Как найти множитель при решении уравнения

Нахождение неизвестного слагаемого, множителя, и т.п., правила, примеры, решения

Долгий путь наработки навыков решения уравнений начинается с решения самых первых и относительно простых уравнений. Под такими уравнениями мы подразумеваем уравнения, в левой части которых находится сумма, разность, произведение или частное двух чисел, одно из которых неизвестно, а в правой части стоит число. То есть, эти уравнения содержат неизвестное слагаемое, уменьшаемое, вычитаемое, множитель, делимое или делитель. О решении таких уравнений и пойдет речь в этой статье.

Здесь мы приведем правила, позволяющие находить неизвестное слагаемое, множитель и т.п. Причем будем сразу рассматривать применение этих правил на практике, решая характерные уравнения.

Навигация по странице.

Чтобы найти неизвестное слагаемое, надо…

Женя с Колей решили покушать яблок, для чего начали их сшибать с яблони. Женя добыл 3 яблока, а в конце процесса у мальчиков оказалось 8 яблок. Сколько яблок сшиб Коля?

Для перевода этой типично задачи на математический язык, обозначим неизвестное число яблок, которые сшиб Коля, через x . Тогда по условию 3 Жениных яблока и x Колиных вместе составляют 8 яблок. Последней фразе соответствует уравнение вида 3+x=8 . В левой части этого уравнения находится сумма, содержащая неизвестное слагаемое, в правой части стоит значение этой суммы — число 8 . Так как же найти интересующее нас неизвестное слагаемое x ?

Для этого существует следующее правило: чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Это правило объясняется тем, что вычитанию придается смысл, обратный смыслу сложения. Иными словами, между сложением и вычитанием чисел существует связь, которая выражается в следующем: из того, что a+b=c следует, что c−a=b и c−b=a , и наоборот, из c−a=b , как и из c−b=a следует, что a+b=c .

Озвученное правило позволяет по одному известному слагаемому и известной сумме определить другое неизвестное слагаемое. При этом не имеет значения, какое из слагаемых неизвестно, первое или второе. Рассмотрим его применение на примере.

Вернемся к нашему уравнению 3+x=8 . Согласно правилу, нам надо из известной суммы 8 вычесть известное слагаемое 3 . То есть, выполняем вычитание натуральных чисел: 8−3=5 , так мы нашли нужное нам неизвестное слагаемое, оно равно 5 .

Принята следующая форма записи решения подобных уравнений:

  • сначала записывают исходное уравнение,
  • ниже – уравнение, получающееся после применения правила нахождения неизвестного слагаемого,
  • наконец, еще ниже, записывают уравнение, полученное после выполнения действий с числами.

Смысл такой формы записи заключается в том, что исходное уравнение последовательно заменяется равносильными уравнениями, из которых в итоге становится очевиден корень исходного уравнения. Подробно об этом говорят на уроках алгебры в 7 классе, а пока оформим решение нашего уравнения уровня 3 класса:
3+x=8 ,
x=8−3 ,
x=5 .

Чтобы убедиться в правильности полученного ответа, желательно сделать проверку. Для этого полученный корень уравнения надо подставить в исходное уравнение и посмотреть, дает ли это верное числовое равенство.

Итак, подставляем в исходное уравнение 3+x=8 вместо x число 5 , получаем 3+5=8 – это равенство верное, следовательно, мы правильно нашли неизвестное слагаемое. Если бы при проверке мы получили неверное числовое равенство, то это указало бы нам на то, что мы неверно решили уравнение. Основными причинами этого могут быть либо применение не того правила, которое нужно, либо вычислительные ошибки.

Как найти неизвестное уменьшаемое, вычитаемое?

Связь между сложением и вычитанием чисел, про которую мы уже упоминали в предыдущем пункте, позволяет получить правило нахождения неизвестного уменьшаемого через известное вычитаемое и разность, а также правило нахождения неизвестного вычитаемого через известное уменьшаемое и разность. Будем формулировать их по очереди, и сразу приводить решение соответствующих уравнений.

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Для примера рассмотрим уравнение x−2=5 . Оно содержит неизвестное уменьшаемое. Приведенное правило нам указывает, что для его отыскания мы должны к известной разности 5 прибавить известное вычитаемое 2 , имеем 5+2=7 . Таким образом, искомое уменьшаемое равно семи.

Если опустить пояснения, то решение записывается так:
x−2=5 ,
x=5+2 ,
x=7 .

Для самоконтроля выполним проверку. Подставляем в исходное уравнение найденное уменьшаемое, при этом получаем числовое равенство 7−2=5 . Оно верное, поэтому, можно быть уверенным, что мы верно определили значение неизвестного уменьшаемого.

Можно переходить к нахождению неизвестного вычитаемого. Оно находится с помощью сложения по следующему правилу: чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Решим уравнение вида 9−x=4 с помощью записанного правила. В этом уравнении неизвестным является вычитаемое. Чтобы его найти, нам надо от известного уменьшаемого 9 отнять известную разность 4 , имеем 9−4=5 . Таким образом, искомое вычитаемое равно пяти.

Приведем краткий вариант решения этого уравнения:
9−x=4 ,
x=9−4 ,
x=5 .

Остается лишь проверить правильность найденного вычитаемого. Сделаем проверку, для чего подставим в исходное уравнение вместо x найденное значение 5 , при этом получаем числовое равенство 9−5=4 . Оно верное, поэтому найденное нами значение вычитаемого правильное.

И прежде чем переходить к следующему правилу заметим, что в 6 классе рассматривается правило решения уравнений, которое позволяет выполнять перенос любого слагаемого из одной части уравнения в другую с противоположным знаком. Так вот все рассмотренные выше правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого с ним полностью согласованы.

Чтобы найти неизвестный множитель, надо…

Давайте взглянем на уравнения x·3=12 и 2·y=6 . В них неизвестное число является множителем в левой части, а произведение и второй множитель известны. Для нахождения неизвестного множителя можно использовать такое правило: чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

В основе этого правила лежит то, что делению чисел мы придали смысл, обратный смыслу умножения. То есть, между умножением и делением существует связь: из равенства a·b=c , в котором a≠0 и b≠0 следует, что c:a=b и c:b=c , и обратно.

Для примера найдем неизвестный множитель уравнения x·3=12 . Согласно правилу нам надо разделить известное произведение 12 на известный множитель 3 . Проведем деление натуральных чисел: 12:3=4 . Таким образом, неизвестный множитель равен 4 .

Кратко решение уравнения записывается в виде последовательности равенств:
x·3=12 ,
x=12:3 ,
x=4 .

Желательно еще сделать проверку результата: подставляем в исходное уравнение вместо буквы найденное значение, получаем 4·3=12 – верное числовое равенство, поэтому мы верно нашли значение неизвестного множителя.

Отдельно нужно обратить внимание на то, что озвученное правило нельзя применять для нахождения неизвестного множителя, когда другой множитель равен нулю. Например, это правило не подходит для решения уравнения x·0=11 . Действительно, если в этом случае придерживаться правила, то чтобы найти неизвестный множитель нам надо выполнить деление произведения 11 на другой множитель, равный нулю, а на нуль делить нельзя. Эти случаи мы подробно обсудим при разговоре о линейных уравнениях.

И еще один момент: действуя по изученному правилу, мы фактически выполняем деление обеих частей уравнения на отличный от нуля известный множитель. В 6 классе будет сказано, что обе части уравнения можно умножать и делить на одно и то же отличное от нуля число, это не влияет на корни уравнения.

Как найти неизвестное делимое, делитель?

В рамках нашей темы осталось разобраться, как найти неизвестное делимое при известном делителе и частном, а также как найти неизвестный делитель при известном делимом и частном. Ответить на эти вопросы позволяет уже упомянутая в предыдущем пункте связь между умножением и делением.

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

Рассмотрим его применение на примере. Решим уравнение x:5=9 . Чтобы найти неизвестное делимое этого уравнения надо согласно правилу умножить известное частное 9 на известный делитель 5 , то есть, выполняем умножение натуральных чисел: 9·5=45 . Таким образом, искомое делимое равно 45 .

Покажем краткую запись решения:
x:5=9 ,
x=9·5 ,
x=45 .

Проверка подтверждает, что значение неизвестного делимого найдено верно. Действительно, при подстановке в исходное уравнение вместо переменной x числа 45 оно обращается в верное числовое равенство 45:5=9 .

Заметим, что разобранное правило можно трактовать как умножение обеих частей уравнения на известный делитель. Такое преобразование не влияет на корни уравнения.

Переходим к правилу нахождения неизвестного делителя: чтобы найти неизвестный делитель, надо делимое разделить на частное.

Рассмотрим пример. Найдем неизвестный делитель из уравнения 18:x=3 . Для этого нам нужно известное делимое 18 разделить на известное частное 3 , имеем 18:3=6 . Таким образом, искомый делитель равен шести.

Решение можно оформить и так:
18:x=3 ,
x=18:3 ,
x=6 .

Проверим этот результат для надежности: 18:6=3 – верное числовое равенство, следовательно, корень уравнения найден верно.

Понятно, что данное правило можно применять только тогда, когда частное отлично от нуля, чтобы не столкнуться с делением на нуль. Когда частное равно нулю, то возможны два случая. Если при этом делимое равно нулю, то есть, уравнение имеет вид 0:x=0 , то этому уравнению удовлетворяет любое отличное от нуля значение делителя. Иными словами, корнями такого уравнения являются любые числа, не равные нулю. Если же при равном нулю частном делимое отлично от нуля, то ни при каких значениях делителя исходное уравнение не обращается в верное числовое равенство, то есть, уравнение не имеет корней. Для иллюстрации приведем уравнение 5:x=0 , оно не имеет решений.

Совместное использование правил

Последовательное применение правил нахождения неизвестного слагаемого, уменьшаемого, вычитаемого, множителя, делимого и делителя позволяет решать и уравнения с единственной переменной более сложного вида. Разберемся с этим на примере.

Рассмотрим уравнение 3·x+1=7 . Сначала мы можем найти неизвестное слагаемое 3·x , для этого надо от суммы 7 отнять известное слагаемое 1 , получаем 3·x=7−1 и дальше 3·x=6 . Теперь осталось найти неизвестный множитель, разделив произведение 6 на известный множитель 3 , имеем x=6:3 , откуда x=2 . Так найден корень исходного уравнения.

Для закрепления материала приведем краткое решение еще одного уравнения (2·x−7):3−5=2 .
(2·x−7):3−5=2 ,
(2·x−7):3=2+5 ,
(2·x−7):3=7 ,
2·x−7=7·3 ,
2·x−7=21 ,
2·x=21+7 ,
2·x=28 ,
x=28:2 ,
x=14 .

Нахождение неизвестного слагаемого, множителя: правила, примеры, решения

Чтобы научиться быстро и успешно решать уравнения, нужно начать с самых простых правил и примеров. В первую очередь надо научиться решать уравнения, слева у которых стоит разность, сумма, частное или произведение некоторых чисел с одним неизвестным, а справа другое число. Иными словами, в этих уравнениях есть одно неизвестное слагаемое и либо уменьшаемое с вычитаемым, либо делимое с делителем и т.д. Именно об уравнениях такого типа мы с вами поговорим.

Эта статья посвящена основным правилам, позволяющим найти множители, неизвестные слагаемые и др. Все теоретические положения будем сразу пояснять на конкретных примерах.

Нахождение неизвестного слагаемого

Допустим, у нас есть некоторое количество шариков в двух вазах, например, 9 . Мы знаем, что во второй вазе 4 шарика. Как найти количество во второй? Запишем эту задачу в математическом виде, обозначив число, которое нужно найти, как x. Согласно первоначальному условию, это число вместе с 4 образуют 9 , значит, можно записать уравнение 4 + x = 9 . Слева у нас получилась сумма с одним неизвестным слагаемым, справа – значение этой суммы. Как найти x ? Для этого надо использовать правило:

Для нахождения неизвестного слагаемого надо вычесть известное из суммы.

В данном случае мы придаем вычитанию смысл, который является обратным смыслу сложения. Иначе говоря, есть определенная связь между действиями сложения и вычитания, которую можно в буквенном виде выразить так: если a + b = c , то c − a = b и c − b = a , и наоборот, из выражений c − a = b и c − b = a можно вывести, что a + b = c .

Зная это правило, мы можем найти одно неизвестное слагаемое, используя известное и сумму. Какое именно слагаемое мы знаем, первое или второе, в данном случае неважно. Посмотрим, как применить данное правило на практике.

Возьмем то уравнение, что у нас получилось выше: 4 + x = 9 . Согласно правилу, нам нужно вычесть из известной суммы, равной 9 , известное слагаемое, равное 4 . Вычтем одно натуральное число из другого: 9 — 4 = 5 . Мы получили нужное нам слагаемое, равное 5 .

Обычно решения подобных уравнений записывают следующим образом:

  1. Первым пишется исходное уравнение.
  2. Далее мы записываем уравнение, которое получилось после того, как мы применили правило вычисления неизвестного слагаемого.
  3. После этого пишем уравнение, которое получилось после всех действий с числами.

Такая форма записи нужна для того, чтобы проиллюстрировать последовательную замену исходного уравнения равносильными и отобразить процесс нахождения корня. Решение нашего простого уравнения, приведенного выше, правильно будет записать так:

4 + x = 9 , x = 9 − 4 , x = 5 .

Мы можем проверить правильность полученного ответа. Подставим то, что у нас получилось, в исходное уравнение и посмотрим, выйдет ли из него верное числовое равенство. Подставим 5 в 4 + x = 9 и получим: 4 + 5 = 9 . Равенство 9 = 9 верное, значит, неизвестное слагаемое было найдено правильно. Если бы равенство оказалось неверным, то нам следовало бы вернуться к решению и перепроверить его, поскольку это знак допущенной ошибки. Как правило, чаще всего это бывает вычислительная ошибка или применение неверного правила.

Нахождение неизвестного вычитаемого или уменьшаемого

Как мы уже упоминали в первом пункте, между процессами сложения и вычитания существует определенная связь. С ее помощью можно сформулировать правило, которое поможет найти неизвестное уменьшаемое, когда мы знаем разность и вычитаемое, или же неизвестное вычитаемое через уменьшаемое или разность. Запишем эти два правила по очереди и покажем, как применять их при решении задач.

