Как найти множество значений функции с корнями


Загрузить PDF


Загрузить PDF

В каждой функции есть две переменные – независимая переменная и зависимая переменная, значения которой зависят от значений независимой переменной. Например, в функции y = f(x) = 2x + y независимой переменной является «х», а зависимой – «у» (другими словами, «у» – это функция от «х»). Допустимые значения независимой переменной «х» называются областью определения функции, а допустимые значения зависимой переменной «у» называются областью значений функции.[1]

  1. Изображение с названием Find the Domain and Range of a Function Step 1

    1

    Определите тип данной вам функции. Областью значений функции являются все допустимые значения «х» (откладываются по горизонтальной оси), которым соответствуют допустимые значения «у». Функция может быть квадратичной или содержать дроби или корни. Для нахождения области определения функции сначала необходимо определить тип функции.

    • Квадратичная функция имеет вид: ax2 + bx + c:[2]
      f(x) = 2x2 + 3x + 4
    • Функция, содержащая дробь: f(x) = (1/x), f(x) = (x + 1)/(x — 1) (и так далее).
    • Функция, содержащая корень: f(x) = √x, f(x) = √(x2 + 1), f(x) = √-x (и так далее).
  2. Изображение с названием Find the Domain and Range of a Function Step 2

    2

    Выберите соответствующую запись для области определения функции. Область определения записывается в квадратных и/или круглых скобках. Квадратная скобка применяется в том случае, когда значение входит в область определения функции; если значение не входит в область определения, используется круглая скобка. Если у функции несколько несмежных областей определения, между ними ставится символ «U».[3]

    • Например, область определения [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.
  3. Изображение с названием Find the Domain and Range of a Function Step 3

    3

    Постройте график квадратичной функции. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Так как парабола возрастает или убывает на всей оси Х, то областью определения квадратичной функции являются все действительные числа. Другими словами, областью определения такой функции является множество R (R обозначает все действительные числа).[4]

    • Для лучшего уяснения понятия функции выберите любое значение «х», подставьте его в функцию и найдите значение «у». Пара значений «х» и «у» представляют собой точку с координатами (х,у), которая лежит на графике функции.
    • Нанесите эту точку на плоскость координат и проделайте описанный процесс с другим значением «х».
    • Нанеся на плоскость координат несколько точек, вы получите общее представление о форме графика функции.
  4. Изображение с названием Find the Domain and Range of a Function Step 4

    4

    Если функция содержит дробь, приравняйте ее знаменатель к нулю. Помните, что делить на нуль нельзя. Поэтому, приравняв знаменатель к нулю, вы найдете значения «х», которые не входят в область определения функции.[5]

    • Например, найдите область определения функции f(x) = (x + 1)/(x — 1).
    • Здесь знаменатель: (х — 1).
    • Приравняйте знаменатель к нулю и найдите «х»: х — 1 = 0; х = 1.
    • Запишите область определения функции. Область определения не включает 1, то есть включает все действительные числа за исключением 1. Таким образом, область определения функции: (-∞,1) U (1,∞).
    • Запись (-∞,1) U (1,∞) читается так: множество всех действительных чисел за исключением 1. Символ бесконечности ∞ означает все действительные числа. В нашем примере все действительные числа, которые больше 1 и меньше 1, включены в область определения.
  5. Изображение с названием Find the Domain and Range of a Function Step 5

    5

    Если функция содержит квадратный корень, то подкоренное выражение должно быть больше или равно нулю. Помните, что квадратный корень из отрицательных чисел не извлекается. Поэтому любое значение «х», при котором подкоренное выражение становится отрицательным, нужно исключить из области определения функции.[6]

    • Например, найдите область определения функции f(x) = √(x + 3).
    • Подкоренное выражение: (х + 3).
    • Подкоренное выражение должно быть больше или равно нулю: (х + 3) ≥ 0.
    • Найдите «х»: х ≥ -3.
    • Область определения этой функции включает множество всех действительных чисел, которые больше или равны -3. Таким образом, область определения: [-3,∞).

