Как найти множество значений предикатов

Понятие.
область определения и истинности
предиката.

Предикат —
логическая функция, определенная на
некотором множестве M,
то есть такая n-местная
функция p,
которая каждому упорядоченному
набору (x1,
…, x
1) из
множества M сопоставляет
некоторое высказывание, обозначаемое p(x1,
…, x
1).
В этом случае p называется nместным
предикатом на множестве
 M.

    Из
курса математической логики, нам
известно, что высказывание обычно
отождествляется с его истинностным
значением 1 («истина») или 0 («ложь»).
Исходя из этого, можно дать определение
предиката для различной местности.

    Пусть
задано произвольное множество М ¹
Æ
.    Определение.
Одноместным предикатом р(х) на
множестве М называется
функция вида.
(5)

    Двуместным
предикатом p(x1,x2) на
множестве М называется
функция вида (6)
и т.д.  

Например,
пусть в качестве множества M задано
множество натуральных чисел N.
Обозначим через p(x): .
Тогда, в зависимости от значения x,
логическая функция p(x) принимает
либо значение 1 («истина») либо
значение 0 («ложь»). Действительно,
при значениях x
=2, 3, 5, 7, …
 ,
функция p(x)
= 1
 и
в случае, когда x
= 4, 6, 8, 9, …
 p(x)
= 0

данном примере в качестве объекта
рассматриваются элементы из множества
натуральных чисел, а в качестве свойства
взято «простое число», и это
свойство обозначено через p.

Областью
определения

предиката называется множество,
элементы которого могут быть подставлены
в предикат.

Множеством
истинности

предиката вызывается множество,
элементы которого подставленные в
предикат, обращают его в истинное
высказывание. Если особо не оговорено,
то принято обозначать множество
истинности предиката буквой Т с
индексами или без таковых.
Множество
всех элементов х  М , при которых
преди¬кат принимает значение «истина»,
называется множеством истинности
предиката Р(х), то есть множество
истиннос¬ти предиката Р(х) — это
множество 1р = {х| х  М, Р(х) = 1}.Предикат
Р(х), определенный на мно¬жестве М,
называется тождественно истинным
(тож¬дественно ложным), если 1р = М (1р
= ).

Квантовые
существования и всеобщности. Свободно
связанные переменные.

1.     Квантор
всеобщности.

Пусть P(x)
– предикат, определенный на
множестве MПод
выражением  понимают
высказывание, истинное, когда P(x)
истинно для каждого элемента  и
ложное в противном случае. Это
высказывание не зависит от x.
Соответствующее ему словесное выражение
«Для всякого xP(x)
истинно». Символ  называется
квантором всеобщности. Переменную в
предикате P(x)
называют свободной (ей можно придавать
различные значения из M),
в высказывании  переменную x называют
связанной квантором всеобщности.

2.     Квантор
существования.

Пусть P(x)
– предикат, определенный на
множестве MПод
выражением  понимают
высказывание, которое является
истинным, если существует элемент ,
для которого P(x)
истинно и ложным в противном случае.
Это высказывание не зависит от x.
Соответствующее ему словесное выражение
«существует x,
при котором P(x)
истинно». Символ  называется
квантором существования.

Пример.

M=NP(x)
– «число x кратно
5»;

 –
«Все натуральные
числа кратны 5» ложно, т.е. ;

 –
«Существует
натуральное число, кратное 5» истинно,
то есть .

Замечание 1.
Высказывание  истинно
только в том единственном случае,
когда P(x)
тождественно истинный предикат, а
высказывание  ложно
только в том единственном случае,
когда P(x)
тождественно ложный предикат.

Замечание 2.
Кванторные операции применяются и к
многоместным предикатам. Пусть,
например, на множестве M задан
двухместный предикатP(x,y).
Применение кванторной операции к
предикату P(x,y)
по переменной ставит
в соответствие двухместному
предикату P(x,y)
одноместный предикат  (или
одноместный предикат )
[для любого x P(x,y)
истинно (существует x,
при котором P(x,y)
истинно)], зависящий от переменной y и
не зависящий от переменной x.
К ним можно применить кванторные
операции по переменной y,
которые приведут к высказываниям
следующих видов: .

Пример.