Для нахождения неизвестного уменьшаемого надо прибавить вычитаемое к разности.

Например, у нас есть уравнение x — 6 = 10 . Неизвестно уменьшаемое. Согласно правилу, нам надо прибавить к разности 10 вычитаемое 6 , получим 16 . То есть исходное уменьшаемое равно шестнадцати. Запишем все решение целиком:

x − 6 = 10 , x = 10 + 6 , x = 16 .

Проверим получившийся результат, добавив получившееся число в исходное уравнение: 16 — 6 = 10 . Равенство 16 — 16 будет верным, значит, мы все подсчитали правильно.

Переходим к следующему правилу.

Для нахождения неизвестного вычитаемого надо вычесть разность из уменьшаемого.

Воспользуемся правилом для решения уравнения 10 — x = 8 . Мы не знаем вычитаемого, поэтому нам надо из 10 вычесть разность, т.е. 10 — 8 = 2 . Значит, искомое вычитаемое равно двум. Вот вся запись решения:

10 — x = 8 , x = 10 — 8 , x = 2 .

Сделаем проверку на правильность, подставив двойку в исходное уравнение. Получим верное равенство 10 — 2 = 8 и убедимся, что найденное нами значение будет правильным.

Перед тем, как перейти к другим правилам, отметим, что существует правило переноса любых слагаемых из одной части уравнения в другую с заменой знака на противоположный. Все приведенные выше правила ему полностью соответствуют.

Нахождение неизвестного множителя

Посмотрим на два уравнения: x · 2 = 20 и 3 · x = 12 . В обоих нам известно значение произведения и один из множителей, необходимо найти второй. Для этого нам надо воспользоваться другим правилом.

Для нахождения неизвестного множителя нужно выполнить деление произведения на известный множитель.

Данное правило базируется на смысле, который является обратным смыслу умножения. Между умножением и делением есть следующая связь: a · b = c при a и b , не равных 0 , c : a = b , c : b = c и наоборот.

Вычислим неизвестный множитель в первом уравнении, разделив известное частное 20 на известный множитель 2 . Проводим деление натуральных чисел и получаем 10 . Запишем последовательность равенств:

x · 2 = 20 x = 20 : 2 x = 10 .

Подставляем десятку в исходное равенство и получаем, что 2 · 10 = 20 . Значение неизвестного множителя было выполнено правильно.

Уточним, что в случае, если один из множителей нулевой, данное правило применять нельзя. Так, уравнение x · 0 = 11 с его помощью решить мы не можем. Эта запись не имеет смысла, поскольку для решения надо разделить 11 на 0 , а деление на нуль не определено. Подробнее о подобных случаях мы рассказали в статье, посвященной линейным уравнениям.

Когда мы применяем это правило, мы, по сути, делим обе части уравнения на другой множитель, отличный от 0 . Существует отдельное правило, согласно которому можно проводить такое деление, и оно не повлияет на корни уравнения, и то, о чем мы писали в этом пункте, с ним полностью согласовано.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Решим с его помощью уравнение x : 3 = 5 . Перемножаем между собой известное частное и известный делитель и получаем 15 , которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x : 3 = 5 , x = 3 · 5 , x = 15 .

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5 . Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от 0 число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Возьмем простой пример – уравнение 21 : x = 3 . Для его решения разделим известное делимое 21 на частное 3 и получим 7 . Это и будет искомый делитель. Теперь оформляем решение правильно:

21 : x = 3 , x = 21 : 3 , x = 7 .

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21 : 7 = 3 , так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на 0 . Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как 0 : x = 0 , то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным 0 , с делимым, отличным от 0 , решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5 : x = 0 , которое не имеет ни одного корня.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

У нас есть уравнение вида 3 · x + 1 = 7 . Вычисляем неизвестное слагаемое 3 · x , отняв от 7 единицу. Получим в итоге 3 · x = 7 − 1 , потом 3 · x = 6 . Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения ( 2 · x − 7 ) : 3 − 5 = 2 :

( 2 · x − 7 ) : 3 − 5 = 2 , ( 2 · x − 7 ) : 3 = 2 + 5 , ( 2 · x − 7 ) : 3 = 7 , 2 · x − 7 = 7 · 3 , 2 · x − 7 = 21 , 2 · x = 21 + 7 , 2 · x = 28 , x = 28 : 2 , x = 14 .

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

источники:

http://zaochnik.com/spravochnik/matematika/systems/nahozhdenie-neizvestnogo-slagaemogo-mnozhitelja/

Общие сведения об уравнениях

Метод неопределённых коэффициентов

26 июля 2022

Метод неопределённых коэффициентов — это «полуолимпиадный» приём, с помощью которого вы сможете раскладывать на множители многочлены, которые не раскладываются, и решать уравнения, которые не решаются.:)

В двух словах этот метод звучит так:

В любой непонятной ситуации вводим новую переменную. А затем думаем, что с этой переменной делать.

Сегодня мы детально изучим метод неопределённых коэффициентов. Мы разберём столько разных задач, что не понять этот приём будет просто невозможно. И да: речь пойдёт не только о многочленах.:)

Содержание

  1. Основная идея
  2. Разложение многочлена на множители
  3. Решение уравнений
  4. Деление многочлена на многочлен
  5. Выделение точного квадрата
  6. Избавление от иррациональности
  7. Зачем всё это нужно

1. Основная идея

Чтобы понять основную идею метода неопределённых коэффициентов, рассмотрим простую наводящую задачу. Допустим, у нас есть квадратный трёхчлен, разложенный на множители:

[Pleft( x right)=left( x-3 right)left( x+2 right)]

Если раскрыть скобки и привести подобные слагаемые, то получится тот же многочлен, записанный в стандартном виде:

[Pleft( x right)={{x}^{2}}-x-6]

Зная разложение на множители, легко получить стандартный вид многочлена. А вот обратный переход — от стандартного вида к множителям — является вычислительно сложной операцией, но всё ещё возможной: считаем дискриминант, находим корни, вспоминаем теорему Виета и т.д.

Немного усложним задачу. Рассмотрим разложение на множители многочлена четвёртой степени (почему именно четвёртой — см. урок. «Разложение на множители»):

[Pleft( x right)=left( {{x}^{2}}-3x+1 right)left( {{x}^{2}}+x+4 right)]

Раскроем скобки и приведём подобные. Вновь получим многочлен в стандартном виде:

[Pleft( x right)={{x}^{4}}-2{{x}^{3}}+2{{x}^{2}}-11x+4]

Но как выполнить обратную операцию? Как по стандартному виду многочлена определить, на какие множители его можно разложить? Тут на помощь и приходит метод неопределённых коэффициентов.

Проблема разложения на множители

Рассмотрим задачу в общем виде. Допустим, нам нужно разложить на множители многочлен четвёртой степени:

[Pleft( x right)= color{blue}{{a}_{4}}{{x}^{4}}+ color{blue}{{a}_{3}}{{x}^{3}}+ color{blue}{{a}_{2}}{{x}^{2}}+ color{blue}{{a}_{1}}x+ color{blue}{{a}_{0}}]

Из курса алгебры мы знаем, что произвольный многочлен не всегда раскладывается на линейные двучлены вида $x-color{red}{a}$. Однако он совершенно точно раскладывается на квадратные трёхчлены вида $color{red}{a}{{x}^{2}}+color{red}{b}x+color{red}{c}$:

[Pleft( x right)=left(color{blue}{a}{{x}^{2}}+color{blue}{b}x+color{blue}{c} right)left( color{blue}{d}{{x}^{2}}+color{blue}{e}x+color{blue}{f} right)]

Записав такое разложение, мы уже наполовину выполнили задачу. Но нам неизвестны коэффициенты $color{blue}{a}$, $color{blue}{b}$, $color{blue}{c}$ и $color{blue}{d}$, $color{blue}{e}$, $color{blue}{f}$. Отсюда, кстати, и название приёма — «метод неопределённых коэффициентов». И чтобы найти эти самые неопределённые коэффициенты, воспользуемся следующей теоремой.

Теорема о нулевом многочлене

Теорема (критерий многочлена, тождественно равного нулю). Многочлен

[Pleft( x right)= color{blue}{{a}_{n}}{{x}^{n}}+ color{blue}{{a}_{n-1}}{{x}^{n-1}}+ ldots + color{blue}{{a}_{1}}x+ color{blue}{{a}_{0}}]

тождественно равен нулю (т.е. при любом значении переменной $x$) тогда и только тогда, когда все его коэффициенты равны нулю:

[color{blue}{{a}_{n}}= color{blue}{{a}_{n-1}}= ldots = color{blue}{{a}_{1}}= color{blue}{{a}_{0}}= color{red}{0}]

Доказательство я вынесу на отдельную страницу (см. урок «Корни многочлена»). Потому что у этой теоремы много применений, но нас сейчас интересует не сама теорема, а лишь одно-единственное следствие из неё:

Следствие (критерий равенства двух многочленов). Пусть даны два многочлена:

[begin{align}Aleft( x right) &= color{blue}{{a}_{n}}{{x}^{n}}+ color{blue}{{a}_{n-1}}{{x}^{n-1}}+ ldots + color{blue}{{a}_{1}}x+ color{blue}{{a}_{0}}\ Bleft( x right) &= color{blue}{{b}_{n}}{{x}^{n}}+ color{blue}{{b}_{n-1}}{{x}^{n-1}}+ ldots + color{blue}{{b}_{1}}x+ color{blue}{{b}_{0}}\ end{align}]

Эти два многочлена тождественно равны друг другу (т.е. $Aleft( x right)=Bleft( x right)$ при любом $x$) тогда и только тогда, когда равны их коэффициенты при соответствующих степенях:

[color{blue}{{a}_{n}}= color{blue}{{b}_{n}}; color{blue}{{a}_{n-1}}= color{blue}{{b}_{n-1}}; ldots ; color{blue}{{a}_{1}}= color{blue}{{b}_{1}}; color{blue}{{a}_{0}}= color{blue}{{b}_{0}}]

Вот тут всё становится на свои места!

Основной алгоритм

Пусть даны два представления одного и того же многочлена. Например, в стандартном виде и разложение на множители:

[begin{align} Pleft( x right) &= color{blue}{{a}_{4}}{{x}^{4}}+ color{blue}{{a}_{3}}{{x}^{3}}+ color{blue}{{a}_{2}}{{x}^{2}}+ color{blue}{{a}_{1}}x+ color{blue}{{a}_{0}}= \ &=left( color{blue}{a}{{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( color{blue}{d}{{x}^{2}}+ color{blue}{e}x+ color{blue}{f} right) end{align}]

Тогда для нахождения неизвестных коэффициентов в любом из этих разложений необходимо выполнить три шага:

  1. Раскрыть все скобки и привести подобные, чтобы получить две записи в стандартном виде;
  2. Приравнять соответствующие коэффициенты, составить систему уравнений;
  3. Решить эту систему и правильно интерпретировать ответ.

Вот и вся суть метода. Первые два пункта очевидны. Проблемы возникают лишь на третьем шаге, поскольку зачастую системы уравнений получаются нелинейными. И мы детально разберём, как решать подобные системы.

Но для начала — парочка простых задач.:)

Задача 1.1. Основная идея

Задача. Найдите числа $a$, $b$, $c$, при которых многочлены $Pleft( x right)$ и $Qleft( x right)$ равны:

[begin{align}Pleft( x right) &=2{{x}^{4}}+3{{x}^{3}}-5x-2\ Qleft( x right) &=left( ax+3 right)left( {{x}^{3}}-b right)-3x+c\ end{align}]

Решение. Согласно Теореме 1, многочлены $Pleft( x right)$ и $Qleft( x right)$ равны, когда в точности равны их коэффициенты. Поэтому раскроем скобки в многочлене $Qleft( x right)$ и найдём эти коэффициенты:

[begin{align}Qleft( x right) &=a{{x}^{4}}+3{{x}^{3}}-abx-3b-3x+c= \ &=color{blue}{a}{{x}^{4}}+ color{blue}{3}{{x}^{3}}+left( color{blue}{-ab-3} right)x+left( color{blue}{c-3b} right) end{align}]

Для удобства коэффициенты выделены синим цветом. Сравним их с коэффициентами многочлена $Pleft( x right)$:

[begin{align}& color{blue}{a}{{x}^{4}}+ color{blue}{3}{{x}^{3}}+left( color{blue}{-ab-3} right)x+left( color{blue}{c-3b} right)= \ = & color{red}{2}{{x}^{4}}+ color{red}{3}{{x}^{3}}+left( color{red}{-5} right)x+left( color{red}{-2} right) \ end{align}]

Чтобы многочлены были равны, должны выполняться равенства

[color{blue}{a}= color{red}{2};quad color{blue}{-ab-3}= color{red}{-5};quad color{blue}{c-3b}= color{red}{-2}]

Получили систему уравнения, которая легко решается:

[color{blue}{a}= color{red}{2}; color{blue}{b}= color{red}{1}; color{blue}{c}= color{red}{1}]

Ответ: $a=2$, $b=1$, $c=1$.

Задача 1.2. Альтернативный подход

Задача. Найдите числа $a$, $b$, $c$, при которых многочлены $Pleft( x right)$ и $Qleft( x right)$ равны:

[begin{align}Pleft( x right) &=3{{x}^{4}}+7{{x}^{3}}+3{{x}^{2}}+x+2\ Qleft( x right) &=left( x+1 right)left( a{{x}^{3}}+b{{x}^{2}}-x+c right)\ end{align}]

Решение. Решим эту задачу двумя способами: «чистым» методом неопределённых коэффициентов и с привлечением схемы Горнера.