    Реклама

  1. Изображение с названием Find the Domain and Range of a Function Step 6

    1

    Убедитесь, что вам дана квадратичная функция. Квадратичная функция имеет вид: ax2 + bx + c: f(x) = 2x2 + 3x + 4. График такой функции представляет собой параболу, ветви которой направлены либо вверх, либо вниз. Существуют различные методы нахождения области значений квадратичной функции.[7]

    • Самый простой способ найти область значений функции, содержащей корень или дробь, – это построить график такой функции при помощи графического калькулятора.
  2. Изображение с названием Find the Domain and Range of a Function Step 7

    2

    Найдите координату «х» вершины графика функции. В случае квадратичной функции найдите координату «х» вершины параболы. Помните, что квадратичная функция имеет вид: ax2 + bx + c. Для вычисления координаты «х» воспользуйтесь следующим уравнением: х = -b/2a. Это уравнение является производной от основной квадратичной функции и описывает касательную, угловой коэффициент которой равен нулю (касательная к вершине параболы параллельна оси Х).[8]

    • Например, найдите область значений функции 3x2 + 6x -2.
    • Вычислите координату «х» вершины параболы: х = -b/2a = -6/(2*3) = -1
  3. Изображение с названием Find the Domain and Range of a Function Step 8

    3

    Найдите координату «у» вершины графика функции. Для этого в функцию подставьте найденную координату «х». Искомая координата «у» представляет собой предельное значение области значений функции.

    • Вычислите координату «у»: y = 3x2 + 6x – 2 = 3(-1)2 + 6(-1) -2 = -5
    • Координаты вершины параболы этой функции: (-1,-5).
  4. Изображение с названием Find the Domain and Range of a Function Step 9

    4

    Определите направление параболы, подставив в функцию по крайней мере одно значение «х». Выберите любое другое значение «х» и подставьте его в функцию, чтобы вычислить соответствующее значение «у». Если найденное значение «у» больше координаты «у» вершины параболы, то парабола направлена вверх. Если же найденное значение «у» меньше координаты «у» вершины параболы, то парабола направлена вниз.

    • Подставьте в функцию х = -2: y = 3x2 + 6x – 2 = y = 3(-2)2 + 6(-2) – 2 = 12 -12 -2 = -2.
    • Координаты точки, лежащей на параболе: (-2,-2).
    • Найденные координаты свидетельствуют о том, что ветки параболы направлены вверх. Таким образом, область значений функции включает все значения «у», которые больше или равны -5.
    • Область значений этой функции: [-5, ∞)
  5. Изображение с названием Find the Domain and Range of a Function Step 10

    5

    Область значений функции записывается аналогично области определения функции. Квадратная скобка применяется в том случае, когда значение входит в область значений функции; если значение не входит в область значений, используется круглая скобка. Если у функции несколько несмежных областей значений, между ними ставится символ «U».[9]

    • Например, область значений [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.

    Реклама

  1. Изображение с названием Find the Domain and Range of a Function Step 11

    1

    Постройте график функции. Во многих случаях проще найти область значений функции, построив ее график. Областью значений многих функций с корнями является (-∞,0] или [0,+∞), так как вершина параболы, направленной вправо или влево, лежит на оси Х. В этом случае область значений включает все положительные значения «у», если парабола возрастает, или все отрицательные значения «у», если парабола убывает. Функции с дробями имеют асимптоты, которые определяют область значений.[10]

    • Вершины графиков некоторых функций с корнями лежат выше или ниже оси Х. В этом случае область значений определяется координатой «у» вершины параболы. Если, например, координата «у» вершины параболы равна -4 (у = -4), а парабола возрастает, то область значений равна [-4,+∞).
    • Самый простой способ построить график функции – это воспользоваться графическим калькулятором или специальным программным обеспечением.
    • Если у вас нет графического калькулятора, постройте приблизительный график, подставив в функцию несколько значений «х» и вычислив соответствующие значения «у». Нанесите найденные точки на координатную плоскость, чтобы получить общее представление о форме графика.
  2. Изображение с названием Find the Domain and Range of a Function Step 12

    2

    Найдите минимум функции. Построив график функции, вы увидите на нем точку, в которой функция имеет минимальное значение. Если наглядного минимума нет, то он не существует, а график функции уходит в -∞.

    • Область значений функции включает все значения «у» за исключением значений асимптот. Зачастую, области значений таких функций записываются так: (-∞, 6) U (6, ∞).
  3. Изображение с названием Find the Domain and Range of a Function Step 13

    3

    Определите максимум функции. Построив график функции, вы увидите на нем точку, в которой функция имеет максимальное значение. Если наглядного максимума нет, то он не существует, а график функции уходит в +∞.