Рассмотрим
предикат P(x,y)
– «y является
делителем x»,
определенный на множестве N.
Применение кванторных операций к
этому предикату приводит к 8 возможным
высказываниям:

1)      –
«Для всякого y и
для всякого xявляется
делителем x»;

2)      –
«Существует y,
которое является делителем всякого x»;

3)      –
«Для всякого существует x такое,
что x делится
на y»;

4)      –
«Существует и
существует такие,
что является
делителем x»;

5)      –
«Для всякого x и
для всякого yявляется
делителем x»;

6)      –
«Для всякого существует y такое,
что x делится
на y»;

7)      –
«Существует x такое,
что для всякого yx делится
на y»;

8)       –
«Существует и
существует такие,
что является
делителем x».

Высказывания
1), 5), 7) ложны; а высказывания 2), 3), 4), 6),
8) истинны.

Логика предикатов

Предикаты вслед за высказываниями являются следующим важным предметом, исследуемым математической логикой. Понятие предиката обобщает понятие высказывания, а теория предикатов представляет собой более тонкий инструмент, по сравнению с теорией высказываний, для изучения закономерностей процессов умозаключения и логического следования, составляющих предмет математической логики. В настоящей главе рассматриваются основы теории предикатов.

Понятие предиката

В высказывании все четко: это — конкретное утверждение о конкретных объектах — истинное или ложное. Предикат — предложение, похожее на высказывание, но все же им не являющееся: о нем нельзя судить, истинно оно или ложно. Дадим точное определение.

Определение 18.1. Определенным на множествах M_1,M_2,ldots,M_n n-местным предикатом называется предложение, содержащее n переменных x_1,x_2,ldots,x_n, превращающееся в высказывание при подстановке вместо этих переменных любых конкретных элементов из множеств M_1,M_2,ldots,M_n соответственно.

Для n-местного предиката будем использовать обозначение P(x_1,x_2,ldots,x_n). Переменные x_1,x_2,ldots,x_n называют предметными, а элементы множеств M_1,M_2,ldots,M_n, которые эти переменные пробегают, — конкретными предметами. Всякий n-местный предикат P(x_1,x_2,ldots,x_n), определенный на множествах M_1,M_2,ldots,M_n, представляет собой функцию п аргументов, заданную на указанных множествах и принимающую значения в множестве всех высказываний. Поэтому предикат называют также функцией-высказыванием.

Рассмотрим пример. Предложение «Река x впадает в озеро Байкал» является одноместным предикатом, определенным над множеством всех названий рек. Подставив вместо предметной переменной x название «Баргузин», получим высказывание «Река Баргузин впадает в озеро Байкал». Это высказывание истинно. Подставив вместо предметной переменной x название «Днепр», получим ложное высказывание «Река Днепр впадает в озеро Байкал».

Другой пример. Предложение (выражение) «x^2+y^2 leqslant 9» является двухместным предикатом, заданным над множествами mathbb{R},mathbb{R}. Множества, на которых задан двухместный предикат, совпадают (говорят, что «двухместный предикат задан на множестве mathbb{R}^2«). Пара действительных чисел 2, 2 превращает данный предикат в истинное высказывание: «2^2+2^2 leqslant 9«, а пара чисел 2, 3 — в ложное: «2^2+3^2 leqslant 9«.

Отметим еще один подход к понятию предиката. Как отмечалось, предикат P(x_1,x_2,ldots,x_n), определенный на множествах M_1,M_2,ldots,M_n, превращается в конкретное высказывание P(x_1,x_2,ldots,x_n), если вместо предметных переменных x_1,x_2,ldots,x_n подставить в него конкретные предметы (элементы a_1,a_2,ldots,a_n) из множеств M_1,M_2,ldots,M_n соответственно. Это высказывание может быть либо истинным, либо ложным, т. е. его логическое значение равно 1 или 0. Следовательно, данный предикат определяет функцию n аргументов, заданную на множествах M_1,M_2,ldots,M_n принимающую значение в двухэлементном множестве {0;1}. Иногда эту функцию и называют предикатом.