Способ 1. «Чистый» метод неопределённых коэффициентов. Раскрываем скобки в многочлене $Qleft( x right)$:

[begin{align}Qleft( x right) &=a{{x}^{4}}+b{{x}^{3}}-{{x}^{2}}+cx+a{{x}^{3}}+b{{x}^{2}}-x+c= \ &= color{blue}{a}{{x}^{4}}+left( color{blue}{a+b} right){{x}^{3}}+left( color{blue}{b-1} right){{x}^{2}}+left( color{blue}{c-1} right)x+ color{blue}{c} end{align}]

Приравниваем многочлены $Qleft( x right)$ и $Pleft( x right)$:

[begin{align}& color{blue}{a}{{x}^{4}}+left( color{blue}{a+b} right){{x}^{3}}+left( color{blue}{b-1} right){{x}^{2}}+left( color{blue}{c-1} right)x+ color{blue}{c}= \= & color{red}{3}{{x}^{4}}+ color{red}{7}{{x}^{3}}+ color{red}{3}{{x}^{2}}+ color{red}{1}x+ color{red}{2} \ end{align}]

Получим набор из пяти уравнений:

[begin{array}{rrr}color{blue}{a}= color{red}{3}; & color{blue}{b-1}= color{red}{3}; & color{blue}{c}= color{red}{2}.\ color{blue}{a+b}= color{red}{7}; & color{blue}{c-1}= color{red}{1}; & {}\ end{array}]

Решаем систему из этих уравнений и получаем ответ:

[color{blue}{a}=color{red}{3}; color{blue}{b}=color{red}{4}; color{blue}{c}=color{red}{2}]

Способ 2. Привлечение схемы Горнера. Поскольку многочлен $Qleft( x right)$ разложен на множители, сделаем то же самое и с многочленом $Pleft( x right)$ — выделим из него множитель-двучлен $x+1$. Для этого заполним таблицу для $x=color{red}{-1}$:

[begin{array}{r|r|r|r|r|r} {} & color{blue}{3} & color{blue}{7} & color{blue}{3} & color{blue}{1} & color{blue}{2}\ hline color{red}{-1} & 3 & 4 & -1 & 2 & color{green}{0}\ end{array}]

Получили остаток $r=color{green}{0}$, и многочлен $Pleft( x right)$ можно переписать так:

[Pleft( x right)=left( x+1 right)left( 3{{x}^{3}}+4{{x}^{2}}-1x+2 right)]

Приравняем многочлены $Pleft( x right)$ и $Qleft( x right)$:

[begin{align}&left( x+1 right)left( color{red}{3}{{x}^{3}}+ color{red}{4}{{x}^{2}}+left( color{red}{-1} right)x+ color{red}{2} right)= \ = &left( x+1 right)left( color{blue}{a}{{x}^{3}}+ color{blue}{b}{{x}^{2}}+left( color{blue}{-1} right)x+ color{blue}{c} right) \ end{align}]

И сразу получаем ответ:

[color{blue}{a} =color{red}{3}; color{blue}{b} =color{red}{4}; color{blue}{c} =color{red}{2}]

Ответ: $a=3$, $b=4$, $c=2$.

Если вам непонятно, как работает схема Горнера и при чём тут разложение на множители, см. урок «Схема Горнера» — это ещё один универсальный алгоритм. Который, как и метод неопределённых коэффициентов, будет полезен во многих нестандартных задачах.

2. Разложение многочлена на множители

Переходим к серьёзным задачам. Всё, что мы решали выше, сводилось к простым линейным уравнениям, которые решались обычной подстановкой.

Теперь мы разберём многочлены четвёртой степени — те самые, с которых начинали рассуждения. И заодно научимся решать нелинейные системы методом целочисленного перебора.

Задача 2.1. Самая стандартная

Задача. Разложите многочлен на множители методом неопределённых коэффициентов:

[Pleft( x right)={{x}^{4}}+2{{x}^{3}}+2{{x}^{2}}+10x+25]

Этот многочлен вообще не имеет действительных корней, в чём легко убедиться, выделив точные квадраты:

[begin{align}Pleft( x right) &=left( {{x}^{4}}+2{{x}^{3}}+{{x}^{2}} right)+left( {{x}^{2}}+10x+25 right)= \ &={{x}^{2}}{{left( x+1 right)}^{2}}+{{left( x+5 right)}^{2}} end{align}]

Полученная сумма равна нулю только если $x=-5$ и одновременно $x=0$ или $x=-1$. Что, очевидно, невозможно. Следовательно, линейных множителей в разложении не будет.

Зато квадратные множители точно будут, поэтому используем метод неопределённых коэффициентов. Предположим, что многочлен раскладывается на произведение двух квадратных трёхчленов:

[Pleft( x right)=left( {{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( {{x}^{2}}+ color{blue}{d}x+ color{blue}{e} right)]

Раскрываем скобки и приводим подобные:

[begin{align}Pleft( x right)={{x}^{4}}+left( color{blue}{b+d} right){{x}^{3}} &+ left( color{blue}{bd+c+e} right){{x}^{2}}+ \ & +left( color{blue}{be+d} right)x+ color{blue}{ce} \ end{align}]

Сравниваем коэффициенты полученного многочлена с коэффициентами исходного:

[Pleft( x right)={{x}^{4}}+ color{red}{2}{{x}^{3}}+ color{red}{2}{{x}^{2}}+ color{red}{10}x+ color{red}{25}]

Выписываем равенства:

[begin{array}{rr}color{blue}{b+d}= color{red}{2}; & color{blue}{be+dc}= color{red}{10};\ color{blue}{bd+c+e}= color{red}{2}; & color{blue}{ce}= color{red}{25}.\ end{array}]

Получили систему из четырёх нелинейных уравнений. Универсального алгоритма для решения таких систем не существует. Однако здесь хорошо работает метод целочисленного перебора.

Рассмотрим последнее уравнение:

[ color{blue}{c} cdot color{blue}{e}= color{red}{25}]

Какие числа нужно перемножить, чтобы в произведении получилось 25? Вот несколько вариантов:

[begin{align}color{blue}{c} cdotcolor{blue}{e} &= color{red}{1} cdotcolor{red}{25}= color{red}{5} cdotcolor{red}{5} = \ & =left( color{red}{-1} right)cdot left( color{red}{-25} right)= \ & =left( color{red}{-5} right)cdot left( color{red}{-5} right) end{align}]

Рассмотрим вариант, когда $color{blue}{c}= color{red}{5}$ и $color{blue}{e}= color{red}{5}$. Именно он будет правильным ответом, в чём мы сейчас убедимся.

Подставим $color{blue}{c}= color{red}{5}$ и $color{blue}{e}= color{red}{5}$ в оставшиеся три уравнения. Получим систему

[left{ begin{align}b+d &=2 \ bd+5+5 &=2 \ 5b+5d &=10 \ end{align} right.]

Последнее уравнение является следствием первого, поэтому система равносильна двум уравнениям:

[left{ begin{align}b+d &=2 \ bd &=-8 \ end{align} right.]

Эта система имеет два решения, которые легко находятся методом подбора: $color{blue}{b} = color{red}{4}$ и $color{blue}{d}= color{red}{-2}$, либо наоборот $color{blue}{b}= color{red}{-2}$ и $color{blue}{d}= color{red}{4}$. Получаем два варианта разложения:

[begin{align}{{P}_{1}}left( x right) &=left( {{x}^{2}}+ color{red}{4}x+ color{red}{5} right)left( {{x}^{2}}+left( color{red}{-2} right)x+ color{red}{5} right) \ {{P}_{2}}left( x right) &=left( {{x}^{2}}+left( color{red}{-2} right)x+ color{red}{5} right)left( {{x}^{2}}+ color{red}{4}x+ color{red}{5} right) \ end{align}]

Но ведь на самом деле это одно и то же разложение — просто множители поменялись местами. Поэтому мы вправе выбрать любой вариант.

Запишем окончательный ответ:

[Pleft( x right)=left( {{x}^{2}}+4x+5 right)left( {{x}^{2}}-2x+5 right)]

Важное замечание. После приведения подобных и сравнения коэффициентов мы получили систему из нескольких нелинейных уравнений, которые затем начали решать методом целочисленного перебора.

Такие уравнения будут преследовать нас постоянно — это основная трудность метода неопределённых коэффициентов.

Чтобы в процессе перебора не упустить из виду какой-нибудь вариант, целесообразно составлять таблицу всех возможных вариантов. Например, для равенства $color{blue}{c}cdot color{blue}{e}= color{red}{25}$ таблица выглядит так:

[begin{array}{r|r|r|r|r}color{blue}{c} & color{red}{1} & color{red}{-1} & color{red}{5} & color{red}{-5}\ hline color{blue}{e} & color{red}{25} & color{red}{-25} & color{red}{5} & color{red}{-5}\ end{array}]

Обратите внимание: в таблице нет варианта $color{blue}{c}= color{red}{25}$, $color{blue}{e}= color{red}{1}$ и $color{blue}{c}= color{red}{-25}$, $color{blue}{e}= color{red}{-1}$, потому что они получаются из первых двух вариантов перестановкой множителей в итоговом разложении.

Тем не менее, в некоторых примерах придётся рассматривать все возможные варианты. Один из таких примеров мы рассмотрим чуть позже, а пока давайте потренируемся на более адекватных задачах.:)

Задача 2.2. Снова стандартная

Задача. Разложите многочлен на множители методом неопределённых коэффициентов:

[Pleft( x right)={{x}^{4}}+5{{x}^{3}}+5{{x}^{2}}-4x-2]

Решение. Запишем искомое разложение:

[Pleft( x right)=left( {{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( {{x}^{2}}+ color{blue}{d}x+ color{blue}{e} right)]

Нужно найти четыре числа: $color{blue}{b}$, $color{blue}{c}$, $color{blue}{d}$, $color{blue}{e}$. Собственно, это и есть «неопределённые коэффициенты». Раскрываем скобки и приводим подобные:

[begin{align}Pleft( x right)={{x}^{4}}+left( color{blue}{b+d} right){{x}^{3}} &+left( color{blue}{bd+c+e} right){{x}^{2}}+ \ &+left( color{blue}{be+d} right)x+ color{blue}{ce} \ end{align}]

Сравниваем коэффициенты этого многочлена с коэффициентами исходного:

[Pleft( x right)={{x}^{4}}+ color{red}{5}{{x}^{3}}+ color{red}{5}{{x}^{2}}+left( color{red}{-4} right)x+left( color{red}{-2} right)]

Получаем четыре уравнения, которые должны выполняться одновременно:

[begin{array}{rr}color{blue}{b+d}= color{red}{5}; & color{blue}{be+dc}= color{red}{-4};\ color{blue}{bd+c+e}= color{red}{5}; & color{blue}{ce}= color{red}{-2}.\ end{array}]

Произведение коэффициентов $color{blue}{c}cdot color{blue}{e}= color{red}{-2}$ — отрицательное число. Положим для определённости, что $color{blue}{c} gt 0$ и $color{blue}{e} lt 0$. Выпишем все возможные варианты:

[begin{array}{r|r|r}color{blue}{c} & color{red}{1} & color{red}{2}\ hline color{blue}{e} & color{red}{-2} & color{red}{-1}\ end{array}]

Рассмотрим первый вариант: $color{blue}{c}=color{red}{1}$ и $color{blue}{e}=color{red}{-2}$. Получим систему

[left{ begin{align}b+d &=5 \ bd+1-2 &=5 \ -2b+d &=-4 end{align} right.]

Вычтем почленно из последнего уравнения первое и получим

[begin{align}-3b &=-9 \ color{blue}{b} &= color{red}{3}end{align}]

Подставляем $color{blue}{b}= color{red}{3}$ в первое уравнение и получаем $color{blue}{d}= color{red}{2}$. Найденные значения $color{blue}{b}$ и $color{blue}{d}$ удовлетворяют всем трём равенствам. Следовательно, мы нашли решение системы:

[color{blue}{b}= color{red}{3}; color{blue}{c}= color{red}{1}; color{blue}{d}= color{red}{2}; color{blue}{e}= color{red}{-2}]

Откуда получаем искомое разложение на множители:

[Pleft( x right)=left( {{x}^{2}}+3x+1 right)left( {{x}^{2}}+2x-2 right)]

Важное замечание. К сожалению, в процессе целочисленного перебора далеко не всегда верный вариант будет попадаться сразу, на первом же шаге. Когда я собирал материалы для этого урока, иногда верным оказывался лишь четвёртый вариант из четырёх возможных.:)

Поэтому не переживайте, когда видите несовместную систему. Это нормально и даже неизбежно.

И вообще давайте посмотрим, как это выглядит на практике. Например, рассмотрим второй вариант в только что решённой задаче: $color{blue}{c}=color{red}{2}$ и $color{blue}{e}=color{red}{-1}$. Это приведёт нас к системе уравнений:

[left{ begin{align}b+d &=5 \ bd+2-1 &=5 \ -b+2d &=-4 end{align} right.]

Складываем первое уравнение с последним — и тут же получаем проблему:

[begin{align}3d &=1 \ color{blue}{d} &= color{red}{{1}/{3};} \ end{align}]

Получили дробный коэффициент $color{blue}{d}$, откуда следует, что коэффициент $color{blue}{b}$ тоже дробный:

[color{blue}{b}=5- color{blue}{d}=color{red}{{14}/{3};}]

Но тогда не выполняется второе равенство. Следовательно, система несовместна.

Задача 2.3. Упрощённые выкладки

Задача. Разложите многочлен на множители методом неопределённых коэффициентов:

[Pleft( x right)={{x}^{4}}+{{x}^{3}}+3{{x}^{2}}+32x-10]

В этот раз распишу всё кратко — только основные выкладки. Разложим многочлен $Pleft( x right)$ на два квадратных трёхчлена:

[Pleft( x right)=left( {{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( {{x}^{2}}+ color{blue}{d}x+ color{blue}{e} right)]

Раскрываем скобки, приводим подобные:

[begin{align}Pleft( x right)={{x}^{4}}+left( color{blue}{b+d} right){{x}^{3}} &+left( color{blue}{bd+c+e} right){{x}^{2}}+ \ &+left( color{blue}{be+d} right)x+ color{blue}{ce} \ end{align}]

Сравниваем с исходным многочленом:

[Pleft( x right)={{x}^{4}}+ color{red}{1}{{x}^{3}}+ color{red}{3}{{x}^{2}}+ color{red}{32}x+left( color{red}{-10} right)]

Получаем четыре уравнения:

[begin{array}{rr}color{blue}{b+d}= color{red}{1}; & color{blue}{be+dc}= color{red}{32};\ color{blue}{bd+c+e}= color{red}{3}; & color{blue}{ce}= color{red}{-10}.\ end{array}]

Поскольку $color{blue}{ce}= color{red}{-10} lt 0$, положим $color{blue}{c} gt 0$, $color{blue}{e} lt 0$. Возможные варианты:

[begin{array}{r|r|r|r|r}color{blue}{c} & color{red}{1} & color{red}{2} & color{red}{5} & color{red}{10} \ hline color{blue}{e} & color{red}{-10} & color{red}{-5} & color{red}{-2} & color{red}{-1} \ end{array}]

Первые три варианта дают несовместные системы с дробными коэффициентами $color{blue}{b}$ и $color{blue}{d}$ (проверьте это!). Рассмотрим последний вариант: $color{blue}{c}= color{red}{10}$, $color{blue}{e}= color{red}{-1}$. Получим систему

[left{ begin{align}b+d &=1 \ bd+10-1 &=3 \ -b+10d &=32 end{align} right.]

