Как найти моду по плотности распределения

Мода и медиана функции плотности распределения f(x)

Задача 5. Плотность распределения вероятностей случайной величины Х имеет вид



1. Найти:

а) параметр распределения С (в виде дроби);

а) математическое ожидание M(X);

б) дисперсию D(X) и среднее квадратическое отклонение σ(Х);

в) функцию распределения F(x) случайной величины X;

г) моду M0;

д) медиану Me;

е) вероятность осуществления неравенств    и   .

2. Построить графики функций f(x) и F(x). Изобразить на графике функции f(x) найденные характеристики и вероятности.

Решение находим с помощью калькулятора.

Случайная величина Х задана плотностью распределения f(x):

0, x ≤ 0

2•A(8/5-x), 0 < x < 8/5

0, x ≥ 8/5

Найдем параметр A из условия:

или

64/25*A-1 = 0

Откуда,

A = 25/64

Поскольку находили квадрат A, то

а) Математическое ожидание.

б) Дисперсия.

= -25/128•(8/5)4+5/12•(8/5)3 — (-25/128•04+5/12•03) — (8/15)2 = 32/225

Среднеквадратическое отклонение.

в) Функция распределения F(x) случайной величины X.

г) Мода M0.

Модой M0(X) называют то возможное значение X, при котором плотность распределения имеет максимум.

Построим график функции плотности распределения.



Как видим, максимум функции соответствует  x = 0.

Mo( 0) = 2•25/64(8/5-0) = 5/4

д) Медиана Me.

Медианой Me(X) называют то возможное значение X, при котором ордината f(x) делит пополам площадь, ограниченную кривой распределения.

Необходимо найти такое x, при котором функция распределения равна ½.





Решая уравнение:



получаем:

 



Поскольку функция ограничена на интервале (0; 1,6), то искомое значение x = 0,46.

Построим график функции распределения.

е) Вероятность осуществления неравенств    и   .



Перейти к онлайн решению своей задачи

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Мода и медиана случайной величины.
Квантиль уровня случайной величины

  • Краткая теория
  • Примеры решения задач

Краткая теория


Кроме
математического ожидания и дисперсии, в теории вероятностей применяется еще ряд
числовых характеристик, отражающих те или иные особенности распределения.

Мода непрерывной и дискретной случайной величины

Модой
случайной величины называется ее наиболее вероятное значение, для которого
вероятность

 или плотность вероятности

 достигает максимума.

В
частности, наивероятнейшее значение числа успехов в схеме Бернулли – это мода
биномиального распределения.

Если
вероятность или плотность вероятности достигает максимума не в одной, а в
нескольких точках, распределение называется полимодальным.

Полимодальное распределение

Медиана непрерывной и дискретной случайной величины

Медианой случайной величины

 называют число

, такое, что

.

То есть вероятность того, что
случайная величина

 примет
значение, меньшее медианы

 или больше ее,
одна и та же и равна

.

Для дискретной случайной величины

 это число может
не совпадать ни с одним из значений

. Поэтому медиану дискретной случайной величины
определяют как любое число

, лежащее между двумя соседними возможными значениями

 и

 такими, что

.

Для непрерывной случайной величины,
геометрически, вертикальная прямая

, проходящая через точку с абсциссой, равной

, делит площадь фигуры под кривой распределения на две
равные части.

Медиана на графике плотности вероятности непрерывной
случайной величины

Очевидно, что в точке

  функция распределения непрерывной случайной
величины равна

, то есть

.

Медиана на графике функции распределения непрерывной
случайной величины

Квантили и процентные точки случайной величины

Наряду с отмеченными выше числовыми
характеристиками для описания случайной величины используется понятие квантилей
и процентных точек.

Квантилем уровня

 (или

 – квантилем)
называется такое значение

 случайной
величины, при котором функция ее распределения принимает значение, равное

, то есть:

Некоторые квантили получили особое
называние. Очевидно, что введенная выше медиана случайной величины есть
квантиль уровня 0,5, то есть

. Квантили

 и

 получили
название соответственно верхнего и нижнего квантилей. Также в литературе
встречаются термины: децили (под которыми понимают квантили

) и процентили (квантили

).

С понятием квантиля тесно связано
понятие процентной точки. Под

 точкой
подразумевается квантиль

, то есть такое значение случайной величины

, при котором

.