Классификация предикатов

Определение 18.2. Предикат P(x_1,x_2,ldots,x_n), заданный на множествах M_1,M_2,ldots,M_n, называется:

а) тождественно истинным, если при любой подстановке вместо переменных x_1,x_2,ldots,x_n любых конкретных предметов a_1,a_2,ldots,a_n из множеств M_1,M_2,ldots,M_n соответственно он превращается в истинное высказывание P(a_1,a_2,ldots,a_n);

б) тождественно ложным, если при любой подстановке вместо переменных x_1,x_2,ldots,x_n любых конкретных предметов из множеств M_1,M_2,ldots,M_n соответственно он превращается в ложное высказывание;

в) выполнимым (опровержимым), если существует по меньшей мере один набор конкретных предметов a_1,a_2,ldots,a_n из множеств M_1,M_2,ldots,M_n соответственно, при подстановке которых вместо соответствующих предметных переменных в предикат P(x_1,x_2,ldots,x_n) последний превратится в истинное (ложное) высказывание P(a_1,a_2,ldots,a_n).

Приведем примеры предикатов.

Одноместный предикат «Город x расположен на берегу реки Волги», определенный на множестве названий городов, является выполнимым, потому что существуют города, названия которых превращают данный предикат в истинное высказывание, или, иначе, удовлетворяют этому предикату (например, Ульяновск, Саратов и т. д.). Но данный предикат не будет тождественно истинным, потому что существуют города, названия которых превращают его в ложное высказывание, или, иначе, не удовлетворяют этому предикату (например, Прага, Якутск и т.д.). Этот же предикат являет собой пример опровержимого, но не тождественно ложного предиката (продумайте!).

В другом примере одноместный предикат «sin^2x+cos^2x=1«, определенный на множестве действительных чисел, тождественно истинный. Наконец, двухместный предикат «x^2+y^2<0«, заданный также на множестве действительных чисел, является тождественно ложным предикатом, потому что любая пара действительных чисел превращает его в ложное высказывание (не удовлетворяет ему).

Отметим некоторые достаточно очевидные закономерности взаимосвязей между предикатами различных типов (рекомендуется осмыслить их):

1) каждый тождественно истинный предикат является выполнимым, но обратное неверно;
2) каждый тождественно ложный предикат является опровержимым, но обратное неверно;
3) каждый не тождественно истинный предикат будет опровержимым, но, вообще говоря, не будет тождественно ложным;
4) каждый не тождественно ложный предикат будет выполнимым, но, вообще говоря, не будет тождественно истинным.


Множество истинности предиката

Определение 18.3. Множеством истинности предиката P(x_1,x_2,ldots,x_n), заданного на множествах M_1,M_2,ldots,M_n, называется совокупность всех упорядоченных n-систем (a_1,a_2,ldots,a_n), в которых a_1in M_1,a_2in M_2,ldots,a_nin M_n, таких, что данный предикат обращается в истинное высказывание P(a_1,a_2,ldots,a_n) при подстановке x_1=a_1,x_2=a_2,ldots,x_n=a_n. Это множество будем обозначать P^{+}. Таким образом,

P^{+}= bigl{(a_1,a_2,ldots,a_n)colon, lambda bigl(P(a_1,a_2, ldots, a_n)bigr)= 1bigr}.

Множество P^{+} истинности «-местного предиката P(a_1,a_2,ldots,a_n) представляет собой n-арное отношение между элементами множеств M_1,M_2,ldots,M_n. Если предикат P(x) — одноместный, заданный над множеством M, то его множество истинности P^{+} является подмножеством множества Mcolon, P^{+}subseteq M.

Например, множеством истинности двухместного предиката «Точка x принадлежит прямой y«, заданного на множестве E всех точек плоскости и на множестве F всех прямых этой плоскости, является бинарное отношение принадлежности (инцидентности) между точками и прямыми плоскости. Другой пример. Множество истинности двухместного предиката S(x,y)colon~ x^2+y^2=9, заданного на множестве mathbb{R}^2, есть множество всех таких пар действительных чисел, которые являются координатами точек плоскости, образующими окружность с центром в начале координат и радиуса 3. Наконец, если A(x)colon «|a|>2» — одноместный предикат над mathbb{R}, то A^{+}= (-infty;-2)cup(2;+infty), или A^{+}= mathbb{R} setminus[-2;2].

В терминах множества истинности легко выразить понятия, связанные с классификацией предикатов (определение 18.2). В самом деле, n-местный предикат P(x_1,x_2,ldots,x_n), заданный на множествах M_1,M_2,ldots,M_n, будет:

а) тождественно истинным тогда и только тогда, когда P^{+}=M_1times M_2times ldotstimes M_n;
б) тождественно ложным тогда и только тогда, когда P^{+}=varnothing;
в) выполнимым тогда и только тогда, когда P^{+}nevarnothing;
г) опровержимым тогда и только тогда, когда P^{+}ne M_1times M_2times ldotstimes M_n.