Решение системы: $color{blue}{b}= color{red}{-2}$, $color{blue}{d}= color{red}{3}$. Окончательное разложение на множители:

[Pleft( x right)=left( {{x}^{2}}-2x+10 right)left( {{x}^{2}}+3x-1 right)]

3. Решение уравнений методом неопределённых коэффициентов

Одно из важнейших приложений метода неопределённых коэффициентов — это решение уравнений высших степеней. В самом деле, зачем мы раскладываем многочлен $Pleft( x right)$ на множители? Обычно по одной из двух причин:

  1. Решить уравнение $Pleft( x right)=0$. Ведь произведение равно нулю, когда хотя бы один из множителей равен нулю;
  2. Сократить рациональную дробь вида ${Pleft( x right)}/{Qleft( x right)};$. В этом случае многочлен $Qleft( x right)$ также придётся разложить на множители.

Про рациональные дроби мы поговорим в отдельном уроке (см. урок «Разложение на простейшие»). А вот уравнения мы разберём сейчас.

Допустим, нужно решить уравнение вида

[color{blue}{{a}_{n}}{{x}^{n}}+ color{blue}{{a}_{n-1}}{{x}^{n-1}}+ ldots + color{blue}{{a}_{1}}x+ color{blue}{{a}_{0}}=0]

В левой части равенства стоит стандартный многочлен. И если коэффициенты многочлена целые, то мы уже знаем как минимум два способа решения таких уравнений:

  • Теорема Безу для отыскания рациональных корней-кандидатов;
  • Схема Горнера для быстрой проверки этих кандидатов.

И эта связка отлично работает, когда многочлен имеет рациональные корни вида $x={color{blue}{p}}/{color{red}{q}};$. Вот буквально: мы найдём все такие корни и решим уравнение.

А если корни иррациональны? Безу и Горнер тут бесполезны. Зато полезным оказывается разложение на множители, когда вместо большого и страшного многочлена $Pleft( x right)$ в левой части уравнения появится произведение двух многочленов меньшей степени:

[Hleft( x right)cdot Qleft( x right)=0]

А дальше всё стандартно: произведение равно нулю, когда $Hleft( x right)=0$ или $Qleft( x right)=0$. И вот мы свели исходную задачу к двум уравнениям меньших степеней, которые наверняка легко решаются.:)

Задача 3.1. «Нерешаемое» уравнение

Задача. Решите уравнение методом неопределённых коэффициентов

[{{x}^{4}}+2{{x}^{3}}+3{{x}^{2}}+2x-3=0]

Это приведённое целочисленное уравнение, но его нельзя решить по теореме Безу и схеме Горнера. Ведь целые корни этого уравнения являются делителями свободного члена $color{blue}{{a}_{0}}=-3$. Таких делителей ровно четыре:

[x=pm 1; pm 3]

И все они дают ненулевой остаток в схеме Горнера:

[begin{array}{r|r|r|r|r|r} {} & color{blue}{1} & color{blue}{2} & color{blue}{3} & color{blue}{2} & color{blue}{-3}\ hlinecolor{red}{1} & 1 & 3 & 6 & 8 & color{red}{5}\ hlinecolor{red}{-1} & 1 & 1 & 2 & 0 & color{red}{-3}\ hlinecolor{red}{3} & 1 & 5 & 18 & 56 & color{red}{165}\ hlinecolor{red}{-3} & 1 & -1 & 6 & -16 & color{red}{45}\ end{array}]

Остаётся только метод неопределённых коэффициентов. Разложим уравнение на произведение двух квадратных трёхчленов:

[left( {{x}^{2}}+color{blue}{b}x+color{blue}{c} right)left( {{x}^{2}}+color{blue}{d}x+color{blue}{e} right)=0]

Раскроем скобки и приведём подобные в правой части равенства:

[begin{align}{{x}^{4}}+left( color{blue}{b+d} right){{x}^{3}} &+ left( color{blue}{bd+c+e} right){{x}^{2}}+ \ &+ left( color{blue}{be+dc} right)x+ color{blue}{ce}=0 \ end{align}]

Вспоминаем коэффициенты многочлена в исходном уравнении:

[{{x}^{4}}+ color{red}{2}{{x}^{3}}+ color{red}{3}{{x}^{2}}+ color{red}{2}x+left( color{red}{-3} right)=0]

Получаем уже привычный набор из четырёх уравнений:

[begin{array}{rr} color{blue}{b+d}=color{red}{2}; & color{blue}{be+dc}=color{red}{2};\ color{blue}{bd+c+e}=color{red}{3}; & color{blue}{ce}=color{red}{-3}.\ end{array}]

Рассмотрим последнее уравнение: $color{blue}{ce}=color{red}{-3}$. Произведение отрицательно, значит, множители разных знаков. Без ограничения общности положим $color{blue}{c} gt color{red}{0}$, $color{blue}{e} lt color{red}{0}$. Составим таблицу вариантов:

[begin{array}{r|r|r} color{blue}{c} & color{red}{1} & color{red}{3}\ hlinecolor{blue}{e} & color{red}{-3} & color{red}{-1}\ end{array}]

Итого два варианта. Рассмотрим первый вариант: $color{blue}{c}=color{red}{1}$, $color{blue}{e}=color{red}{-3}$. Получим систему

[left{ begin{align}b+d &=2\ bd+1-3 &=3\ -3b+d &=2 end{align} right.]

Вычитая из первого уравнения последнее, получаем $color{blue}{b}=color{red}{0}$, $color{blue}{d}=color{red}{2}$, что противоречит второму уравнению. Система несовместна.

Второй вариант: $color{blue}{c}=color{red}{3}$, $color{blue}{e}=color{red}{-1}$. Система уравнений:

[left{ begin{align}b+d &=2 \ bd+3-1 &=3 \ -b+3d &=2 end{align} right.]

Складывая первое и последнее уравнение, получаем $color{blue}{b}=color{red}{1}$, $color{blue}{d}=color{red}{1}$. При подстановке во второе уравнение получаем верное числовое равенство. Следовательно, мы нашли решение:

[color{blue}{b}=color{red}{1}; color{blue}{c}=color{red}{3}; color{blue}{d}=color{red}{1}; color{blue}{e}=color{red}{-1}]

Переписываем уравнение:

[left( {{x}^{2}}+x+3 right)left( {{x}^{2}}+x-1 right)=0]

Многочлен в первой скобке не имеет действительных корней, во второй — имеет:

[{{x}^{2}}+x-1=0]

Дискриминант положителен:

[D={{1}^{2}}-4cdot 1cdot left( -1 right)=1+4=5]

Корней будет два:

[x=frac{-1pm sqrt{5}}{2}]

Неудивительно, что эти корни не были обнаружены по теореме Безу. Ведь они являются иррациональными.:)

Ответ: $x=frac{-1pm sqrt{5}}{2}$.

Задача 3.2. «Нерешаемое» уравнение — 2

Задача. Решите уравнение методом неопределённых коэффициентов:

[{{x}^{4}}-4{{x}^{3}}+5{{x}^{2}}-2x-6=0]

Это задание похоже на предыдущее, поэтому распишем всё кратко. Ожидаемое разложение на множители:

[left( {{x}^{2}}+color{blue}{b}x+color{blue}{c} right)left( {{x}^{2}}+color{blue}{d}x+color{blue}{e} right)=0]

Найдём такое разложение методом неопределённых коэффициентов. Раскрываем скобки, приводим подобные:

[begin{align}{{x}^{4}}+left( color{blue}{b+d} right){{x}^{3}} &+ left( color{blue}{bd+c+e} right){{x}^{2}}+ \ &+ left( color{blue}{be+dc} right)x+ color{blue}{ce}=0 \ end{align}]

Сравниваем с коэффициентами исходного многочлена:

[{{x}^{4}}+left( color{red}{-4} right){{x}^{3}}+ color{red}{5}{{x}^{2}}+left( color{red}{-2} right)x+left( color{red}{-6} right)=0]

Выписываем четыре уравнения:

[begin{array}{rr} color{blue}{b+d}=color{red}{-4}; & color{blue}{be+dc}=color{red}{-2};\ color{blue}{bd+c+e}=color{red}{5}; & color{blue}{ce}=color{red}{-6}.\ end{array}]

Поскольку $color{blue}{ce}=color{red}{-6}$, полагаем $color{blue}{c} gt color{red}{0}$, $color{blue}{e} lt color{red}{0}$. Возможные варианты

[begin{array}{r|r|r|r|r} color{blue}{c} & color{red}{1} & color{red}{2} & color{red}{3} & color{red}{6}\ hlinecolor{blue}{e} & color{red}{-6} & color{red}{-3} & color{red}{-2} & color{red}{-1}\ end{array}]

Перебирая варианты, обнаруживаем, что правильная комбинация — это $color{blue}{c}=color{red}{3}$, $color{blue}{e}=color{red}{-2}$:

[left{ begin{align} b+d &=-4 \ bd+3-2 &=5 \ -2b+3d &=-2 end{align} right.]

Дважды прибавим к последнему уравнению первое — получим

[begin{align} 5d&=-10 \ color{blue}{d} &= color{red}{-2} \ color{blue}{b} &= color{red}{-2} end{align}]

Следовательно, исходное уравнение примет вид

[left( {{x}^{2}}-2x+3 right)left( {{x}^{2}}-2x-2 right)=0]

Многочлен в первой скобке корней не имеет (в этом легко убедиться, посчитав дискриминант). Рассмотрим вторую скобку:

[{{x}^{2}}-2x-2=0]

Дискриминант положительный:

[D={{left( -2 right)}^{2}}-4cdot1cdot left( -2 right)=4+8=12]

Уравнение имеет два корня:

[x=frac{2pm sqrt{12}}{2}=frac{2pm 2sqrt{3}}{2}=1pm sqrt{3}]

Ответ: $x=1pm sqrt{3}$.

Задача 3.3. Более сложное уравнение

Задача. Решите уравнение методом неопределённых коэффициентов:

[2{{x}^{4}}-4{{x}^{3}}+{{x}^{2}}-6x-3=0]

Это уравнение принципиально отличается от предыдущих тем, что старший коэффициент $color{blue}{{a}_{4}}=2$. Многочлен не является приведённым, поэтому разложение на множители, вообще говоря, выглядит так:

[left( color{blue}{a}{{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( color{blue}{d}{{x}^{2}}+ color{blue}{e}x+ color{blue}{f} right)=0]

Итого шесть неизвестных коэффициентов. Для сравнения: раньше их было всего четыре.

Однако задачу можно существенно упростить, если сделать два допущения:

  1. Оба старших коэффициента — $color{blue}{a}$ и $color{blue}{d}$ — являются целыми и положительными.
  2. Положим для определённости, что $color{blue}{a} gt color{blue}{d}$.

В этом и состоит ключевая идея метода неопределённых коэффициентов: мы вводим дополнительные ограничения, которые в итоге почти наверняка выполняются. Да, есть небольшой риск «промахнуться» в своих допущениях, но это компенсируется многократным упрощением дальнейших выкладок.

В нашем случае из двух допущений немедленно следует, что $color{blue}{a}=color{red}{2}$, $color{blue}{b}=color{red}{1}$, и уравнение примет вид

[left( color{red}{2}{{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( {{x}^{2}}+ color{blue}{e}x+ color{blue}{f} right)=0]

Осталось всего четыре неизвестных коэффициента. Раскроем скобки и приведём подобные:

[begin{align}color{red}{2}{{x}^{4}}+left( color{blue}{b+2e} right){{x}^{3}} &+left( color{blue}{be+c+2f} right){{x}^{2}}+ \ &+left( color{blue}{bf+ce} right)x+ color{blue}{cf}=0 \ end{align}]

Сравним с коэффициентами исходного уравнения:

[color{red}{2}{{x}^{4}}+left( color{red}{-4} right){{x}^{3}}+color{red}{1}{{x}^{2}}+left( color{red}{-6} right)x+left( color{red}{-3} right)=0]

Получим четыре уравнения, но из-за коэффициента $color{blue}{a}=color{red}{2}$ они отличаются от привычных:

[begin{array}{rr} color{blue}{b+2e}= color{red}{-4}; & color{blue}{bf+ce}= color{red}{-6};\ color{blue}{be+c+2f}= color{red}{1}; & color{blue}{cf}= color{red}{-3}.\ end{array}]

Многочлены в первой и второй скобке не являются взаимозаменяемыми (поскольку у них разные коэффициенты при ${{x}^{2}}$), поэтому необходимо рассмотреть все возможные комбинации, дающие $color{blue}{cf}= color{red}{-3}$:

[begin{array}{r|r|r|r|r} color{blue}{c} & color{red}{1} & color{red}{3} & color{red}{-1} & color{red}{-3}\ hlinecolor{blue}{f} & color{red}{-3} & color{red}{-1} & color{red}{3} & color{red}{1}\ end{array}]

Рассмотрим каждую комбинацию. В первом случае быстро обнаружится, что система несовместна. А вот второй случай, когда $color{blue}{c}= color{red}{3}$ и $color{blue}{f}= color{red}{-1}$, представляет интерес:

[left{ begin{align}b+2e &=-4 \ be+3-2 &=1 \ -b+3e &=-6 end{align} right.]