  4. Изображение с названием Find the Domain and Range of a Function Step 14

    4

    Область значений функции записывается аналогично области определения функции. Квадратная скобка применяется в том случае, когда значение входит в область значений функции; если значение не входит в область значений, используется круглая скобка. Если у функции несколько несмежных областей значений, между ними ставится символ «U».[11]

    • Например, область значений [-2,10) U (10,2] включает значения -2 и 2, но не включает значение 10.
    • С символом бесконечности ∞ всегда используются круглые скобки.

    Реклама

Об этой статье

Эту страницу просматривали 352 307 раз.

Была ли эта статья полезной?

Всем здравствуйте! Тренируемся находить область значений функции! Кто еще не понял, что такое область определения (а она нам тоже понадобится непременно), тому сюда.

Что же такое область значений функции? Это та «часть» оси ординат, та область, где можно наткнуться на какие-либо точки, принадлежащие функции. То есть можно сказать, что если область значений найдена, то все точки функции находятся в ней, не выше и не ниже. Это почти тоже самое, что и область определения, только теперь это «область определения по оси ординат». Здесь никаких особых ограничений нет, поэтому, чтобы найти область значений, нужно иметь представление об элементарных функциях — например, как выглядят парабола или гипербола, как определить, направлены ли ветви параболы вверх или вниз и т.п. Все это рассказано и показано здесь.

Ну, поехали!

Примеры.

1. Найдите область значений функции y=x^2+4x-21

Решение: функция – квадратичная, представляет собой параболу с положительным старшим коэффициентом, ветви направлены вверх. Понятно тогда, что весь график располагается выше координаты своей вершины (вершина — самая низшая точка). Ордината вершины: y_0=-D/{4a}=-100/4=25, тогда E(f)=(-25, {+infty}).

2. Найдите область значений функции y=sqrt{x^2+4x-21}

Решение: область определения функции D(f)=( {-infty};{-7}] union[3;{+infty}).

В точках (-7) и (3) двучлен обращается в ноль. Поскольку результат извлечения корня — величина положительная, то вся функция располагается выше оси абсцисс, и ее область значений E(f)=[0;{+infty})

3. Найти область значений функции y=-1/{x^4}

Область определения – вся числовая ось, кроме ноля. Можем подставить любое число из области определения, при этом функция всегда отрицательна.

Из графика также видно, что E(f)=({-infty};0)

область значений функции

4. Найти область значений функции: y=1/{3^{sqrt{2x-x^2}}}

Решение. Область определения:

delim{lbrace}{matrix{2}{1}{{2x-x^2>=0} {3^{sqrt{2x-x^2}}<>0}}}{ }

0<=x<=2
На концах отрезка функция принимает значение 1, под корнем имеем квадратный двучлен, наибольшее значение он принимает в вершине, при x=1, значит, функция будет принимать в этой точке наименьшее значение.

область значений функции

Подставив 1, получаем y=1/3

Ответ: E(f)=[{1/3};1]

5. Найдите область значений функции: y=x^2+5delim{|}{x}{|}-6

Очевидно, что график данной функции может быть получен из графика обычной параболы y=x^2+5x-6, область значений которой легко найти: ветви направлены вверх, поэтому низшая точка – вершина параболы. Однако заметим также, что если аргумент функции под знаком модуля, то график такой функции может быть построен с помощью отражения части  графика, лежащей в правой вертикальной полуплоскости, в левую полуплоскость(см. рисунок). Тогда от нашей параболы останется только часть, лежащая правее оси ординат, и именно она будет отражена относительно оси y, и тогда низшей точкой окажется та, в которой график пересечет ось ординат, а это — значение свободного члена (коэффициента с), который у нас равен (-6).

Область значений нашей функции E(f)=[{-6};{+infty})

область значений функции

6. Найдите область значений функции: y=delim{|}{x^2+5x-6}{|}

Очевидно, что график данной функции может быть получен из графика обычной параболы y=x^2+5x-6. Так как все выражение находится под знаком модуля, то для  того, чтобы построить такой график, нужно отразить всю часть графика, расположенную ниже оси х, вверх, поэтому E(f)=[0;{+infty}).

область значений функции

7. Найдите область значений функции: y=2-7/{4x+1}

Данная функция получена преобразованием обычной гиперболы. Данная функция не существует при 4x+1=0, или x=-{1/4}.  При x{right}{pm}{infty}  второе слагаемое обращается в ноль, и функция стремится к  значению y=2, причем можно заметить, что при положительных больших значениях х данная функция приближается к 2 снизу, а при отрицательных  — сверху.

