        Решение:

            Область определения .

            – быть отрицательным не может, следовательно, чтобы произведение было неотрицательным достаточно потребовать выполнения неравенства , при этом учитывая область определения. Т.е. исходное неравенство равносильно системе 

            Целыми числами из этого отрезка будут 2; 3; 4.

        Ответ: 2; 3; 4.

    Пример 10. Решить неравенство .

        Решение:

            Область определения:  

            Преобразуем неравенство: . С учётом области определения видим, что обе части неравенства —  положительные числа. Возведём обе части в квадрат и получим неравенство, равносильное  исходному.

            

            

             т.е. , и этот числовой отрезок включён в область определения.

        Ответ: .

    Пример 11. Решить неравенство .

        Решение:

            Раскрываем знак модуля.

            
            Объединим решения систем 1) и 2): .

        Ответ: 

    6. Показательные, логарифмические неравенства и системы неравенств

    Пример 12. Решите неравенство .

        Решение:

                          .

        Ответ: .

    Пример 13. Решите неравенство .

        Решение:

            .

        Ответ: .

    Пример 14. Решите неравенство .

        Решение:

            

        Ответ: .

    Пример 15. Решите неравенство .

        Решение:

            
        Ответ: .    

    Задания для самостоятельного решения

    Базовый уровень

     Целые неравенства и системы неравенств

        1) Решите неравенство 2х – 5 ≤ 3 + х.

        2) Решите неравенство – 5х > 0,25. 

        3) Решите неравенство .

        4) Решите неравенство 2 – 5х ≥ – 3х.

        5) Решите неравенство х + 2 < 5x – 2(x – 3).

        6) Решите неравенство 
     .

        7) Решите неравенство (х – 3) (х + 2) > 0.

         8) Решить систему неравенств  

        9) Найдите целочисленные решения системы неравенств 

        10) Решить систему неравенств .

        11) Решить систему неравенств  

        12) Найти наименьшее целое решение неравенства  

        13) Решите неравенство .

        14) Решите неравенство .

        15) Решите неравенство .

        16) Решите неравенство .

        17) Найдите решение неравенства , принадлежащие промежутку .

        18) Решить систему неравенств  

        19) Найти все целые решения системы  

    Рациональные неравенства и системы неравенств

        20) Решите неравенство .

        21) Решите неравенство .

        22) Определите число целых решений неравенства .

        23) Определите число целых решений неравенства .

        24) Решите неравенство .

        25) Решите неравенство 2x<16 .

        26) Решите неравенство .

        27) Решите неравенство .

        28) Решите неравенство .

        29) Найдите сумму целых решений неравенства  на отрезке [– 7, 7].

        30) Решите неравенство .

        31) Решите неравенство .

    Иррациональные неравенства

        32) Решите неравенство .

        33) Решите неравенство 

        34) Решите неравенство .

    Показательные, логарифмические неравенства и системы неравенств

        35) Решите неравенство .

        36) Решите неравенство .

        37) Решите неравенство .

        38) Решите неравенство .

        39) Решите неравенство .

        40) Решите неравенство 49∙7х < 73х + 3.

        41) Найдите все целые решения неравенства .

        42) Решите неравенство .

        43) Решите неравенство .

        44) Решите неравенство 7x+1-7x<42 .

        45) Решите неравенство log3(2x2+x-1)>log32 .

        46) Решите неравенство log0,5(2x+3)>0 .

        47) Решите неравенство .

        48) Решите неравенство .

        49) Решите неравенство .

        50) Решите неравенство logx+112>logx+12 .

        51) Решите неравенство logx9<2.

        52) Решите неравенство .

    Повышенный уровень

        53) Решите неравенство |x-3|>2x.

        54) Решите неравенство 2│х + 1| > х + 4.

        55) Найдите наибольшее целое решение неравенства .

        56) Решить систему неравенств  

        57) Решить систему неравенств .

        58) Решите неравенство .

        59) Решите неравенство 25•2x-10x+5x>25 .

        60) Решите неравенство .

    Ответы

    1) х ≤ 8; 2) х < – 0,05; 3) х ≥ 5; 4) х ≤ 1; 5) х > –2; 6) х < 11; 7) ; 8) (-2;0]; 9) – 1; 10) х ≥ 7,5;               11); 12) 1; 13); 14) х ≤ – 0,9; 15) х < – 1; 16) х < 24; 17); 18) ; 19) 3, 4, 5; 

    20) (0; 2); 21) (0; 1,5); 22) 3; 23) 6; 24) (–1; 1,5); 25) х < 4; 26); 27) (– 3; 17);                                           28)

    ; 29) – 10; 30) (0; + ∞); 31); 32) [1;17); 33) x > 17; 34) х ≥ 2; 35);   36) х < 2; 37) х > 0; 38) х ≤ 3; 39) х > – 3,5; 40) х > – 0,5; 41) 0, 1, 2, 3, 4, 5; 42) х < 3; 43) ; 44) х < 1;                           45) 46) (– 1,5; – 1); 47) х < 0; 48); 49) ; 50) х > 0;            51) ; 52) ; 53) х < 1; 54); 55) – 1; 56) ; 57) [3,5; 10]; 58) (0, 1); 59) (0; 2); 60) 

    .