Складываем первое уравнение с последним — получаем

[begin{align}5e &=-10 \ color{blue}{e} &= color{red}{-2} \ color{blue}{b} &= color{red}{0} end{align}]

Итак, система совместна. Получили разложение на множители:

[left( 2{{x}^{2}}+3 right)left( {{x}^{2}}-2x-1 right)=0]

Многочлен в первых скобках принимает только положительные значения, поэтому не имеет корней:

[2{{x}^{2}}+3ge 0+3 gt 0]

Рассмотрим вторые скобки:

[{{x}^{2}}-2x-1=0]

Это квадратное уравнение. Дискриминант положительный:

[D={{2}^{2}}-4cdot 1cdot left( -1 right)=4+4=8]

Следовательно, уравнение имеет два различных корня:

[x=frac{2pm sqrt{8}}{2}=frac{2pm 2sqrt{2}}{2}=1pm sqrt{2}]

Это и есть корни исходного уравнения четвёртой степени.

Ответ: $x=1pm sqrt{2}$.

4. Деление многочлена на многочлен

Ещё одна задача, где работает метод неопределённых коэффициентов — это деление одного многочлена на другой с остатком. Напомню, что разделить многочлен $Pleft( x right)$ на двучлен $Tleft( x right)$ с остатком — это значит представить его в виде

[Pleft( x right)=Qleft( x right)cdot Tleft( x right)+Rleft( x right)]

При этом степень остатка $Rleft( x right)$ должна быть меньше степени делителя $Tleft( x right)$. Кроме того,

[deg Qleft( x right)+deg Tleft( x right)=deg Pleft( x right)]

При соблюдении таких ограничений многочлены $Qleft( x right)$ и $Rleft( x right)$ всегда определяются однозначно. Их коэффициенты мы как раз и будем находить.

Задача 4.1. Деление на двучлен

Задача. Используя метод неопределённых коэффициентов, найдите частное $Qleft( x right)$ и остаток $Rleft( x right)$ при делении многочлена

[Pleft( x right)={{x}^{3}}-5{{x}^{2}}+15x-6]

на двучлен $Tleft( x right)=x-3$.

Итак, мы хотим представить многочлен $Pleft( x right)$ в виде

[Pleft( x right)=Qleft( x right)cdot left( x-3 right)+Rleft( x right)]

где $Qleft( x right)$ — неполное частное. Точнее, $Qleft( x right)$ — квадратный трёхчлен, потому что

[begin{align} deg Qleft( x right) &=deg Pleft( x right)-deg Tleft( x right)= \ &=3-1=2end{align}]

Кроме того, степень делителя $deg Tleft( x right)=1$, поэтому степень остатка $deg Rleft( x right)=0$, т.е. $Rleft( x right)$ — это просто число. С учётом этих фактов многочлен $Pleft( x right)$ примет вид

[Pleft( x right)=left( color{blue}{a}{{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( x-3 right)+ color{blue}{d}]

Раскроем скобки, приведём подобные слагаемые:

[Pleft( x right)= color{blue}{a}{{x}^{3}}+left( color{blue}{b-3a} right){{x}^{2}}+left( color{blue}{c-3b} right)x+left( color{blue}{d-3c} right)]

С другой стороны, изначально тот же многочлен $Pleft( x right)$ имел вид

[Pleft( x right)= color{red}{1}{{x}^{3}}+left( color{red}{-5} right){{x}^{2}}+ color{red}{15}x+left( color{red}{-6} right)]

Приравниваем коэффициенты и получаем четыре равенства:

[begin{array}{rr} color{blue}{a}= color{red}{1}; & color{blue}{c-3b}= color{red}{15};\ color{blue}{b-3a}= color{red}{-5}; & color{blue}{d-3c}= color{red}{-6}.\ end{array}]

Это система из четырёх уравнений с четырьмя неизвестными, которая легко решается:

[color{blue}{a}= color{red}{1}; color{blue}{b}= color{red}{-2}; color{blue}{c}= color{red}{9}; color{blue}{d}= color{red}{21}]

Подставим найденные числа в $Qleft( x right)$ и $Rleft( x right)$:

[begin{align} & Qleft( x right)={{x}^{2}}-2x+9 \ & Rleft( x right)=21 \end{align}]

Ответ: $Qleft( x right)={{x}^{2}}-2x+9$, $Rleft( x right)=21$.

Поскольку мы делим $Pleft( x right)$ на двучлен $x-color{red}{3}$, составим таблицу для $x=color{red}{3}$:

[begin{array}{r|r|r|r|r} {} & color{blue}{1} & color{blue}{-5} & color{blue}{15} & color{blue}{-6}\ hlinecolor{red}{3} & 1 & -2 & 9 & color{green}{21}\ end{array}]

Перепишем многочлен $Pleft( x right)$ согласно этой таблице и сравним с записью для метода неопределённых коэффициентов:

[begin{align}Pleft( x right) &=left( color{red}{1}{{x}^{2}}- color{red}{2}x+ color{red}{9} right)left( x-color{red}{3} right)+ color{green}{21}= \ &=left( color{blue}{a}{{x}^{2}}+ color{blue}{b}x+ color{blue}{c} right)left( x- color{red}{3} right)+ color{blue}{d} end{align}]

Получили те же числа, что и при решении «напролом».

Впрочем, такие рассуждения актуальны лишь при делении на двучлен вида $x-color{red}{a}$. В следующем задании они нам уже не помогут.:)

Задача 4.2. Многочлен с параметром

Задача. При каких значениях параметров $a$ и $b$ многочлен

[Pleft( x right)={{x}^{3}}+a{{x}^{2}}-x+b]

делится без остатка на многочлен

[Tleft( x right)={{x}^{2}}+2x+5]

Решение. Если многочлен $Pleft( x right)$ делится без остатка на многочлен $Tleft( x right)$, то его можно представить в виде

[Pleft( x right)=Qleft( x right)cdot Tleft( x right)]

Здесь многочлен $Qleft( x right)$ — это частное, и его степень равна

[deg Qleft( x right)=deg Pleft( x right)-deg Tleft( x right)=3-2=1]

Итак, $Qleft( x right)$ — линейный двучлен вида $color{blue}{c}x+color{blue}{d}$ (коэффициенты $color{blue}{a}$ и $color{blue}{b}$ уже заняты в условии задачи). Выражение для $Pleft( x right)$ можно переписать так:

[Pleft( x right)=left( color{blue}{c}x+ color{blue}{d} right)left( {{x}^{2}}+2x+5 right)]

Найдём коэффициенты $color{blue}{c}$ и $color{blue}{d}$. Раскрываем скобки (стандартная процедура для метода неопределённых коэффициентов) и приводим подобные:

[Pleft( x right)= color{blue}{c}{{x}^{3}}+left( color{blue}{2c+d} right){{x}^{2}}+left( color{blue}{5c+2d} right)x+ color{blue}{5d}]

Сравниваем с коэффициентами исходного многочлена:

[Pleft( x right)= color{red}{1}{{x}^{3}}+ color{red}{a}{{x}^{2}}+left( color{red}{-1} right)x+ color{red}{b}]

Приравниваем соответствующие «красные» и «синие» коэффициенты и получаем четыре равенства:

[begin{array}{rr}color{blue}{c}= color{red}{1}; & color{blue}{5c+2}d= color{red}{-1};\color{blue}{2c+d}= color{red}{a}; & color{blue}{5d}= color{red}{b}.\end{array}]

Итак, у нас четыре линейных уравнения и четыре переменных. Эта система имеет только одно решение:

[ color{blue}{a}= color{red}{-1}; color{blue}{b}= color{red}{-15}; color{blue}{c}= color{red}{1}; color{blue}{d}= color{red}{-3}]

Впрочем, нас интересуют лишь переменные $color{blue}{a}$ и $color{blue}{b}$.

Ответ: $a=-1$, $b=-15$.

Задача 4.3. Квадратный трёхчлен

Задача. Используя метод неопределённых коэффициентов, найдите частное $Qleft( x right)$ и остаток $Rleft( x right)$ при делении многочлена

[Pleft( x right)=2{{x}^{2}}+3x-3]

на двучлен $Tleft( x right)=2x-1$.

Решение. Частное $Qleft( x right)$ имеет степень

[deg Qleft( x right)=deg Pleft( x right)-deg Tleft( x right)=2-1=1]

Следовательно, $Qleft( x right)$ — линейный двучлен вида $color{blue}{a}x+ color{blue}{b}$, а остаток $Rleft( x right)$ — просто число $color{blue}{c}$. С учётом этого перепишем многочлен $Pleft( x right)$:

[begin{align}Pleft( x right) &=left( ax+b right)left( 2x-1 right)+c= \ &=2a{{x}^{2}}-ax+2bx-b+c= \ &= color{blue}{2a}{{x}^{2}}+left( color{blue}{2b-a} right)x+left( color{blue}{c-b} right) end{align}]

Сравним с исходным видом этого же многочлена:

[Pleft( x right)= color{red}{2}{{x}^{2}}+color{red}{3}x+left( color{red}{-3} right)]

Приравниваем соответствующие коэффициенты — получаем три уравнения:

[color{blue}{2a}=color{red}{2};quadcolor{blue}{2b-a}=color{red}{3};quadcolor{blue}{c-b}=color{red}{-3}]

Эта система легко решается:

[color{blue}{a}=color{red}{1}; color{blue}{b}=color{red}{2}; color{blue}{c}=color{red}{-1}]

Следовательно, неполное частное $Qleft( x right)=x+2$ и остаток $Rleft( x right)=-1$.

Ответ: $Qleft( x right)=x+2$, $Rleft( x right)=-1$.

Задача 4.4. Сложный многочлен

Задача. Используя метод неопределённых коэффициентов, найдите частное $Qleft( x right)$ и остаток $Rleft( x right)$ при делении многочлена

[Pleft( x right)={{x}^{5}}-1]

на квадратный трёхчлен $Tleft( x right)={{x}^{2}}+2x-1$.

Решение. На самом деле это несложная задача, но вычислений будет много. Запишем результат деления с остатком:

[Pleft( x right)=Qleft( x right)cdot left( {{x}^{2}}+2x-1 right)+Rleft( x right)]

Сразу найдём степени неполного частного и остатка:

[begin{align} deg Qleft( x right) &=deg Pleft( x right)-deg Tleft( x right)=5-2=3 \ deg Rleft( x right) & lt deg Tleft( x right)=2Rightarrow deg Rleft( x right)=1 \ end{align}]

Переходим к методу неопределённых коэффициентов. Сначала запишем общий вид многочленов $Qleft( x right)$ и $Rleft( x right)$:

[begin{align}Qleft( x right) &= color{blue}{a}{{x}^{3}}+ color{blue}{b}{{x}^{2}}+ color{blue}{c}x+ color{blue}{d} \ Rleft( x right) &= color{blue}{k}x+ color{blue}{l} \ end{align}]

Пусть вас не пугает большое количество переменных. Это нормально для многочленов высших степеней. Подставим наши выражения в формулу для $Pleft( x right)$:

[begin{align}Pleft( x right) &=left( color{blue}{a}{{x}^{3}}+ color{blue}{b}{{x}^{2}}+ color{blue}{c}x+ color{blue}{d} right)left( {{x}^{2}}+2x-1 right)+ \ &+ color{blue}{k}x+ color{blue}{l} \ end{align}]

Раскрываем скобки. Для удобства запишем одночлены одинаковой степени в одном и том же столбце:

[begin{array}{rrrrrr} color{blue}{a}{{x}^{5}} & + color{blue}{2a}{{x}^{4}} & — color{blue}{a}{{x}^{3}} & {} & {} & {}\ {} & + color{blue}{b}{{x}^{4}} & + color{blue}{2b}{{x}^{3}} & — color{blue}{b}{{x}^{2}} & {} & {}\ {} & {} & + color{blue}{c}{{x}^{3}} & + color{blue}{2c}{{x}^{2}} & — color{blue}{c}x & {}\ {} & {} & {} & + color{blue}{d}{{x}^{2}} & + color{blue}{2d}x & — color{blue}{d}\ {} & {} & {} & {} & + color{blue}{k}x & + color{blue}{l}\ end{array}]

Приводим подобные слагаемые:

[begin{align}Pleft( x right) &=color{blue}{a}{{x}^{5}}+left( color{blue}{2a+b} right){{x}^{4}}+left( color{blue}{-a+2b+c} right){{x}^{3}}+ \ &+left( color{blue}{-b+2c+d} right){{x}^{2}}+left( color{blue}{-c+2d+k} right)x+left( color{blue}{-d+l} right) \ end{align}]

Сравниваем эту запись с исходным многочленом:

[Pleft( x right)= color{red}{1}cdot {{x}^{5}}+ color{red}{0}cdot {{x}^{4}}+ color{red}{0}cdot {{x}^{3}}+ color{red}{0}cdot {{x}^{2}}+ color{red}{0}cdot x+left( color{red}{-1} right)]

Получаем шесть уравнений, которые последовательно решаются:

[begin{array}{ll}color{blue}{a}= color{red}{1} & color{blue}{d}=b-2c= color{red}{-12}\ color{blue}{b}=-2a= color{red}{-2} & color{blue}{k}=c-2d= color{red}{29}\ color{blue}{c}=a-2b= color{red}{5} & color{blue}{l}=d-1= color{red}{-13}\ end{array}]

Подставим найденные коэффициенты в выражения для $Qleft( x right)$ и $Rleft( x right)$:

[begin{align}Qleft( x right) &={{x}^{3}}-2{{x}^{2}}+5x-12 \ Rleft( x right) &=29x-13 \ end{align}]

Мы нашли неполное частное и остаток от деления. Это и есть окончательный ответ.

Ответ: $Qleft( x right)={{x}^{3}}-2{{x}^{2}}+5x-12$, $Rleft( x right)=29x-13$.