область значений функции

Ответ: E(f)=({-infty};2)union(2; {+infty})

8. Найти область значений функции: y={0,7}^{sqrt{x+7}}

Решение. Область определения:

x+7>=0

x>=-7

При x=-7  функция принимает наибольшее значение y=1,

При x, стремящемся к бесконечности, функция стремится к нулю. Но мы запишем область значений от меньшего к большему:

Ответ: E(f)= (0;1]

область значений функции

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не
до конца понятым. Особым камнем преткновения при изучении функции и подготовке к
ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью
её значений.
И если задачи на нахождение области определения функции учащимся удаётся
освоить, то задачи на нахождение множества значений функции вызывают у них
немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал,
рассмотрены способы решения задач на нахождение множеств значений функции,
подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к
выпускным и вступительным экзаменам, при изучении темы “Область значения
функции” на факультативных занятиях элективных курсах по математике.

Приложение 1, Приложение 2

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество
таких чисел y0, для каждого из которых найдётся такое число x0,
что: f(x0) = y0.

Напомним области значений основных элементарных функций.

Рассмотрим таблицу.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x2n E(y) = [0;+∞)
y = x2n +1 E(y) = (-∞;+∞)
y = k/x E(y) = (-∞;0)u(0;+∞)
y = x1/2n E(y) = [0;+∞)
y = x1/2n+1 E(y) = (-∞;+∞)
y = ax E(y) = (0;+∞)
y = logax E(y) = (-∞;+∞)
y = sin x E(y) = [-1;1]
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2;
π/2]
y = arcos x E(y) = [0; π]
y = arctg x E(y) = (-π/2;
π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени
является промежуток [m;+∞) , где m – наименьшее значение этого многочлена, либо
промежуток

(-∞;n] , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать
свойства основных элементарных функций, особенно их области определения, области
значений и характер монотонности. Приведём свойства непрерывных, монотонных
дифференцируемых функций, наиболее часто используемые при нахождении множества
значений функций.

  1. Если функция f(x) непрерывна и возрастает на отрезке [a;b], то множество
    значений функции на этом отрезке есть отрезок [f(a),f(b)]. При этом каждое
    значение А

    [f(a),f(b)] функция принимает ровно при одном значении x принадлежит [a,b],
    т.е уравнение f(x) = А имеет единственный корень на отрезке [a,b]. Если же f(x)
    – непрерывная и убывающая на отрезке [a,b] функция, то её множество значений
    на [a,b] есть отрезок [f(a),f(b)].
  2. Если функция f(x) непрерывна на отрезке [a,b] и m = min f(x), M = max f(x)
    – её наименьшее и наибольшее значение на этом отрезке, то множество значений
    f(x) на [a,b] есть отрезок [m;M].
  3. Если функция непрерывна на отрезке [a,b] и дифференцируема (имеет
    производную) в интервале (a,b), то наибольшее и наименьшее значения функции
    на отрезке [a,b] существуют и достигаются либо на концах отрезка, либо в
    критических точках функции, расположенных на отрезке

Свойства 2 и 3, как правило, используются вместе свойством элементарной
функции быть непрерывной в своей области определения. При этом наиболее простое
и краткое решение задачи на нахождение множества значений функции достигается на
основании свойства 1, если несложными методами удаётся определить монотонность
функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или
нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение
множеств значений функции следует по мере надобности проверять и использовать
следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём
ориентированны:

а) на использование простейших оценок и ограничений: (2х>0,
-1≤sinx?1, 0≤cos2x?1 и т.д.);

б) на выделение полного квадрата: х2 – 4х + 7 = (х – 2)2+
3;

в) на преобразование тригонометрических выражений: 2sin2x – 3cos2x
+ 4 = 5sin2x +1;

г) использование монотонности функции x1/3 + 2x-1
возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log0,5(4
– 2·3x – 9x).

Решим этот пример методом последовательного нахождения значений сложных
аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log0,5(5 – (1 + 2·3x – 32x)) = log0,5(5
– (3x + 1)2)

И последовательно найдём множества значений её сложных аргументов:

E(3x) = (0;+∞), E(3x+ 1) = (1;+∞), E(-(3x+
1)2 = (-∞;-1), E(5 – (3x+1)2) = (-∞;4)

Обозначим t = 5 – (3x+1)2, где -∞≤t≤4.
Тем самым задача сводится к нахождению множества значений функции y = log0,5t
на луче (-∞;4). Так как функция y = log0,5t определена лишь
при, то её множество значений на луче (-∞;4) совпадает со множеством значений
функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с
областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта
функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t =
4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной
функции снизу и сверху и в доказательстве достижения функцией нижней и верхней
границы оценок. При этом совпадение множества значений функции с промежутком от
нижней границы оценки до верхней обуславливается непрерывностью функции и
отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0
функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы
оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y
непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она
принимает все значения с -6 до 6 включительно, и только их, так как в силу
неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) =
[-6;6].