    Прежде чем перейти к определению и решению неравенств давайте вспомним, какие знаки используют в математике для
    сравнения величин.

    Символ Название Тип знака
    > больше строгий знак
    (число на границе не включается)
    < меньше строгий знак
    (число на границе не включается)
    больше или равно нестрогий знак
    (число на границе включается)
    меньше или равно нестрогий знак
    (число на границе включается)

    Теперь мы можем разобраться, что называют линейным неравенством и чем неравенство
    отличается от уравнения.

    В отличии от уравнения в неравенстве вместо знака равно «=» используют любой
    знак сравнения: «>», «<»,
    «» или «».

    Запомните!
    !

    Линейным
    неравенством называют неравенство, в котором неизвестное стоит только в первой степени.

    Рассмотрим пример линейного неравенства.

    x − 6 < 8

    Так как в неравенстве «x − 6 < 8»
    неизвестное «x» стоит в первой степени, такое неравенство называют линейным.

    Как решить линейное неравенство

    Важно!
    Галка

    Чтобы решить неравенство, нужно чтобы в левой части осталось только неизвестное
    в первой степени с
    коэффициентом «1».

    При решении линейных неравенств используют правило переноса и правило деления неравенства на число.

    Правило переноса в неравенствах

    Также как и в уравнениях,
    в неравенствах можно переносить
    любой член неравенства из левой части в правую и наоборот.

    Запомните!
    !

    При переносе из левой части в правую (и наоборот) член неравенства меняет свой знак на
    противоположный.

    Вернемся к нашему неравенству и используем правило переноса.

    x 6 < 8
    x < 8 + 6
    x < 14

    Итак, мы получили ответ к неравенству «x < 14». Но что означает такой
    ответ?

    Для того, чтобы понять, что получается при решении неравенства, нам нужно вспомнить,
    понятие числовой оси.

    Нарисуем числовую ось для неизвестного «x» и отметим на ней число «14».

    число 14 на числовой оси

    Запомните!
    !

    При нанесении числа на числовую ось соблюдаются следующие правила:

    Заштрихуем на числовой оси по полученному ответу «x < 14» все решения неравенства, то есть область
    слева от числа «14».

    ответ неравенства

    Рисунок выше говорит о том, что любое число из заштрихованной области при подстановке в исходное неравенство
    «x − 6 < 8»
    даст верный результат.

    Возьмем, например число «12» из заштрихованной области и подставим его
    вместо «x» в исходное неравенство «x − 6 < 8».

    подставим число в неравенство

    Другими словами, можно утверждать, что любое число из заштрихованной области будет являться решением неравенства.

    Важно!
    Галка

    Решить неравенство — это значит найти множество чисел, которые при подстановке в исходное неравенство
    дают верный результат.

    Решением неравенства
    называют множество чисел из заштрихованной области на числовой оси.

    В нашем примере ответ «x < 14» можно понимать так: любое число из
    заштрихованной области (то есть любое число меньшее
    «14») будет являться решением неравенства
    «x − 6 < 8».

    Правило умножения или деления неравенства на число

    Рассмотрим другое неравенство.

    2x − 16 > 0

    Используем правило переноса и перенесём все числа без неизвестного, в правую часть.

    2x − 16 > 0
    2x > 16

    Теперь нам нужно сделать так, чтобы при неизвестном «x»
    стоял коэффициент «1». Для этого достаточно разделить и левую,
    и правую часть на число «2».

    Запомните!
    !

    При умножении или делении неравенства на число, на это число умножается (делится) и левая, и правая часть.

    • Если неравенство умножается (делится) на положительное число,
      то
      знак самого неравенства остаётся прежним.
    • Если неравенство умножается (делится) на отрицательное число,
      то
      знак самого неравенства меняется на противоположный.

    Разделим «2x > 16» на «2».
    Так как «2» —
    положительное число, знак неравенства останется прежним.


              2x > 16     | (:2)
    2x (:2) > 16 (:2)      
    x > 8        

    ответ неравенства 2x - 16 > 0
    Ответ: x > 8


    Рассмотрим другое неравенство.

    9 − 3x ≥ 0

    Используем правило переноса.