5. Выделение точного квадрата

Ещё одно приложение метода неопределённых коэффициентов — это «сворачивание» многочленов по формулам сокращённого умножения:

[begin{align}{{left( apm b right)}^{2}} &={{a}^{2}}pm 2ab+{{b}^{2}} \ {{left( apm b right)}^{3}} &={{a}^{3}}pm 3{{a}^{2}}b+3a{{b}^{2}}pm {{b}^{3}} \ end{align}]

Здесь всё как в разложении на множители: раскрывать скобки и привести подобные легко, а вот обратный переход — по коэффициентам «угадать» формулу сокращённого умножения — операция весьма нетривиальная.

Такие «нетривиальные операции» регулярно встречаются в задачах с параметрами и при работе с корнями. Параметрам посвящён отдельный урок, а вот корни мы рассмотрим прямо сейчас.

Задача 5.1. Избавление от корня

Задача. Упростите выражение

[sqrt{7+4sqrt{3}}]

Решение. Единственное, что здесь можно упростить — это избавиться от внешнего большого корня. Для этого нужно представить подкоренное выражение в виде точного квадрата:

[7+4sqrt{3}={{left( color{blue}{a}+ color{blue}{b}sqrt{3} right)}^{2}}]

Почему именно такая конструкция возводится в квадрат? Всё просто: в исходной сумме мы видим одно слагаемое с корнем и одно слагаемое без него. Для получения такой суммы исходные слагаемые тоже должны быть разными: одно с корнем, а другое — без него.

В этом случае числа $color{blue}{a}$ и $color{blue}{b}$ будут либо рациональными, либо вообще целыми. И в этом вся суть метода неопределённых коэффициентов, потому что найти такие числа не составит особого труда — достаточно раскрыть скобки по формуле квадрата суммы:

[begin{align}{{left( color{blue}{a}+ color{blue}{b}sqrt{3} right)}^{2}} &={color{blue}{a}^{2}}+2color{blue}{ab}sqrt{3}+{{left( color{blue}{b}sqrt{3} right)}^{2}}= \ &=left( {color{blue}{a}^{2}}+3{color{blue}{b}^{2}} right)+2color{blue}{ab}sqrt{3} end{align}]

Сравниваем полученное разложение с исходным выражением:

[color{red}{7}+color{red}{4}sqrt{3}=left( {color{blue}{a}^{2}}+3{color{blue}{b}^{2}} right)+2color{blue}{ab}sqrt{3}]

Чтобы эти выражения были гарантированно равны друг другу, достаточно потребовать, чтобы слагаемые без корня совпадали. Как и слагаемые с корнем:

[left{ begin{align}{color{blue}{a}^{2}}+3{color{blue}{b}^{2}} &=7 \ 2color{blue}{ab} &=4 end{align} right.]

Это нелинейная система с двумя переменными, которая легко решается методом подбора:

[left{ begin{align}{color{blue}{a}^{2}}+3cdot {color{blue}{b}^{2}} &={color{red}{2}^{2}}+3cdot {color{red}{1}^{2}} \ color{blue}{a}cdotcolor{blue}{b} &=color{red}{2}cdotcolor{red}{1} end{align} right.]

Научиться раскладывать целые числа на «правильные» слагаемые и множители — вопрос небольшой практики. Просто попробуйте — и вы поймёте, насколько это быстро и легко.

Нам остаётся лишь записать решение:

[color{blue}{a}=color{red}{2}; color{blue}{b}=color{red}{1}]

Затем подставить найденные числа в исходное выражение:

[begin{align}sqrt{7+4sqrt{3}} &=sqrt{{{left( 2+sqrt{3} right)}^{2}}}= \ &=left| 2+sqrt{3} right|= \ &=2+sqrt{3} end{align}]

Ответ: $2+sqrt{3}$.

Важное замечание. Помните, что корень не просто «сжигает» квадрат вокруг выражения — на их месте появляется модуль:

[sqrt{{{a}^{2}}}=left| a right|]

Потому что арифметический квадратный корень — это по определению всегда неотрицательное число:

[begin{align}sqrt{{{5}^{2}}} &=left| 5 right|=5 \ sqrt{{{left( -8 right)}^{2}}} &=left| -8 right|=8 end{align}]

Когда под модулем стоит иррациональное выражение, его знак следует проверять отдельно. Иначе даже при правильном ответе его можно счесть недостаточно обоснованным.

Если вы забыли, как проверять знаки таких выражений, вернитесь к уроку «Знаки иррациональных выражений». В двух словах: для такой проверки используются либо цепочки неравенств, либо цепочки равносильных преобразований.

В следующем задании мы отработаем оба способа.

Задача 5.2. Предварительные преобразования

Задача. Упростите выражение

[sqrt{37-5sqrt{48}}]

Под корнем мы видим ещё один корень: $sqrt{48}$ — это большое число, с ним сложно работать. Поэтому прежде чем искать точный квадрат, немного упростим выражение:

[begin{align}sqrt{37-5sqrt{48}} &=sqrt{37-5sqrt{color{red}{16}cdot 3}}= \ &=sqrt{37-5cdot color{red}{4}cdot sqrt{3}}= \ &=sqrt{37-20sqrt{3}} end{align}]

Теперь представляем подкоренное выражение в виде точного квадрата

[37-20sqrt{3}={{left( color{blue}{a}- color{blue}{b}sqrt{3} right)}^{2}}]

Обратите внимание: перед нами квадрат разности. Потому что в исходном подкоренном выражении элементы не складывались, а именно вычитались. Этот факт ещё даст о себе знать, когда будем выяснять знак подмодульного выражения.

Ну а пока всё просто. Сравниваем старую запись и новую:

[color{red}{37}-color{red}{20}sqrt{3}=left( {color{blue}{a}^{2}}+3{color{blue}{b}^{2}} right)-2color{blue}{ab}sqrt{3}]

Получаем систему уравнений:

[left{ begin{align}{color{blue}{a}^{2}}+3{color{blue}{b}^{2}} &=37 \ 2color{blue}{ab} &=20 end{align} right.]

Второе уравнение перепишем в виде $color{blue}{ab}=10$, а затем разложим правые части равенств на «правильные» слагаемые и множители:

[left{ begin{align}{color{blue}{a}^{2}}+3cdot {color{blue}{b}^{2}} &={color{red}{5}^{2}}+3cdot {color{red}{2}^{2}} \ color{blue}{a}cdotcolor{blue}{b} &=color{red}{5}cdotcolor{red}{2} end{align} right.]

Получили красивое решение:

[color{blue}{a}=color{red}{5}; color{blue}{b}=color{red}{2}]

Возвращаемся к исходному выражению и извлекаем корень:

[sqrt{37-20sqrt{3}}=sqrt{{{left( 5-2sqrt{3} right)}^{2}}}=left| 5-2sqrt{3} right|]

Чтобы раскрыть модуль, нужно выяснить знак иррационального числа $5-2sqrt{3}$. Для этого можно заметить, что $sqrt{3} lt 2$, поэтому

[5-2sqrt{3} gt 5-2cdot 2=1 gt 0]

Это и есть цепочка неравенств. Также можно напрямую сравнить число $5-2sqrt{3}$ с нулём:

[begin{align}5-2sqrt{3} &vee 0 \ 5 &vee 2sqrt{3} \ 25 &vee 12 end{align}]

Очевидно, что $25 gt 12$, поэтому мы ещё раз убеждаемся, что исходное число положительное, и модуль раскрывается со знаком «плюс»:

[left| 5-2sqrt{3} right|=5-2sqrt{3}]

Ответ: $5-2sqrt{3}$.

Но всё это были довольно простые примеры с квадратным корнем. Как насчёт корней $n$-й степени?

Задача 5.3. Проблема с корнем

Задача. Упростите выражение

[sqrt[3]{sqrt{10}-3}cdot sqrt[6]{19+6sqrt{10}}]

Решение. Для начала вспомним свойства корней $n$-й кратности. Их можно умножать:

[sqrt[n]{a}cdot sqrt[n]{b}=sqrt[n]{acdot b}]

А также извлекать корень из корня:

[sqrt[k]{sqrt[m]{a}}=sqrt[mcdot k]{a}]

В частности, второй корень из задачи можно переписать так:

[sqrt[6]{19+6sqrt{10}}=sqrt[3]{sqrt{19+6sqrt{10}}}]

Чтобы избавиться от внутреннего квадратного корня, представим подкоренное выражение в виде точного квадрата. Но поскольку $sqrt{10}=sqrt{5}cdot sqrt{2}$, возможны два варианта:

[begin{align}19+6sqrt{10} &={{left( color{blue}{a}+ color{blue}{b}sqrt{10} right)}^{2}} \ 19+6sqrt{10} &={{left( color{blue}{a}sqrt{2}+ color{blue}{b}sqrt{5} right)}^{2}} \ end{align}]

Однако в исходном выражении (т.е. прямо в условии задачи) есть ещё один $sqrt{10}$, который пока никак не преобразуется и никуда не денется, поэтому целесообразно рассмотреть лишь первый вариант:

[begin{align} color{red}{19}+ color{red}{6}sqrt{10} &={{left( color{blue}{a}+ color{blue}{b}sqrt{10} right)}^{2}}= \ &=ldots =left( {color{blue}{a}^{2}}+10{color{blue}{b}^{2}} right)+ 2color{blue}{ab}sqrt{10} end{align}]

Получаем стандартную систему:

[left{ begin{align}{color{blue}{a}^{2}}+10{color{blue}{b}^{2}} &=19 \ 2 color{blue}{ab} &=6 end{align} right.]

Второе уравнение равносильно $color{blue}{ab}=3$, и всю систему можно переписать так:

[left{ begin{align}{color{blue}{a}^{2}}+10cdot {color{blue}{b}^{2}} &={color{red}{3}^{2}}+10cdot {color{red}{1}^{2}} \ color{blue}{a} cdotcolor{blue}{b} &= color{red}{3}cdotcolor{red}{1} end{align} right.]

Очевидно, что $color{blue}{a}=color{red}{3}$, $color{blue}{b}=color{red}{1}$, поэтому

[begin{align}sqrt{19+6sqrt{10}} &=sqrt{{{left( 3+sqrt{10} right)}^{2}}}= \ &=left| 3+sqrt{10} right|= \ &=3+sqrt{10} end{align}]

Возвращаемся к исходному заданию:

[sqrt[3]{sqrt{10}-3}cdot sqrt[3]{3+sqrt{10}}=sqrt[3]{{{left( sqrt{10} right)}^{2}}-{{3}^{2}}}=1]

Ответ: 1.

Наконец, рассмотрим задание, где требуется выделить куб суммы и куб разности. Как вы понимаете, это задание совершенно другого уровня сложности.:)

Задача 5.4. Куб суммы и куб разности

Задача. Упростите выражение

[sqrt[3]{10+6sqrt{3}}+sqrt[3]{10-6sqrt{3}}]

Чтобы «красиво» извлечь корень третьей степени, нужно представить подкоренное выражение в виде точного куба. Начнём с суммы:

[begin{align}color{red}{10}+ color{red}{6}sqrt{3} &={{left( color{blue}{a}+ color{blue}{b}sqrt{3} right)}^{3}}= \ &={color{blue}{a}^{3}}+3{color{blue}{a}^{2}} color{blue}{b}sqrt{3}+3color{blue}{a}{color{blue}{b}^{2}}cdot 3+{color{blue}{b}^{3}}cdot 3sqrt{3}= \ &=left( {color{blue}{a}^{3}}+9color{blue}{a}{color{blue}{b}^{2}} right)+left( 3{color{blue}{a}^{2}}color{blue}{b}+3{color{blue}{b}^{3}} right)sqrt{3} end{align}]

Получаем систему с двумя неизвестными:

[left{ begin{align}{color{blue}{a}^{2}}+9color{blue}{a}{color{blue}{b}^{2}} &=10 \ 3{color{blue}{a}^{2}}color{blue}{b}+3{color{blue}{b}^{3}} &=6 end{align} right.]

Методом подбора находим решение: $color{blue}{a}=color{red}{1}$, $color{blue}{b}=color{red}{1}$. Несмотря на грозный внешний вид, такие системы часто легко решаются простым перебором с проверкой:

[{{left( 1+1cdot sqrt{3} right)}^{3}}=1+3sqrt{3}+9+3sqrt{3}=10+6sqrt{3}]

Возвращаемся к исходному выражению:

[begin{align}& sqrt[3]{10+6sqrt{3}}+sqrt[3]{10-6sqrt{3}}= \ = &sqrt[3]{left( 1+sqrt{3} right)}+sqrt[3]{left( 1-sqrt{3} right)}= \ = & 1+sqrt{3}+1-sqrt{3}=2 \ end{align}]

Ответ: 2.

6. Избавление от иррациональности в знаменателе

Последний приём, который мы рассмотрим в этом уроке — избавление от иррациональностей в знаменателе с помощью неопределённых коэффициентов.

Из курса алгебры мы помним, как избавлять от простых иррациональностей. Например, домножение на квадратный корень:

[frac{1}{sqrt{2}}=frac{1cdotcolor{red}{sqrt{2}}}{sqrt{2}cdotcolor{red}{sqrt{2}}}=frac{sqrt{2}}{2}]

Или домножение на сопряжённое:

[frac{1}{sqrt{3}-1}=frac{1cdot left( color{red}{sqrt{3}+1} right)}{left( sqrt{3}-1 right)cdot left( color{red}{sqrt{3}+1} right)}=frac{sqrt{3}+1}{2}]

Но всё это касается лишь самых простых корней — квадратных. Уже в случае с кубическими корнями такой фокус не пройдёт. Тут-то на помощь к нам и приходят коэффициенты-переменные.

Задача 6.1. Корень третьей степени

Задача. Избавьтесь от иррациональности в знаменателе:

[frac{10}{1+sqrt[3]{9}}]

Поскольку это иррациональное число, то никакие преобразования не избавят нас от корней полностью.

Заметим, что $sqrt[3]{9}=sqrt[3]{3}cdot sqrt[3]{3}$. Попробуем возвести число $sqrt[3]{3}$ в разные степени:

[begin{array}{c|c|c|c|c|c|c}n & 1 & 2 & 3 & 4 & 5 & 6\ hline{{left( sqrt[3]{3} right)}^{n}} & sqrt[3]{3} & sqrt[3]{9} & 3 & 3sqrt[3]{3} & 3sqrt[3]{9} & 9\ end{array}]

Итак, все степени числа $sqrt[3]{3}$ можно разделить на три типа:

  1. Целые числа $color{blue}{a}in mathbb{Z}$;
  2. Иррациональные выражения вида $color{blue}{b}sqrt[3]{3}$ где $color{blue}{b}in mathbb{Z}$;
  3. Выражения вида $color{blue}{c}sqrt[3]{9}$, где $color{blue}{c}in mathbb{Z}$.