На языке множеств истинности еще более отчетливо проясняются закономерности взаимосвязей между предикатами различных типов, отмеченные в конце предыдущего пункта. Проанализируйте их еще раз.


Равносильность и следование предикатов

Определение 18.4. Два n-местных предиката P(x_1,x_2,ldots,x_n) и Q(x_1,x_2,ldots,x_n), заданных над одними и теми же множествами M_1,M_2,ldots,M_n, называются равносильными, если набор предметов (элементов) a_1in M_1, a_2in M_2, ldots, a_nin M_n превращает первый предикат в истинное высказывание P(a_1,a_2,ldots,a_n) в том и только в том случае, когда этот набор предметов превращает второй предикат в истинное высказывание Q(a_1,a_2,ldots,a_n).

Другими словами (на языке множеств истинности), предикаты P(x_1,x_2,ldots,x_n) и Q(x_1,x_2,ldots,x_n) равносильны тогда и только тогда, когда их множества истинности совпадают. P^{+}=Q^{+}.

Утверждение о равносильности двух предикатов P и Q символически будем записывать так: PLeftrightarrow Q. Отношение равносильности предикатов является отношением эквивалентности, так что совокупность всех n-местных предикатов, определенных на множествах M_1,M_2,ldots,M_n, распадается на непересекающиеся классы равносильных предикатов (все они определяют одну и ту же функцию, заданную на множествах M_1,M_2,ldots,M_n и принимающую значения в двухэлементном множестве {0;1}). Переход от предиката P_1 к равносильному ему предикату P_2 называется равносильным преобразованием первого. Это понятие очень важно для школьной математики, потому что изучаемые в ней уравнения и неравенства представляют собой частные виды предикатов. Решение уравнения и неравенства есть поиск их множеств истинности. При таком поиске мы проделываем над уравнением и неравенством различные преобразования, и здесь важно, чтобы эти преобразования были равносильными, т. е. чтобы найденное множество оказалось бы множеством истинности именно исходного уравнения или неравенства. Аналогична ситуация при решении систем уравнений или неравенств.

Рассмотрим простой пример. Пусть требуется решить уравнение (найти множество истинности предиката): 4x-2=-3x-9. Преобразуем его равносильным образом:

4x-2=-3x-9quad Leftrightarrowquad 4x+3x=-9+2quad Leftrightarrowquad x=-1

Ответ: {-1} — множество всех решений данного уравнения (множество истинности данного предиката).

Отметим следующее немаловажное обстоятельство: может быть так, что два предиката равносильны, если их рассматривать над одним множеством, и неравносильны, если их рассматривать над другим (в частности, объемлющим первое) множеством. Такова, например, ситуация с предикатами: sqrt{xcdot y}=15 и sqrt{x}cdotsqrt{y}=15.


Определение 18.5. Предикат Q(x_1,x_2, ldots,x_n), заданный над множествами M_1,M_2, ldots, M_n, называется следствием предиката P(x_1,x_2,ldots,x_n), заданного над теми же множествами, если он превращается в истинное высказывание на всех тех наборах значений предметных переменных из соответствующих множеств, на которых в истинное высказывание превращается предикат P(x_1,x_2,ldots,x_n).

Другими словами (в терминах множеств истинности), можно сказать, что предикат Q является следствием предиката P тогда и только тогда, когда P^{+}subseteq Q^{+}.

Утверждение о том, что предикат Q является следствием предиката P, будем символически записывать так: PRightarrow Q.

Например, одноместный предикат, определенный на множестве натуральных чисел, «n делится на 3″ является следствием одноместного предиката, определенного на том же множестве, «n делится на 6″. Из двух предикатов, упомянутых перед последним определением, первый будет следствием второго, если считать, что оба предиката заданы на множестве mathbb{Z} целых чисел.

Язык множеств истинности позволяет установить взаимосвязь между понятиями равносильности и следования предикатов: два предиката, определенные на одних и тех же множествах, равносильны тогда и только тогда, когда каждый из них является следствием другого. Кроме того, этот же язык дает возможность без труда установить следующие простые теоремы.

Теорема 18.6. Каждые два тождественно истинных (тождественно ложных) предиката, заданных на одних и тех же множествах, равносильны. Обратно, всякий предикат, равносильный тождественно истинному (тождественно ложному) предикату, сам является тождественно истинным (тождественно ложным) предикатом.