    9 − 3x ≥ 0
    −3x ≥ −9

    Разделим неравенство на «−3».
    Так как мы делим неравенство на отрицательное число, знак неравенства поменяется на противоположный.


    −3x ≥ −9
                       −3x −9      | :(−3)
    −3x : (−3) −9 :(−3)
    x ≤ 3

    ответ неравенства -3x ≥ -9
    Ответ: x ≤ 3

    Примеры решения линейных неравенств


    Ваши комментарии

    Важно!
    Галка

    Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

    «ВКонтакте».

    Пришелец пожимает плечами

    Оставить комментарий:

    16 ноября 2021 в 16:44

    Алина Кирщина
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Алина Кирщина
    Профиль
    Благодарили: 0

    Сообщений: 1

    Как правильно написать «больше 15» символом? <15 или >15?

    0
    Спасибоthanks
    Ответить

    24 ноября 2021 в 12:56
    Ответ для Алина Кирщина

    Борис Гуров
    (^-^)
    Профиль
    Благодарили: 1

    Сообщений: 28

    (^-^)
    Борис Гуров
    Профиль
    Благодарили: 1

    Сообщений: 28


    > 15   Острый конец символа «птичка» > смотрит в сторону меньшего числа

    Еще можно запомнить, как что где больше вершин у символа «птички», там большее число находится. У символа > слева две вершины, а справа одна, значит слева находится большее число.

    0
    Спасибоthanks
    Ответить

    29 ноября 2021 в 7:32
    Ответ для Алина Кирщина

    Фархад Асланов
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Фархад Асланов
    Профиль
    Благодарили: 0

    Сообщений: 1


    >15

    0
    Спасибоthanks
    Ответить

    5 марта 2020 в 23:01

    Лина Недзвецкая
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Лина Недзвецкая
    Профиль
    Благодарили: 0

    Сообщений: 1

    Решите неравенство:
    log3 

     ≤1

    0
    Спасибоthanks
    Ответить

    20 августа 2020 в 1:16
    Ответ для Лина Недзвецкая

    Евгений Фёдоров
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 60

    (^-^)
    Евгений Фёдоров
    Профиль
    Благодарили: 0

    Сообщений: 60


     0 < (3x − 5)/(x+1) ≤ 3. 
    (3x − 5)/(x+1) > 0   ⇔   x < − 1  ∪  x > 5/3;
    (3x − 5)/(x+1)  ≤ 3   ⇔  8/(x+1) ≥ 0   ⇔   x > − 1.
    {(−∞;  −1) ∪  (5/3; +∞)} ∩ (−1; +∞) =  (5/3; +∞).

    0
    Спасибоthanks
    Ответить

    17 июля 2016 в 15:37

    Sergey Gurzhiy
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Sergey Gurzhiy
    Профиль
    Благодарили: 0

    Сообщений: 1

    Решите неравенство
    2^3-6x<1

    0
    Спасибоthanks
    Ответить

    21 сентября 2016 в 13:44
    Ответ для Sergey Gurzhiy

    Евгений Колосов
    (^-^)
    Профиль
    Благодарили: 12

    Сообщений: 197

    (^-^)
    Евгений Колосов
    Профиль
    Благодарили: 12

    Сообщений: 197


    Странно, что для 11класса, но всё же:

    23 ? 6x<1
    8 ? 6x<1
    ? 6x< ? 7
    x>

    1
    Спасибоthanks
    Ответить

    6 июня 2016 в 17:05

    Катя Петрова
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Катя Петрова
    Профиль
    Благодарили: 0

    Сообщений: 1

    0
    Спасибоthanks
    Ответить

    7 июня 2016 в 2:49
    Ответ для Катя Петрова

    Евгений Фёдоров
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 60

    (^-^)
    Евгений Фёдоров
    Профиль
    Благодарили: 0

    Сообщений: 60


    Пусть  2= y > 0.
    Неравенство можно записать в виде 
       ? 0.  
    Откуда  y = 2 или  8 ? y < 9.
    Стало быть,  x = 1 или  3 ? x < log29.


    0
    Спасибоthanks
    Ответить

    7 июня 2016 в 13:11
    Ответ для Катя Петрова

    Хачик Казанджян
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Хачик Казанджян
    Профиль
    Благодарили: 0

    Сообщений: 1


    Форум задачиРешение:Пусть    y=2x ,  y>0Тогда    y3 ? 3y2 + ?32;     y3-3y2+?0 
    -Tак как y>0, то сокращаем на y и преобразуем к виду ?0    или ?0Следовательно,   y=2 или (8?y<9)
    Учитывая, что y=2x получим  x=1 или (3?x<log29) Ответ:   (x=1)?(3?x<log2). или так  {1?[3;log29)}

    0
    Спасибоthanks
    Ответить

    8 июня 2016 в 12:10
    Ответ для Катя Петрова

    Евгений Фёдоров
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 60

    (^-^)
    Евгений Фёдоров
    Профиль
    Благодарили: 0

    Сообщений: 60


    Списывать нехорошо.