Логично предположить (и это можно доказать), что результат деления на $1+sqrt[3]{9}$ можно представить в виде комбинации слагаемых этих трёх типов:

[frac{10}{1+sqrt[3]{9}}=color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9}]

Однако нам неизвестны коэффициенты $color{blue}{a}$, $color{blue}{b}$ и $color{blue}{c}$. Найти их — в этом и состоит суть задачи.:)

И тут к делу подключается метод неопределённых коэффициентов. Преобразуем уравнение так, чтобы найти эти коэффициенты. Для начала умножим обе части на $1+sqrt[3]{9}$:

[10=left( 1+sqrt[3]{9} right)left( color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9} right)]

Раскрываем скобки:

[color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9}+ color{blue}{a}sqrt[3]{9}+ 3color{blue}{b}+ 3color{blue}{c}sqrt[3]{3}=10]

Группируем слагаемые относительно одинаковых корней:

[begin{align}& left( color{blue}{a}+ 3color{blue}{b} right)+left( color{blue}{b}+ 3color{blue}{c} right)sqrt[3]{3}+left( color{blue}{a} + color{blue}{c} right)sqrt[3]{9}= \ = &color{red}{10}+ color{red}{0}cdot sqrt[3]{3}+ color{red}{0}cdot sqrt[3]{9} \ end{align}]

Выше мы предположили, что все коэффициенты $color{blue}{a}$, $color{blue}{b}$, $color{blue}{c}$ — целые (в крайнем случае рациональные). Следовательно, множители при корнях $sqrt[3]{3}$ и $sqrt[3]{9}$ должны быть равны нулю (иначе число слева будет иррациональным):

[begin{align}color{blue}{b}+ 3color{blue}{c} &= color{red}{0} \ color{blue}{a}+ color{blue}{c} &= color{red}{0} end{align}]

С учётом этих двух условий само уравнение примет вид

[color{blue}{a}+ 3color{blue}{b}= color{red}{10}]

Получили систему из трёх уравнений с тремя неизвестными:

[left{ begin{align}color{blue}{a}+ 3color{blue}{b} &= color{red}{10} \ color{blue}{b}+ 3color{blue}{c} &= color{red}{0} \ color{blue}{a}+ color{blue}{c} &= color{red}{0} end{align} right.]

Все уравнения линейные, система решается элементарно. Решением будут числа $color{blue}{a}= color{red}{1}$, $color{blue}{b}= color{red}{3}$, $color{blue}{c}= color{red}{-1}$, поэтому исходное выражение можно переписать так:

[frac{10}{1+sqrt[3]{9}}= color{red}{1}+ color{red}{3}cdot sqrt[3]{3}- color{red}{1}cdot sqrt[3]{9}]

Ответ: $1+3sqrt[3]{3}-sqrt[3]{9}$.

Важное замечание. Чтобы избавиться от иррациональности конкретно в этой задаче, достаточно было домножить числитель и знаменатель дроби на недостающую часть куба суммы:

[begin{align} frac{10}{1+sqrt[3]{9}} &=frac{10cdot left( color{red}{1-sqrt[3]{9}+sqrt[3]{{{9}^{2}}}} right)}{left( 1+sqrt[3]{9} right)left( color{red}{1-sqrt[3]{9}+sqrt[3]{{{9}^{2}}}} right)}= \ &=ldots =1+3sqrt[3]{3}-sqrt[3]{9} end{align}]

Однако такой подход не работает, когда в знаменателе стоит конструкция вида $color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9}$. А метод неопределённых коэффициентов работает всегда.:)

Попробуем решить ещё одну задачу такого же типа.

Задача 6.2. То же самое, но чуть сложнее

Задача. Избавьтесь от иррациональности в знаменателе:

[frac{46}{2-3sqrt[3]{2}}]

Решение. Найдём несколько степеней числа $sqrt[3]{2}$:

[begin{array}{c|c|c|c|c|c|c}n & 1 & 2 & 3 & 4 & 5 & 6\ hline{{left( sqrt[3]{2} right)}^{n}} & sqrt[3]{2} & sqrt[3]{4} & 2 & 2sqrt[3]{2} & 2sqrt[3]{4} & 4\ end{array}]

На будущее: для корня $n$-й степени достаточно рассмотреть первые $n$ степеней. В нашем случае достаточно было выписать $sqrt[3]{2}$, $sqrt[3]{4}$ и $sqrt[3]{8}=2$ — новых иррациональных чисел мы уже не получим.

Итак, решаем задачу методом неопределённых коэффициентов. Попробуем подобрать целые (или рациональные) числа $color{blue}{a}$, $color{blue}{b}$, $color{blue}{c}$ такие, что

[frac{46}{2-3sqrt[3]{2}}= color{blue}{a}+ color{blue}{b}sqrt[3]{2}+ color{blue}{c}sqrt[3]{4}]

Умножаем обе части уравнения на $2-3sqrt[3]{2}$:

[left( 2-3sqrt[3]{2} right)left( color{blue}{a}+ color{blue}{b}sqrt[3]{2}+ color{blue}{c}sqrt[3]{4} right)=46]

Раскрываем скобки, приводим подобные:

[begin{align}2color{blue}{a}+ 2color{blue}{b}sqrt[3]{2}+ 2color{blue}{c}sqrt[3]{4} -3color{blue}{a}sqrt[3]{2} -3color{blue}{b}sqrt[3]{4} -6color{blue}{c} &= color{red}{46} \ left( 2color{blue}{a}- 6color{blue}{c} right)+left( 2color{blue}{b}- 3color{blue}{a} right)sqrt[3]{2}+left( 2color{blue}{c}- 3color{blue}{b} right)sqrt[3]{4} &= color{red}{46}end{align}]

Это равенство верно при соблюдении трёх условий:

[left{ begin{align}2color{blue}{a}- 6color{blue}{c} &= color{red}{46} \ 2color{blue}{b}- 3color{blue}{a} &=color{red}{0} \ 2color{blue}{c}- 3color{blue}{b} &=color{red}{0} \ end{align} right.]

Это система из трёх линейных уравнений с тремя неизвестными. Её решение:

[color{blue}{a}= color{red}{-4}; color{blue}{b}= color{red}{-6}; color{blue}{c}= color{red}{-9}]

Следовательно, исходное выражение можно переписать так:

[frac{46}{2-3sqrt[3]{2}}= color{red}{-4-6}cdot sqrt[3]{2} color{red}{-9}cdot sqrt[3]{4}]

Ответ: $-4-6sqrt[3]{2}-9sqrt[3]{4}$.

Важное замечание. Здесь тоже можно «составить» куб суммы в знаменателе:

[begin{align}frac{46}{2-3sqrt[3]{2}} &=frac{46cdot left( color{red}{{{2}^{2}}+2cdot 3sqrt[3]{2}+9sqrt[3]{4}} right)}{{{2}^{3}}-{{left( 3sqrt[3]{2} right)}^{3}}} \ &= ldots =-4-6sqrt[3]{2}-9sqrt[3]{4} end{align}]

Почему не использовать этот приём всегда? Потому что в следующей задаче он уже не сработает. Там помогут только неопределённые коэффициенты и решение системы уравнений.

Задача 6.3. Когда кубы уже не помогают

Это задание чуть сложнее, потому что здесь не помогут формулы сокращённого умножения. Да и сами вычисления будут чуть сложнее, чем в предыдущих задачах.

Задача. Избавьтесь от иррациональности в знаменателе:

[frac{2}{1+sqrt[3]{3}-sqrt[3]{9}}]

Мы уже встречались с числами $sqrt[3]{3}$ и $sqrt[3]{9}$, поэтому знаем, что исходное выражение можно представить в виде

[frac{2}{1+sqrt[3]{3}-sqrt[3]{9}}= color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9}]

Преобразуем выражение, избавившись от дроби:

[left( color{blue}{a}+ color{blue}{b}sqrt[3]{3}+ color{blue}{c}sqrt[3]{9} right)cdot left( 1+sqrt[3]{3}-sqrt[3]{9} right)= color{red}{2}]

Раскроем скобки, приведём подобные:

[begin{align}left( color{blue}{a}- 3color{blue}{b}+ 3color{blue}{c} right) &+left( color{blue}{a}+ color{blue}{b} -3color{blue}{c} right)sqrt[3]{3}+ \ &+left( -color{blue}{a}+ color{blue}{b}+ color{blue}{c} right)sqrt[3]{9}= color{red}{2} \ end{align}]

Это равенство возможно при соблюдении трёх условий:

[left{ begin{align}color{blue}{a}- 3color{blue}{b}+ 3color{blue}{c} &= color{red}{2} \ color{blue}{a}+ color{blue}{b}- 3color{blue}{c} &= color{red}{0} \ -color{blue}{a}+ color{blue}{b}+ color{blue}{c} &= color{red}{0} end{align} right.]

Три линейных уравнения, три переменных. Всё решается легко:

[color{blue}{a}= color{red}{2}; color{blue}{b}= color{red}{1}; color{blue}{c}= color{red}{1}]

Следовательно, исходное выражение перепишется так:

[frac{2}{1+ sqrt[3]{3}- sqrt[3]{9}}= color{red}{2}+ color{red}{1}cdot sqrt[3]{3}+ color{red}{1}cdot sqrt[3]{9}]

Ответ: $2+sqrt[3]{3}+sqrt[3]{9}$.

Как видите, никакие кубы суммы здесь уже не помогут.:)

7. Зачем всё это нужно

В этом уроке мы рассмотрели пять типов задач, которые можно решить методом неопределённых коэффициентов. У внимательного читателя наверняка возник вопрос: зачем вообще нужен этот метод, когда многие из этих задач можно решить проще и быстрее с помощью отдельных специальных приёмов?

В самом деле:

  • Большинство многочленов отлично раскладываются на множители с помощью теоремы Безу и схемы Горнера — об этом мы говорили в отдельном уроке. Но только при условии, что среди корней есть рациональные.
  • То же самое можно сказать и про решение уравнений.
  • Делить многочлены друг на друга с остатком вообще лучше столбиком. Это самый быстрый и самый надёжный способ — при условии, что среди коэффициентов нет параметров.
  • Точные квадраты зачастую можно подобрать, если немного подумать. Как и дополнительные множители для избавления от иррациональности. Если только это не «тяжёлый» случай, где формулы сокращённого умножения не работают.

Так зачем же нужен метод неопределённых коэффициентов? Всё дело в тех самых оговорках: «при условии», «только если не тяжёлый случай» и т.д.

Основная сила этого метода — в его универсальности. Да, считать придётся чуть больше, чем при использовании более специализированных приёмов. И да: целочисленный перебор не всегда приводит нас к успеху.

Но перед нами прежде всего универсальный алгоритм. Который точно работает — всегда, везде, без всяких оговорок. И если задача не решается методом неопределённых коэффициентов, то «специализированные» приёмы тем более не помогут.

Более того: область применения этого метода намного шире. Например, мы не рассмотрели разложение рациональных дробей в простейшие, а это очень важный приём, например, в интегрировании — и ему тоже нет альтернативы.

Поэтому берите на вооружение всё, что вы сегодня узнали, практикуйтесь — и да прибудут с вами решённые задачи, олимпиады и университетские зачёты и экзамены.:)

Смотрите также:

  1. Бином Ньютона
  2. Схема Горнера
  3. Сравнение дробей
  4. Четырехугольная пирамида в задаче C2
  5. Задача B5: площадь кольца
  6. Сечения и двугранные углы

Мы научим решать уравнения быстро и быть уверенными в правильном и успешном результате. Для начала, выучим простые правила и рассмотрим примеры. Самый лёгкий тип уравнений — это у которых слева размещена разность, произведение, частное или сумма чисел и одно неизвестное, а справа — известное число. Если проще, нам надо найти в уравнении одно неизвестное. Неизвестное делимое с делителем, слагаемое или уменьшаемое с вычитаемым. Такие типы уравнений мы рассмотрим далее в статье.

Распишем основные правила для поиска неизвестных слагаемых, множителей, делимых и так далее. Для закрепления теории, мы подобрали конкретные примеры под каждое правило и каждую ситуацию, с которой вы можете столкнуться при решении уравнений такого типа.

Как найти неизвестное слагаемое, правило

Представим, что на столе стоит две вазы. В этих вазах в общей сложности лежит 7 яблок. В одной вазе лежит 2 яблока. Как узнать сколько яблок лежит во второй вазе и есть ли они там вообще? Посмотрим, как выглядит эта задача в математическом виде, отметив неизвестное число яблок во второй вазе как x. Согласно условиям выше, это неизвестное вместе с числом 2 образовывают 7. Значит, наше уравнение будет выглядеть как: 2 + x = 7. Справа имеем значение суммы, а слева — сумма чисел с одним неизвестным слагаемым. Для решения уравнения надо найти число x. В таких случаях используют правило:

Правило 1

Чтобы найти неизвестное слагаемое в уравнении, надо из суммы вычесть известное.

В ситуации, где происходит математическое нахождение неизвестного слагаемого, вычитание является обратный действием по смыслу, относительно сложения. Другими словами, между действиями вычитания и сложения есть математическая связь, и правило нахождения неизвестного слагаемого благодаря этой связи можно отобразить в буквенном виде: если в условии a + b = c, то c − b = a и c − a = b. А если вы видите обратные примеры, такие как c − a = b и c − b = a, то можете быть уверенны в том что a + b = c. Благодаря определению и математической связи, мы можем узнать неизвестное слагаемое, имея только его сумму с известным слагаемым. От перестановки слагаемых, значение не меняется, поэтому неважно какое надо найти слагаемое — первое или второе. Давайте используем это правило на практике, для лучшего понимания теории.

Пример 1

Давайте решим уравнение, которое мы составили выше: 2 + x = 7. С учётом правила, мы должны из суммы обоих слагаемых, 7, вычесть известное, 2. В решении это будет выглядеть так: 7  2 = 5.