Теорема 18.7. Каждый тождественно истинный n-местный предикат является следствием любого другого n-местного предиката, определенного на тех же множествах. Каждый n-местный предикат является следствием любого тождественно ложного n-местного предиката, определенного на тех же множествах.

Теорема 18.8. Пусть P(x_1,x_2,ldots,x_n) и Q(x_1,x_2,ldots,x_n) — два n-местных предиката, определенные на одних и тех же множествах, такие, что Q(x_1, x_2, ldots, x_n) есть следствие P(x_1,x_2,ldots,x_n). Тогда:

а) если P(x_1,x_2,ldots,x_n) тождественно истинный (выполнимый), то и Q(x_1, x_2, ldots, x_n) тождественно истинный (выполнимый);

б) если Q(x_1,x_2,ldots,x_n) тождественно ложный (опровержимый), то и P(x_1, x_2, ldots, x_n) тождественно ложный (опровержимый).

Доказательство теоремы 18.8:

а) Поскольку PRightarrow Q, поэтому P^{+}subseteq Q^{+}. Если теперь P тождественно истинный предикат, то

P^{+}= M_1times M_2times ldotstimes M_n (где M_1,M_2,ldots,M_n — множества, на которых определены n-местные предикаты P и Q).

Но Q^{+}subseteq M_1times M_2times ldotstimes M_n. Поэтому Q^{+}= M_1times M_2times ldotstimes M_n, а, значит, предикат Q — тождественно истинный предикат. Если же P — выполнимый предикат, то P^{+}nevarnothing. Но P^{+}subseteq Q^{+}. Тогда Q^{+}nevarnothing и Q — выполнимый предикат.

б) Пусть Q — тождественно ложный предикат. Тогда Q^{+}=varnothing. Но P^{+}subseteq Q^{+}, поэтому P^{+}=varnothing. Следовательно, предикат P — тождественно ложный. Наконец, пусть Q — опровержимый предикат. Тогда Q^{+}ne M_1times M_2times ldotstimes M_n. Поскольку, кроме того,

P^{+}subseteq Q^{+} и P^{+}subseteq M_1times M_2times ldotstimes M_n, то P^{+}ne M_1times M_2times ldotstimes M_n.

Следовательно, предикат P — опровержимый.

Отыщите самостоятельно в настоящем и предыдущем пунктах данной лекции утверждения, обосновывающие остальные сформулированные теоремы.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Предикаты. Операции над предикатами

При изучении высказываний мы отмечали, что утверждение с переменными не является высказыванием. Можно, например, рассмотреть предложение %%P(x) : x^2 + 1 > 2%% с переменной %%x in mathbb R%%. Это предлождение не является высказыванием, так как нельзя сказать истинно оно или ложно. Однако, если заменить переменную %%x%% на какое-либо значение, например, %%x = 1%%, получаем высказывание %%2 > 2%%, которое является ложным. Заменив переменную %%x%% на значение %%x = 2%%, получим истинное высказывание %%5 > 2%%. Итак есть выражение %%P(x)%% не являющиееся высказыванием, но превращающееся в него при замене переменной %%x%% на ее произвольное значение из соответствующего множества.

Определение

Одноместным предикатом, определенным на множестве %%D%%, называется предложение с переменной, которое превращается в высказывание при замене этой переменной на ее значение из множества %%D%%. Одноместный предикат будем называть унарным или предикатом от одной переменной.

Примеры

Следующие предложения являются одноместными предикатами:

  1. %%P(x): x^ 2 + 1 > 2%%, где %%D%% — множество действительных чисел.
  2. %%Q(x):%% Длина отрезка равна %%1%%, где %%D%% — множество всех отрезков прямой.

Следующие предложения не являются одноместными предикатами:

  1. %%1 > 2%%.
  2. Прямая %%x%% параллельна прямой %%y%%.

%%n%%-местный предикат

%%n%%-местым предикатом с областью определения %%D = D_1 times D_2 times ldots times D_n%% называется предикат %%P(x_1, x_2, ldots, x_n)%% от %%n%% переменных, который превращается в высказывание при замене переменных %%x_1, x_2, ldots, x_n%% на их значения из множеств %%D_1, D_2, ldots, D_n%% соответственно.