    0
    Спасибоthanks
    Ответить

    5 мая 2016 в 10:09

    Влада Навдушевич
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Влада Навдушевич
    Профиль
    Благодарили: 0

    Сообщений: 1

    Как решить неравенство (х^2-4х+3)/(х^4-х^6) < или = 0

    0
    Спасибоthanks
    Ответить

    8 июня 2016 в 12:28
    Ответ для Влада Навдушевич

    Евгений Фёдоров
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 60

    (^-^)
    Евгений Фёдоров
    Профиль
    Благодарили: 0

    Сообщений: 60

     (x — 1)(x — 3)
    x4(1 — x)(1 + x) 

     ? 0.
    и метод интервалов.
    Ответ: (-oo; -1) U [3; +oo).

    0
    Спасибоthanks
    Ответить

    3 августа 2015 в 16:54

    Надие Рахимова
    (^-^)
    Профиль
    Благодарили: 0

    Сообщений: 1

    (^-^)
    Надие Рахимова
    Профиль
    Благодарили: 0

    Сообщений: 1

    область решения неравенства (х-4)>3х равна? решить

    0
    Спасибоthanks
    Ответить

    31 августа 2016 в 10:31
    Ответ для Надие Рахимова

    Евгений Колосов
    (^-^)
    Профиль
    Благодарили: 12

    Сообщений: 197

    (^-^)
    Евгений Колосов
    Профиль
    Благодарили: 12

    Сообщений: 197


    (x-4)>3x
    x-4-3x>0
    -4-2x>0
    2x+4<0
    2x<-4
    x<-2

    Проверка: Возьмём число меньшее -2, например -3
    -3-4>-3 · 3
    12>-9 Верно.
    Ответ: x<-2

    0
    Спасибоthanks
    Ответить


    На этой странице вы узнаете

    • Как мы ежедневно расставляем знаки неравенства в жизни?
    • Как быстро определить верное обозначение точки на прямой?
    • Как правильно чередовать знаки на числовой прямой?

    Решая уравнение, мы стремимся к тому, чтобы обе части были равны. Но существуют такие примеры, где мы заведомо знаем, что два выражения не могут быть равны между собой. Они называются неравенствами. 

    Метод интервалов

    Неравенство — это алгебраическое выражение, в котором одна сторона имеет отличное от другой значение. В неравенствах обычно одна сторона больше другой.

    Для записи неравенств используют знаки > , < , ≥ , ≤ . 

    При этом “>” и “<” — это строгие знаки неравенства, а “≥” и “≤” — нестрогие знаки неравенства. 

    Их отличие в том, что нестрогие знаки неравенства включают граничные точки в итоговый промежуток, а строгие — нет. 

    Как мы ежедневно расставляем знаки неравенства в жизни?

    Посмотрим на привычные ситуации с точки зрения строгости знаков неравенства.

    Например, возьмем известную игру “Камень, ножницы, бумага”.
    Правила игры говорят нам, что камень всегда побеждает ножницы, а бумага побеждает камень. Если перенести это на язык неравенства, то получится:

    Теперь зайдем в магазин цифровой техники и попробуем выбрать себе новый мобильный телефон. Задачка непростая, не так ли? Две разные модели могут настолько незначительно отличаться друг от друга своими характеристиками, что будут казаться почти одинаковыми. Тогда мы можем сказать, что они практически равны между собой, то есть неравенство нестрогое. Но один из них всё-таки понравился нам больше.

    И каждый наш выбор, каждый шаг – это расстановка знака неравенства в настоящей жизни. Просто по бокам от него не цифры и переменные, а существующие ситуации и вещи. 

    Рассмотрим пример неравенства (х — 10)(х + 21) > 0. 

    Его можно решить несколькими способами. Например, вспомним, что положительным будет произведение двух положительных или двух отрицательных множителей, тогда получается совокупность из двух систем. 

    Однако этот способ решения очень трудоемкий и требует много времени. А если множителей будет больше, например, три или четыре, то время на решение в разы увеличивается. 

    Небольшой секрет тайм-менеджмента: как сократить время при решении неравенств?  В таких случаях на помощь приходит метод интервалов.

    Метод интервалов — специальный алгоритм решения для сложных неравенств вида f(x) > 0. При этом знак неравенства может быть любым.

    Интервал — это промежуток на числовой прямой, ограниченный двумя различными числами.