Пример 3. Найдите область значений E(f) функции f(x) =
cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos2x
+ 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t2 + 2t
– 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством
значений функции g(t) = 2t2 + 2t – 1 на отрезке [-1;1],
которое найдём графическим методом. Построив график функции y = 2t2 +
2t – 1 = 2(t + 0,5)2 – 1,5 на промежутке [-1;1], находим E(f)
= [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с
параметром, связанные, в основном, с разрешимостью и числом решений уравнения и
неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда,
когда

a

E(f)
Аналогично, уравнение f(x) = а имеет хотя бы один корень,
расположенный на некотором промежутке Х, или не имеет ни одного корня на этом
промежутке тогда и только тогда, когда а принадлежит или не принадлежит
множеству значений функции f(x) на промежутке Х. Также исследуются с
привлечением множества значений функции и неравенства f(x)≠ а, f(x)>а
и т.д. В частности, f(x)≠ а для всех допустимых значений х, если
a

E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5)1/2
= a(x2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5)1/2 / (x2 + 4) = a .
Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только
тогда, когда а принадлежит множеству значений функции f(x) = (x + 5)1/2
/ (x2 + 4) на отрезке [-4;-1]. Найдём это множество, используя
свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна,
поэтому функция g(x) = 1/(x2 + 4) непрерывна и возрастает на
этом отрезке, так как при делении на положительную функцию характер монотонности
функции меняется на противоположный. Функция h(x) = (x + 5)1/2
непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в
частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция
f(x)=g(x)·h(x), как произведение двух непрерывных, возрастающих и
положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому
её множество значений на [-4;-1] есть отрезок [f(-4); f(-1)] = [0,05;
0,4]. Следовательно, уравнение имеет решение на отрезке [-4;-1], причём
единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х
равносильна принадлежности значений параметра а множеству значений
функции f(x) на Х. Следовательно, множество значений функции f(x)
на промежутке Х совпадает с множеством значений параметра а, для которых
уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В
частности, область значений E(f) функции f(x)совпадает с
множеством значений параметра а, для которых уравнение f(x) = a
имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f)
совпадает с множеством значений параметра а, для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом
при неизвестной х , поэтому имеет решение. При а≠2 уравнение является
квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

 то
искомым множеством значений параметра а, значит, и областью значений E(f)
будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении
множества значений функции, можно рассматривать метод обратной функции, для
нахождения которой надо решить относительно х уравнение f(x)= y, считая y
параметром. Если это уравнение имеет единственное решение x =g(y), то
область значений E(f) исходной функции f(x) совпадает с областью
определения D(g) обратной функции g(y). Если же уравнение f(x)=
y
имеет несколько решений x =g1(y), x =g2(y)
и т.д., то E(f) равна объединению областей определений функции g1(y),
g2(y)
и т.д.

Пример 6. Найдите область значений E(y) функции y = 52/(1-3x).

Из уравнения

найдём обратную функцию x = log3((log5y – 2)/(log5y))
и её область определения D(x):

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+).

Если область определения функции состоит из нескольких промежутков или
функция на разных промежутках задана разными формулами, то для нахождения
области значений функции надо найти множества значений функции на каждом
промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)), где

Найдём сначала множество значений функции f(x) на луче (-∞;1], где она
совпадает с выражением 4x + 9·4-x + 3. Обозначим t = 4x
. Тогда f(x) = t + 9/t + 3, где 0 < t ≤ 4 , так как показательная
функция непрерывно возрастает на луче (-∞;1] и стремится к нулю при х → -∞. Тем
самым множество значений функции f(x) на луче (-∞;1] совпадает с
множеством значений функции g(t) = t + 9/t + 3, на промежутке
(0;4], которое найдём, используя производную g’(t) = 1 – 9/t2.
На промежутке (0;4] производная g’(t) определена и обращается там в нуль
при t = 3. При 0<t<3 она отрицательна, а при 3<t<4
положительна. Следовательно, в интервале (0;3) функция g(t) убывает, а в
интервале (3;4) она возрастает, оставаясь непрерывной на всём промежутке (0;4),
поэтом g(3)= 9 – наименьшее значений этой функции на промежутке (0;4], в
то время как её наибольшее значение не существует, так при t→0 справа
функция g(t)→+∞. Тогда, по свойству непрерывной функции, множеством
значений функции g(t) на промежутке (0;4], а значит, и множеством
значений f(x) на (-∞;-1], будет луч [9;+∞).