В решении математических задач и примеров очень важно знать и использовать правильный алгоритм записи таких уравнений:

  1. Запишем исходное уравнение, на базе математической задачи.
  2. Применяем подходящее правило и записываем следующее уравнение на его основании.
  3. Записываем финальное уравнение, где указываем значение ранее неизвестного.

Запись решения по этой последовательности, отображает последовательные замены изначального уравнения равносильными ему по значениям. В итоге мы сможем увидеть в решении весь процесс нахождения неизвестного. Правильная форма записи нашего уравнения будет в виде такого решения:

2 + x = 7,

x = 7  2,

x = 5.

Четвертой строкой в решении примера может стать проверка решения, которая даст уверенность в правильности найденного ответа. Подставим найденное значение в исходное уравнение. Берем число 5 и подставляем в пример 2 + x = 7. У нас получится:

2 + 5 = 7.

Так как мы получили правильное исходное уравнение, значит мы решили пример верно. Если бы у нас получило неверное равенство в проверочном примере, например, 2 + 8 = 7, мы бы вернулись к первому пункту алгоритма решения примера. Неверное равенство при проверке указывает на допущенную ошибку в расчётах или неверно подобранном или использованном правиле.

Находим неизвестное уменьшаемое или вычитаемое

Итак, в математических примерах в процессе вычитания и сложения существует нерушимая связь. Эта связь сформулировала правила, благодаря которым можно быстро найти неизвестное — уменьшаемое, если нам известны разность и вычитаемое, или вычитаемое, если мы знаем разность и уменьшаемое. Для каждого случая есть правило, которое мы сейчас рассмотрим вместе с решением примера.

Правила 2 — 3 + примеры

Если прибавить к разности вычитаемое, получим неизвестное уменьшаемое.

Возьмем для примера уравнение x  1 = 4. В качестве неизвестного сейчас выступает уменьшаемое. Исходя из правила выше, мы к разности 4 добавляем вычитаемое 1. В сумме получаем 5. Значит, изначальное неизвестное уменьшаемое равно 5. Запишем решение по правильному алгоритму:

x  1 = 4,

x = 4 + 1,

x = 5.

Не лишним будет проверить правильность решения примера путём подстановки найденного числа 5 в исходный пример:

5  1 = 4.

Мы получили верное уравнение, значит решение правильное. Можно переходить к изучению следующего правила.


Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Используем это правило для нахождения неизвестного вычитаемого в примере 5  x = 2. Для решения этого уравнения мы определили, что неизвестное является вычитаемым, а значит, в этом случае будем использовать Определение 3. Вычтем из числа 5 известную разность 2 и получим 5  2 = 3. Вот так выглядит полная правильная запись решения:

5  x = 2,

x = 5  2,

x = 3.

Давайте убедимся, что мы правильно решили уравнение. Для этого подставим найденное число в исходный пример.

5  3 = 2.

Полученное уравнение верное, значит мы правильно нашли неизвестное вычитаемое. Теперь, когда вы выучили базовые правила нахождения неизвестных, мы поделимся с вами более простым способ решения примеров. Для нахождения неизвестного, нам нужно перенести неизвестное по одну сторону знака равности в уравнении, чаще левую, а известные — по другую, например, правую. При этом, когда переносите известное или неизвестное через знак равности, меняете его знак на противоположный. Если на одной из сторон ничего не остаётся, значит там будет стоять число 0. Мы покажем, как это работает на практике.

Есть пример 5 – x = 2, перенесём известные по правую сторону от знака уравнения:

– x = 2 – 5

При решении, получим уравнение:

– x = – 3

Так как в уравнениях всегда ищется неизвестное с положительным знаком, сменим знаки на противоположные в обеих частях уравнения, как бы перенося известное и неизвестное через знак равности, получим:

x = 3

Как видим, найденное значение неизвестного вычитаемого совпадает с тем значением, которое мы нашли при использовании Определения 3. Правило переноса чисел через знак равности со сменой их знака на противоположный работает для всех уравнений без исключения. Можем использовать это правило вместо всех вышеперечисленных.

Находим неизвестный множитель

Рассмотрим два уравнения: 3 ⋅ x = 9 и x ⋅ 2 = 6. И в первом, и во втором примере нужно найти один из неизвестных множителей. Второй множитель и производное — известны. Давайте запомним правило для решения подобных примеров.

Правило 4 + пример

Чтобы найти неизвестный множитель, нужно разделить производное на другой, известный множитель. Смысл этого правила базируется на обратном смысле к операции умножения. Между операциями деления и умножения также есть связь, которая выражается в следующем: если a  b = c и при этом ни a, ни b не равны 0, то c :   a = b и, наоборот, c :   b = a.

Найдём неизвестный множитель из уравнения 3  x = 9 путём деления известного частного 9 на известный множитель 3. Запишем решение по алгоритму:

3  x = 9,

x = 9 : 3,

x = 3.

Выполним подстановку, чтобы проверить правильность результата:

3  3 = 9

Уравнение правильное, это значит, мы верно установили значение неизвестного множителя. Обратите внимание, правило невозможно использовать в случае, если известный множитель равен 0. К примеру, если вам попадётся уравнение x  0 = 8, вы не сможете его решить с помощью этого правила. Само уравнение x  0 = 8 бессмысленно, так как для его решения нужно было бы разделить 8 на 0, а делить на 0 нельзя.

Подобные ситуации детально рассмотрены в статье о линейных уравнениях. В случае использования Определения 4, по факту мы делим обе части примера на известный множитель, за исключением 0. Согласно более сложному правилу, мы можем делить обе части уравнения на любой множитель, отличный от 0 и это не повлияет на правильность уравнения и на значение его корня. Оба правила согласованы между собой и отражают математическую связь между обеими частями уравнения.

Нет времени решать самому?

Наши эксперты помогут!

Находим неизвестный делитель или делимое

Последний случай, с которым вы можете столкнуться в решении простых математических примеров — как найти неизвестное делимое при известном частном и делителе, и наоборот, как найти делитель, если из уравнения известно значение только делимого и частного. Используя знакомую связь между делением и умножением, сформируем правило для решения подобных примеров.

Правило 5 + пример

Если мы ищем неизвестное делимое, то умножаем частное на делитель. Давайте рассмотрим, как использовать правило при решении практических примеров.

Возьмем для решение уравнение типа x : 2 = 4. Перемножаем делитель 2 и частное 4 между собой, получаем ответ 8. Вот мы и нашли неизвестное делимое. Последовательная запись решения будет выглядеть в виде:

x : 2 = 4,

x = 4 · 2,

x = 8.

Также запишем проверочный пример, подставив найденное делимое 8 в исходное уравнение:

8 : 2 = 4.

Правильность проверочного уравнения указывает на правильность найденного ответа.

Определение 5 можно связать с умножением обеих частей уравнения на один и тот же множитель, отличный от 0. Такие изменения в примере никаким образом не повлияют на корни обеих частей уравнения или итоговое значение его неизвестного. Давайте ознакомимся со следующим правилом.

Правило 6 + пример

Чтобы найти неизвестный делитель, нужно делимое разделить на известное частное. Разберем простой пример ниже.

Возьмём уравнение 10 : x = 5. Разделим делимое 10 на известное частное 5. Получим ответ 2, что и будет значением неизвестного делителя в этом уравнении. В любом случае, уравнение нельзя решать в уме, а нужно обеспечить запись процесса решения по алгоритму:

10 : x = 5,

x = 10 : 5,

x = 2.

Завершаем решение примера проверкой результата:

10 : 2 = 5.

Мы получили верное уравнение, значит нашли корень правильно. Обратите внимание, если частное равно 0, мы не может применять это Определение, так как придётся делить делимое на 0. И в таком случае найти делимое невозможно. Но число 0 может выступать в роли частного в уравнении 0 : x = 0. В этом случае, неизвестное x может быть любым положительным или отрицательным числом, то есть равняться бесконечному количеству вариантов значения.

На практике вы будете встречать более сложные примеры и задачи на нахождение неизвестного слагаемого, вычитаемого или множителя/делимого, в которых будете последовательно применять вышеперечисленные правила.

Множитель,
множитель, произведение. Делимое, делитель, частное.

Привет,
ребята!

Сегодня
у нас непростой урок, ведь нам предстоит разобраться, как находить неизвестные: множитель, делимое или делитель.
А для чего это надо уметь? Догадались? Ну конечно для того, чтобы уверенно решать
уравнения
! И мы, конечно же, решим несколько уравнений. Но прежде надо
кое-что вспомнить.

Я предлагаю вам посмотреть на буквенную запись
действия умножения.

А и Б в этой записи являются множителями,
Ц – произведением. Понятно, что произведение мы получаем
действием умножения. Это – целое, то есть наибольшее число. А вот множители
являются частями. Значит, их мы находим обратным действием, делением.

То есть, если нужно найти неизвестный
множитель
, мы произведение делим на известный множитель.

А теперь посмотрим на буквенную запись деления:

Обычно, целое можно разделить на части. Поэтому
К, делимое, является целым, а М и Н – это части. И, естественно, что целое мы находим
умножением. Поэтому, если надо найти неизвестное делимое, мы
перемножаем делитель с частным.

А вот делитель является частью. И, если надо найти
неизвестный делитель
, то его мы найдём, разделив делимое на частное.

Ну а теперь пришло время решать уравнения.
Давайте разберём вот это уравнение:

х · 9 = 126 : 2

Посмотрите, это у нас осложнённое уравнение.
Поэтому, прежде всего, надо его упростить, то есть, выполнить действие в правой
части уравнения. Сто двадцать шесть разделить на два равно шестьдесят три. Переписываем
уравнение, заменив действие деления на его результат. Здесь надо найти
неизвестный множитель. Чтобы найти неизвестный множитель, мы
произведение делим на известный множитель.

Шестьдесят
три делим на девять, получается семь.

х
· 9 = 63

х
= 63 : 9

х
= 7

7
· 9 = 126 : 2

63
= 63

Не
забываем выполнить проверку уравнения. Сначала переписываем его, заменив икс на
его значение, которое мы получили – семь. Семью девять – шестьдесят три. Сто
двадцать шесть разделить на два – шестьдесят три. Левая и правая части
уравнения равны, значит, уравнение решено верно. Решаем следующее уравнение:  

х
: 7 = 15 · 4

Упрощаем:

х
: 7 = 60

х
= 60 · 7   

х
= 420

Неизвестное
делимое находим умножением
.

Проверяем.

420
: 7 = 15 · 4

60
= 60

Ну, а следующее уравнение я предлагаю вам решить
самостоятельно.

360 : х = 96 + 24

Какой компонент здесь надо найти? Неизвестный
делитель
. А его мы находим

делением.

Проверьте,
ребята, так ли решено у вас уравнение?

360
: х = 90

х
= 360 : 90

х
= 4

360
: 4 = 66 + 24

90
= 90

Видите,
как помогает при решении уравнений знание
правил.

Чтобы найти неизвестный множитель, надо произведение разделить на известный
множитель.

Чтобы
найти неизвестное делимое
, надо делитель
умножить на частное.

Чтобы
найти неизвестный делитель
, надо делимое
разделить на частное.

Выучите
их, ребята, и не забывайте пользоваться при решении уравнений. Пока! До новых
встреч!

Как найти неизвестный множитель, делимое, делитель

В уравнении х ∙ 10 = 20 неизвестен первый множитель, в выражении 20 : х = 10 неизвестен делитель, а в уравнении х : 2 = 10 неизвестно делимое.

Чтобы решить данные уравнения, нужно найти неизвестное число в каждом из них. В этом уроке научимся находить неизвестный множитель, делимое, делитель.

Найдем значения выражений 4 ∙ 9, 36 : 4, 36 : 9.

Вычислим сначала первое выражение 4 ∙ 9 = 36.

4 – это первый множитель, 9 – это второй множитель, 36 – значение произведения.

Найдем значение второго выражения 36 : 4 = 9.

36 – значение произведения первого выражения, 4 – первый множитель первого выражения, 9 – второй множитель первого выражения.

Таким образом, мы значение произведения разделили на первый множитель, и в результате получился второй множитель.

Найдем значение третьего выражения 36 : 9 = 4.

В данном случае мы значение первого произведения разделили на второй множитель и получили первый множитель.

Решим уравнение х ∙ 10 = 20. В нем неизвестен первый множитель.

Чтобы его найти, нужно значение произведения 20 разделить на второй известный множитель 10, 20 : 10 = 2, х = 2.

Итак, чтобы найти неизвестный множитель, нужно значение произведения разделить на известный множитель.

Теперь перейдем к определению связи между элементами деления. Для этого найдем значения выражений 56 : 8, 56 : 7, 8 ∙ 7.

Вычислим первое выражение 56 : 8 = 7.

56 – это делимое, 8 – это делитель, 7 – значение частного.

Найдем значение второго выражения 56 : 7 = 8.

В данном случае делимое первого выражения 56 разделили на значение частного первого выражения 7, получился делитель первого выражения.

Решим уравнение 20 : х = 10. В уравнении неизвестен делитель. Чтобы его найти, нужно делимое 20 разделить на значение частного 10.

20: 10 = 2, х = 2.

Таким образом, чтобы найти неизвестный делитель, нужно делимое разделить на значение частного.

Вычислим и рассмотрим третье выражение 8 ∙ 7 = 56. В этом случае делитель первого выражения 8 умножили на значение частного первого выражения 7, получилось делимое первого выражения 56.

Решим еще одно уравнение.

Х : 2 = 10

В нем неизвестное число является делимым.

Чтобы его найти, нужно делитель 2 умножить на значение частного 10, получится делимое 20, х = 20.

Вывод: чтобы найти неизвестное делимое, нужно делитель умножить на значение частного.

Используя полученные в этом уроке правила, Вы сможете находить неизвестный множитель, делитель и делимое.

Понравилась статья? Поделить с друзьями:
  • Как найти искомый угол между плоскостями
  • Как найти человека по вайберу по мобильному
  • Как найти индийских певцов
  • Как найти валентность атомов вещества
  • Как найти камаз с прицепом