     

    Алгоритм решения неравенств методом интервалов

    1 шаг. Перенести все части неравенства в одну сторону так, чтобы с другой остался только 0. 

    2 шаг. Найти нули функции, для этого необходимо решить уравнение f(x) = 0. 

    3 шаг. Начертить числовую прямую и отметить на ней все полученные корни. Таким образом, числовая прямая разобьется на интервалы. 

    4 шаг. Определить знаки на каждом интервале. Для этого необходимо подставить любое удобное значение в f(x) и определить, какой знак будет иметь функция на данном интервале.

    Расставляя полученные корни на прямой, необходимо отмечать их точками. При этом от того, какая отмечена точка (выколотая или закрашенная), будет зависеть ответ. 

    • Если в неравенстве стоит строгий знак неравенства, то все точки на прямой должны быть выколотыми. 

    Таким образом, граничные точки не будут включены в итоговый промежуток. Для записи таких точек используют круглые скобочки. Например, в промежуток (2;3) включаются все значения от 2 до 3, но не включаются граничные точки. 

    • Если в неравенстве стоит нестрогий знак неравенства, то найденные корни должны быть отмечены закрашенными точками. 

    Это означает, что мы включаем их в итоговый промежуток. Для записи таких точек используют квадратные скобочки. Например, в промежуток [2;3] включаются все значения от 2 до 3, в том числе и граничные точки. 

    • Если в неравенстве появляются ограничения и некоторые точки нельзя взять в ответ, то такие точки должны быть выколотыми на числовой прямой, при этом знак самого неравенства может быть как строгим, так и нестрогим. 

    Например, если необходимо решить неравенство с дробью, то нули знаменателя на числовой прямой обязательно должны быть обозначены выколотыми точками. 

    Как быстро определить верное обозначение точки на прямой?

    В случае сомнений мы всегда можем проверить себя по простой схеме.

    Вывод:
    — если знак неравенства строгий, то все точки будут выколотыми;
    — если знак неравенства нестрогий, то точки будут закрашенными, кроме тех точек, которые нельзя взять в ответ (например, они не удовлетворяют ОДЗ).

    Стоит отметить, что непрерывная функция будет менять знак только в точках, в которых она равна 0. Подробнее узнать про смену знака функции можно в статье «Определение и график функции». Именно поэтому в методе интервалов мы ищем и отмечаем нули функции на прямой — только при переходе через них будет меняться знак функции. 

    При этом существует способ, с помощью которого можно быстро расставить знаки на прямой. Достаточно определить знак на одном из интервалов, а дальше чередовать знаки при переходе через каждую точку на прямой. 

    Правила чередования знаков: 

    • Если корень повторяется нечетное количество раз (то есть его степень нечетная), то знак при переходе на следующий интервал меняется.
    • Если корень повторяется четное количество раз (его степень четная), то знак при переходе на следующий интервал не меняется. 
    Как правильно чередовать знаки на числовой прямой?

    Всегда будет нелишним перепроверить знак на каждом интервале, подставив значения в функцию, и  убедиться в правильности расстановки знаков на прямой. 

    Но при расстановке можно пользоваться следующим алгоритмом, что значительно сократит время расстановки знаков. 

    Методом интервалов можно решить практически любое неравенство в задании 14 из ЕГЭ по профильной математике, также он может понадобиться в заданиях 8, 11 и 17 «профиля» или в задании 17 ЕГЭ по базовой математике

    На ОГЭ данным методом можно воспользоваться при решении неравенств из первой и второй частей — №13 и №20
    Так что осваивайте метод и 2 балла ЕГЭ или 3 балла ОГЭ будут у вас в кармане. Обязательно следуйте алгоритму решения неравенств методом интервалов, тогда вы точно решите неравенство верно.

    Практика

    Рассмотрим несколько примеров, чтобы на практике разобрать применение метода интервалов для решения неравенств.  

    Пример 1. Решить неравенство x2 + 8x — 33 > 0. 

    Шаг 1. Первым шагом необходимо найти нули функции, для этого приравниваем выражение слева к 0: x2 + 8x — 33 = 0. 

    Шаг 2. Находим корни уравнения, получаем х = 3 и х = -11. 

    Шаг 3. Расставляем полученные корни на числовой прямой. Поскольку знак неравенства строгий, то точки должны быть выколотыми:

    Шаг 4. Дальше необходимо определить знаки на каждом интервале. Для этого подставим х = -12 в x2 + 8x — 33. Получаем: 

    (-12)2 + 8*(-12) — 33 = 144 — 96 — 33 = 15. 

    Получается положительное число, следовательно, интервал от минус бесконечности до -11 положительный. Поскольку все корни в неравенстве повторяются нечетное количество раз (по одному разу), то знаки чередуются. 