При х >1 функция f(x) совпадает с выражением 2cos(x-1)1/2
+ 7. Квадратный корень (x-1)1/2 при x > 1 определён и
принимает все положительные значения, поэтому cos(x-1)1/2
принимает все значения от -1 до 1 включительно, а выражение 2cos(x-1)1/2
+ 7 принимает все значения от 5 до 9 включительно. Следовательно, множеством
значений функции f(x) на луче (1;+∞) будет отрезок [5;9].

Теперь, объединив промежутки [9;+∞) и [5;9] – множества значений функции f(f(x)),
обозначим t = f(x). Тогда f(f(x)) = f(t), где
 
При указанных t функция f(t) = 2cos(x-1)1/2 + 7
и она снова принимает все значения от 5 до 9 включительно, т.е. область значений
E(fІ) = E(f(f(x))) = [5;9].

Аналогично, обозначив z = f(f(x)), можно найти область значений E(f3)
функции f(f(f(x))) = f(z), где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f3)
=
[2cos81/2 + 7; 2cos2 + 7].

Наиболее универсальным методом нахождения множества значений функции является
использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8xр
≠ 2x+1 – 2x
выполняется для всех -1 ≤ x < 2.

Обозначив t = 2x, запишем неравенство в виде р ≠ t3
– 2t2 + t
. Так как t = 2x – непрерывная
возрастающая функция на R, то при -1 ≤ x < 2 переменная

2-1 ≤ t <22

0,5 ≤ t < 4, и исходное неравенство выполняется для всех -1 ≤ x < 2 тогда и
только тогда, когда р отлична от значений функции f(t) = t3
– 2t2 + t
при 0,5 ≤ t < 4.

Найдём сначала множество значений функции f(t) на отрезке [0,5;4], где
она всюду имеет производную f’(t) =3t2 – 4t + 1.
Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке
[0,5;4]. Из уравнения f’(t) = 0 найдём критические точки функции t =
1/3, t = 1,
первая из которых не принадлежит отрезку [0,5;4], а вторая
принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по
свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение
функции f(t) на отрезке [0,5;4]. Тогда f(t), как непрерывная
функция, принимает на отрезке [0,5;4] все значения от 0 до 36 включительно,
причём значение 36 принимает только при t = 4, поэтому при 0,5 ≤ t < 4,
она принимает все значения из промежутка [0;36). Тем самым

Заключение.

Данная тема имеет практическое значение. В школьном курсе математики
изучается тема “Область значения функции”. Такие задачи обязательно содержатся в
заданиях различных математических тестов, в частности в заданиях единого
государственного экзамена.
Результаты работы можно использовать на уроках и дополнительных занятиях при
подготовке учащихся выпускным и вступительным экзаменам, при самостоятельной
подготовке учащихся по данной теме.

Литература.

  1. Сильвестров В.В. Множество значений функции: Учебное пособие.–
    Чебоксары, 2004.
  2. Амелькин В.В., Рабцевич В.Л. Задачи с параметрами.– Минск, 1996.
  3. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. –
    Москва – Харьков, 1998.
  4. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с
    параметрами: Учебное пособие. 4-е изд., доп., перераб. – М., 2006.
  5. Сильвестров В.В. Неравенства с параметром на едином
    государственном экзамене // Математика для школьников. 2008. №
    2.

Множество значений функции

Онлайн калькулятор поможет найти множество значений (область значений) функции — все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые получаются при подстановке всех возможных значений х.

Теперь рассмотрим следующий вопрос: Как найти множество значений функции? Решение этой задачи с помощью онлайн калькулятора не составит труда, просто введите нужную функцию и получите ответ.

Синтаксис
основных функций:

xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]

sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]

arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]

areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция «И» ∧: &&
дизъюнкция «ИЛИ» ∨: ||
отрицание «НЕ» ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Понравилась статья? Поделить с друзьями:
  • Как найти песню по ключевым словам
  • Сталкер тень чернобыля как где найти броню
  • Как можно найти мадагаскара
  • Как найти площадь параллелепипеда видео
  • Как найти отсекаемый конус