Тогда предложение прямая %%x%% параллельна прямой %%y%% является двуместным предикатом %%P(x, y)%%, где %%X, Y%% — множество всех прямых.

Область определения предиката

Рассмотрим %%n%%-местный предикат %%P(x_1, x_2, ldots, x_n)%%. В этом случае переменные берутся из множеств %%D_1, D_2, ldots, D_n%% соответственно. Можно рассмотреть множество %%D = D_1 times D_2 times ldots times D_n%% — декартово произведение множеств %%D_1, D_2, ldots, D_n%%, элементами которого являются всевозможные упорядоченные %%n%%-ки %%(d_1, d_2, ldots, d_n)%% элементов исходных множеств.

Множество %%D%% называется областью определения предиката.

Область истинности

Областью истинности предиката %%P(x_1, x_2, ldots, x_n)%% называется множество всех %%n%%-ок %%(d_1, d_2, ldots, d_n) in D%% таких, что при замене %%x_1%% на %%d_1%%, %%x_2%% на %%d_2%%, …, %%x_n%% на %%d_n%% получается истинное высказывание.

Пример

На множестве %%D = { 1, 2, 3, 4, 5, 6, 7, 8, 9}%% рассмотрим одноместный предикат %%P(x): x%% — простое число. Найти область истинности предиката %%P(x)%%.

Обозначим область истинности буквой %%A%%. Тогда %%A%% состоит из таких элементов, при которых выполняется предикат %%P(x)%%. Поэтому %%A = {2, 3, 5, 7}%%.

Операции над предикатами

Аналогично операциям для высказываний вводятся операции для предикатов.

Пусть %%P(x)%% и %%Q(x)%% — одноместные предикаты, определенные на множестве %%D%%.

Отрицанием предиката %%P(x)%% называется новый предикат, обозначаемый %%overline{P(x)}%% и являющийся ложным для тех и только тех %%x%%, для которых предикат %%P(x)%% истинный.

Конъюнкцией предикатов %%P(x)%% и %%Q(x)%% называется новый предикат, обозначаемый %%P(x) land Q(x)%% и являющийся истинным для тех и только тех %%x%%, для которых предикаты %%P(x)%% и %%Q(x)%% истинны.

Дизъюнкцией предикатов %%P(x)%% и %%Q(x)%% называется новый предикат, обозначаемый %%P(x) lor Q(x)%% и являющийся ложным для тех и только тех %%x%%, для которых предикаты %%P(x)%% и %%Q(x)%% ложны.

Импликацией предикатов %%P(x)%% и %%Q(x)%% называется новый предикат, обозначаемый %%P(x) rightarrow Q(x)%% и являющийся ложным для тех и только тех %%x%%, для которых предикаты %%P(x)%% истинный, а %%Q(x)%% ложный.

Эквиваленцией предикатов %%P(x)%% и %%Q(x)%% называется новый предикат, обозначаемый %%P(x) leftrightarrow Q(x)%% и являющийся истинным для тех и только тех %%x%%, для которых предикаты %%P(x)%% и %%Q(x)%% имеют одинаковые значения.

Применяя операции над предикатами, мы получаем составные предикаты, которые будем называть формулами алгебры предикатов.

Предикаты %%P(x)%% и %%Q(x)%% эквивалентные , если для любого значения переменной %%x%% их значения истинности совпадают. Обозначают $$P(x) equiv Q(x).$$

Законы алгебры предикатов

Для предикатов справедливы все законы, аналогичные законам алгебры логики высказываний1.

В случае тождественно истинных и тождественно ложных предикатов имеем следующие определения.

Предикат %%P(x_1, x_2, ldots, x_n)%% называется тождественно истинным если при любой замене переменных %%x_1, x_2, ldots, x_n%% на их значения предикат превращается в истинное высказывание.

Предикат %%P(x_1, x_2, ldots, x_n)%% называется тождественно ложным если при любой замене переменных %%x_1, x_2, ldots, x_n%% на их значения предикат превращается в ложное высказывание.


Высказывание является частным случаем предиката, когда в предикате нет переменных. То есть высказывание является предикатом %%0%% порядка (от %%0%% переменных).


1. Законы алгебры логики высказываний.

Понравилась статья? Поделить с друзьями:
  • Как составить белковое питание
  • Как найти работу для мужа магия
  • Как найти группу по клантегу
  • Как найти фирму при реорганизации
  • Как найти историю в яндексе картинки