    В ответ необходимо записать промежутки с положительным знаком, следовательно, ответом будет х ∈ (-∞; -11) U (3; +∞). 

    Пример 2. Решить неравенство (frac{2х^2 + 22х — 204}{(х-3)(х+5)} ≤ 0). 

    1. Находим нули функции. 

    Нули числителя: 2х2 + 22х — 204 = 0. Решая уравнение, получаем х = 6 и х = -17. 

    Нули знаменателя: (х — 3)(х + 5) = 0, следовательно, х = 3 и х = -5. 

    2. Расставляем полученные корни на числовой прямой. Нули числителя будут обозначены закрашенными точками, поскольку знак неравенства нестрогий. А вот нули знаменателя — выколотыми, поскольку знаменатель не может равняться 0, следовательно, и нули знаменателя не должны входить в итоговый промежуток. 

    3. Определяем знак на крайнем левом промежутке, подставляя х=-20 в дробь:

    (frac{2(-20)^2 + 22(-20) — 204}{(-20 -3)(-20 +5)} = frac{2 * 400 — 440 — 204}{(-23) * (-15)} = 156345. )

    Следовательно, промежуток положительный. 

    4. Поскольку каждый корень встречается один раз, то есть нечетное количество раз, то знаки будут чередоваться. 

    В ответ необходимо включить отрицательные промежутки. Следовательно, ответом будет х ∈ [-17; -5) U (3; 6].

    Пример 3. Решить неравенство (frac{1}{х^2} ≥ frac{1}{х+2})

    1. Первым делом следует отметить, что знаменатели не могут быть равны 0, следовательно, х2 ≠ 0 и х + 2 ≠ 0, отсюда получаем х ≠ 0 и х ≠ -2. 

    2. Теперь перенесем все части неравенства влево: 

    (frac{1}{х^2} — frac{1}{х+2} ≥ 0). 

    Приведем к общему знаменателю:

     (frac{х + 2 — х^2}{х^2 (х + 2)} ≥ 0). 

    Для решения неравенства будет удобнее, если перед х2 в числителе будет стоять положительный знак, для этого умножим неравенство на -1. 

    При умножении неравенства на отрицательное число знак неравенства меняется на противоположный. 

    Получаем:

    (frac{х^2 — х — 2}{х^2 (х + 2)} ≤ 0). 

    Теперь найдем нули функции. 

    Нули числителя: х2 — х — 2 = 0. Тогда х = -1 и х = 2. 

    Нули знаменателя: х = 0 и х = -2. 

    2. Расставим корни на числовой прямой, при этом нули числителя будут обозначены закрашенными точками, а нули знаменателя — выколотыми. 

    3. Определим знак на крайнем левом промежутке, подставив для этого х = -3 в дробь: 

    (frac{(-3)^2 — (-3) — 2}{(-3)^2 ((-3) + 2)} = frac{9 + 3 — 2}{9 * (-1)} = frac{10}{-9})

    Промежуток отрицательный. 

    4. Дальше расставляем знаки, чередуя их. При этом следует заметить, что х = 0 — корень, повторяющийся четное количество раз (поскольку у х2 четная степень). Следовательно, при переходе через эту точку знак функции меняться не будет. 

    В ответ необходимо включить отрицательные промежутки, следовательно: х ∈ (-∞; -2) U [-1; 0) U (0; 2]. 

    Давайте подведем итог. Для чего мы это изучили?

    Конечно же, эти знания пригодятся на экзаменах, а также в решении школьных примеров с 8 класса по 11 класс. 

    Советуем после прочтения этой статьи попрактиковаться в рубрике «Проверь себя», чтобы закрепить полученные знания. После чего можете приступить к решению заданий посложнее, чтобы на экзамене у вас точно получилось решить подобные задания и набрать за них максимум баллов.

    Фактчек

    • Метод интервалов позволяет упростить решение любого  неравенства, а также экономит время, которое ограничено на экзамене. 
    • Чтобы решить неравенство с помощью метода интервалов необходимо найти нули функции, расставить их на числовой прямой, а после определить знак каждого полученного интервала. 
    • Нули функции на прямой обозначаются точками, при этом закрашенные точки включают граничные значения в итоговый промежуток, а незакрашенные, напротив, исключают их из промежутка. 
    • Для определения знака на каждом интервале необходимо подставить любое значение из этого интервала в функцию. 
    • Для упрощения расстановки знаков можно пользоваться правилами чередования, определив знак только на одном интервале, а дальше менять знаки на каждом следующем. При этом если корень встречается в функции нечетное количество раз, то знак при переходе через эту точку на следующий интервал меняется, а если корень встречается четное количество раз, то знак на следующем интервале не меняется. 

    Проверь себя

    Задание 1. 
    Какие знаки неравенства существуют?

    1. Строгие
    2. Нестрогие
    3. Строгие и нестрогие 
    4. Больше и меньше

    Задание 2. 
    Какой знак неравенства может встретиться в методе интервалов?

    1. Только больше или меньше. 
    2. Только “больше или равно” или “меньше или равно”. 
    3. Только “больше” и “больше или равно” или только “меньше” и “меньше или равно”.
    4. Любой. 

    Задание 3. 
    Какое утверждение верное?

    1. Если в неравенстве строгий знак неравенства, то точки на числовой прямой закрашены.
    2. Если в неравенстве строгий знак неравенства, то точки на числовой прямой выколоты.
    3. Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой закрашены, даже если в неравенстве есть ограничения.
    4. Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой выколоты. 

    Задание 4. 
    Какое утверждение верное? 

    1. При переходе на числовой прямой на следующий интервал, знак на интервале всегда будет меняться.
    2. Если корень встречается в неравенстве четное количество раз, то при переходе через него на следующий интервал знак не меняется.
    3. Если корень встречается в неравенстве нечетное количество раз, то при переходе через него на следующий интервал знак не меняется.
    4. Невозможно определить правильное чередование знаков на прямой, не подставляя значение из каждого интервала в функцию.

    Задание 5. 
    Если в неравенстве строгий знак неравенства, то какие скобочки могут встретиться в ответе? 

    1. Круглые
    2. Квадратные
    3. И круглые, и квадратные
    4. Ни один из перечисленных вариантов 

    Ответы: 1. — 3 2. — 4 3. — 2 4. — 2 5. —

    В статье рассмотрим решение неравенств. Расскажем доступно о том, как строиться решение неравенств, на понятных примерах!

    Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

    Общи сведения о неравенствах

    Неравенством называется выражение, в котором функции соединяются знаками отношения >, <, Знак неравенства, «Знак. Неравенства бывают как числовые, так и буквенные.
    Неравенства с двумя знаками отношения, называются двойными, с тремя — тройными и т.д. Например:
    a(x) > b(x),
    a(x) < b(x),
    a(x) Знак неравенстваb(x),
    a(x) Знак неравенстваb(x).
    a(x) < c(x) < b(x) — двойное неравенство.
    Неравенства, содержащие знак > или < , называются строгими, а неравенства, содержащие
    Знак неравенства или Знак неравенства — нестрогими.
    Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
    «Решить неравенство» означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств. Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +Бесконечность в Неравенстве, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
    Бесконечность в Неравенстве Формула Неравества + Бесконечность в Неравенстве
    Ответ будет следующим: xПринадлежность в Неравенстве (3; +Бесконечность в Неравенстве).
    Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности Бесконечность в Неравенстве всегда выделяется круглой скобкой. Знак Принадлежность в Неравенстве означает «принадлежание».
    Рассмотрим как решать неравенства на другом примере со знаком Знак неравенства:
    xЗнак неравенства 2
    Бесконечность в Неравенстве Формула Неравества+Бесконечность в Неравенстве
    Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
    Ответ будет следующим: xПринадлежность в Неравенстве [2; +Бесконечность в Неравенстве).

    Свойства неравенств

    Выделяют три основных свойства неравенств:

    1. Можно перенести любой член неравенства из одной части неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.
    2. Пример:
      Зх + 5 > х2
      равносильно Зх — х2 + 5 > 0, при этом x2 был перенесен с противоположным знаком.

    3. Можно умножать или делить обе части неравенства на одно и то же положительное число, при этом знака неравенства не меняется.
    4. Пример:
      9х — 3 > 12х2
      равносильно 3х — 1 > 4х2, при этом обе части первого неравенства были разделены на положительное число 3.

    5. Можно умножить или разделить обе части неравенства на одно и то же отрицательное число, при этом знак неравенства меняется на противоположный.
    6. Пример:
      -2х2 — Зх + 1 < 0 равносильно 2х2 + Зх — 1 > 0, при этом обе части первого неравенства умножили на отрицательное число -1, и знак неравенства изменился на противоположный.

    Решение систем неравенств

    Системой называется запись нескольких неравенств, обозначенная фигурной скобкой, при этом количество и вид неравенств, входящих в систему, может быть любым. Решением системы неравенств является пересечение решений всех неравенств, входящих в эту систему. Например, двойное неравенство f(x) < g(x) < h(x) записывается следующим образом:Формула Неравества
    Пример.

    Требуется решить следующую систему неравенств Формула Неравества

    Решение:
    Формула Неравества

    Система аналогична неравенству х > 1, поэтому ответ: xПринадлежность в Неравенстве (1; +Бесконечность в Неравенстве).

    Решение линейных неравенств

    Линейным называется неравенство вида ax>b, при этом знак неравенства может быть любым.
    Допустим a>0, тогда ax>b равносильно Решение линейных неравенств, таким образом множество решений неравенства является промежуток Формула Неравества.
    Допустим a>0, тогда ax>b равносильно Формула Неравества, таким образом множество решений неравенства является промежуток Формула Неравества.
    Если же a=0, тогда 0*x>b, т.е. неравенство не имеет решений при bЗнак неравенства0, и верно при любых х при b<0.

    Решение квадратных неравенств

    Квадратным называется неравенство вида ax2 + bx + c > 0, в котром a, b, c – некоторые действительные числа и aФормула Неравества0
    Простейшими квадратными неравенствами являются неравенства x2 < m и x2 > m
    Множество решений неравенства x2 < m:

    1. при m< 0 нет чисел, которые в квадрате дают отрицательное число (т.е. нет решений)
    2. при m>0 xПринадлежность в Неравенстве (-Формула Неравества; Формула Неравества), т.е. —Формула Неравества < x < Формула Неравества или Формула Неравества<Формула Неравества.

    Множество решений неравенства x2 > m:

    1. при m<0 xПринадлежность в НеравенствеR (т.е. x — любое действительное число);
    2. при m>0 xПринадлежность в Неравенстве (-Бесконечность в Неравенстве; — Формула Неравества) Неравенства (Формула Неравества; +Бесконечность в Неравенстве), т.е. —Бесконечность в Неравенстве < x < — Формула Неравества и Формула Неравества < x < +Бесконечность в Неравенстве или Формула Неравества > Формула Неравества.

    Решение более сложных квадратных неравенств сводиться к простому переводу выражения вида
    ax2 + bx + c > 0
    в неравенство
    (x-x1)(x-x2) > 0 , где x1 и х2 — корни квадратного уравнения ax2 + bx + c = 0.
    Полученное неравенство мы раскладываем таким же образом на систему простых неравенств и легко находим решение.

    Решение неравенств методом интервалов

    Методом интервалов можно Формулу Неравества вида h(x) > 0 (<, Знак неравенства,Знак неравенства) свести к решению уравнения h(x) = 0.
    Данный метод заключается в следующем:

    1. Находится ОДЗ неравенства.
    2. Неравенство приводится к виду h(x) > 0(<,Знак неравенства, Знак неравенства) путем упрощения.
    3. Решается уравнение h(x) = 0.
    4. Если на ОДЗ отмечены точки, они ограничивают его и разбивают на интервалы знакопостоянства, при этом знак функции h(х) определяется на каждом таком интервале.
    5. Решением является объединение отдельных множеств, на которых h(x) имеет соответствующий знак. После дополнительной проверки точки ОДЗ, являющиеся граничными, включаются (или не включаются) в ответ.

    Метод интервалов основывается на том, что непрерывная функция h(x) меняет знак либо в граничных точках «разрыва» на ОДЗ, либо при переходе через 0, т.е. в тех точках, которые являются корнями уравнения h(x) = 0. В других точках перемены знака не происходит.
    Пример.
    Решить неравенство Формула Неравества
    Решение:
    ОДЗ: Формула Неравества откуда имеем xПринадлежность в Неравенстве [-1; 5) Неравенства (5; +Бесконечность в Неравенстве)
    Решим уравнение Формула Неравества
    Числитель дроби равен 0 при x = -1, это и есть корень уравнения. Отметим найденный корень на числовой прямой (черным кружком, т.к. неравенство нестрогое), предварительно отметив ОДЗ:
    Формула Неравества
    Чтобы определить знак на промежутке (-1; 5) возьмем число 0, Формула Неравества
    Чтобы определить знак на втором промежутке возьмем число 8, Формула Неравества
    Точки 0 и 8 выбирались произвольно, но так, чтобы упростить процесс вычисления каждого значения функции.
    Ответ: (-5; +Бесконечность в Неравенстве).

    Для закрепления темы решения неравенств настоятельно рекомендуем посмотреть наше видео по теме:

    На этом пока всё….Надеюсь появилось понимание о том, как решить неравенства. Если всё же остались какие то вопросы по решению неравенств, смело задавайте их в комментариях.
    Спасибо

    Заметка: выбираете институт? — все институты здесь (http://www.kartaznaniy.ru/vuzy/instituty) .


    Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


    Понравилась статья? Поделить с друзьями:
  1. Как найти прослушивающие устройства в квартире
  2. Как составить test suite
  3. Как найти ноль фазу заземление
  4. Если сзв стаж сдан с ошибкой как исправить
  5. Как по английски составить предложение про собаку