Смежные темы решебника:

  • Структурные средние в статистике — мода, медиана, квантиль, дециль
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

Найти
моду, медиану, квантиль

 и 40%-ну точку случайной величины

 c плотностью распределения:

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Исследуем
функцию на наибольшее и наименьшее значение на отрезке

Производная:

Производная
не обращается в нуль.

Значения
на концах отрезка:

Следовательно,
мода:

Медиану

 найдем из условия:

В нашем
случае получаем:

Значение

 принадлежит отрезку

,
следовательно, искомая медиана:

Квантиль

 найдем из уравнения:

Значение

 принадлежит отрезку

,
следовательно, искомый квантиль:

Найдем
40%-ную точку случайной величины

, или квантиль

 из уравнения:

Значение

 принадлежит отрезку

,
следовательно, искомая точка:

Ответ:

.


Пример 2

Найти
моду, медиану, квантиль

 случайной величины

, заданной функцией
распределения:

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Найдем
плотность распределения:

Исследуем
функцию на наибольшее и наименьшее значение на отрезке

Производная:

Значения
функции

 в стационарных точках и на концах отрезка:

Распределение
полимодальное:

Медиану

 найдем из уравнения:

Итак,
медиана:

Квантиль

 найдем из уравнения:

Итак:

Ответ:

.

  • Краткая теория
  • Примеры решения задач

Мода и медиана случайных величин

Основными числовыми
характеристиками случайных величин
являются математическое ожидание,
дисперсия и среднее квадратическое
отклонение. Однако часто возникает
потребность и в некоторых других числовых
характеристиках. Две из них, обозначенные
в заголовке, и будут далее определены.

Пусть Х
– дискретная случайная величина. Модой
этой с.в. (обозначается d(X)
) называется такое ее возможное значение,
которое имеет наибольшую вероятность.

Пример.
Пусть дискретная
с.в. Х
задана законом распределения

Х

1

2

3

4

5

6

Р

0.1

0.1

0.3

0.1

0.3

0.1

Тогда ее мода
принимает 2 значения: d(Х)=3
и d(Х)=5.

Пусть Х
непрерывная
случайная величина с плотностью
вероятности f(х).
Модой
этой с.в. называется точка максимума ее
плотности вероятности. Эта точка
максимума функции f(x)
находится обычными методами с
использованием производной.

Пример.
Дана плотность вероятности н.с.в. :

.

Найти значение
параметра а
и моду этой случайной величины.

Пусть Х
– непрерывная случайная величина.
Медианой
с.в. Х
(обозначается h(X)
) называется такое число h,
которое делит всю числовую прямую на 2
промежутка (−∞,
h)
и
[h,+∞),
в которые с.в. Х
попадает с равной вероятностью. Таким
образом, если медиана h(X)=h,
то выполняется
равенство

P(X
<
h)=P(X
h)
=
.

Вспоминая, что
вероятность P(X
<
h)
по определению функции распределения
есть значение этой функции в точке h,
получаем, что значение h
медианы h(X)
удовлетворяет уравнению

.

Если же у н.с.в.
задана не функция распределения F(x),
а плотность вероятности f(x),
то вспоминая выражение функции
распределения через плотность вероятности


, получим, что значение h
медианы удовлетворяет уравнению

.

Медиана h(X)
непрерывной с.в. Х
ищется из одного из выписанных выше
уравнений (в зависимости от того, что
задано: F(x)
или f(x)
). Для дискретных случайных величин
медиана не определяется.

Пример.
Найти медиану н.с.в. Х,
заданной своей функцией распределения

.

Ответ: h(X)=1.5
.

Некоторые важные законы распределения случайных величин

Среди различных
законов распределения случайных величин
некоторые встречаются в приложениях
наиболее часто. Поэтому для них получены
формулы расчета их числовых характеристик:
математического ожидания, дисперсии,
моды, медианы и ряда других. Рассмотрим
некоторые из таких законов распределения.

Биномиальный закон распределения

Среди законов
распределения дискретных
случайных величин наиболее распространенным
является биномиальное распределение,
с которым мы уже встречались при
рассмотрении так называемой схемы
Бернулли (число появлений некоторого
события в серии независимых испытаний).

Дискретная случайная
величина Х
распределена по биномиальному
закону
, если
она принимает значения 0,
1, 2, … ,
n
с вероятностями р0
, р1
, … ,
р
n,
которые вычисляются по формуле

,

где параметр
распределения р
заключен между нулем и единицей 0
≤ р ≤ 1
, а
q=1−p
. Таким образом, д.с.в Х,
распределенная по биномиальному закону,
имеет следующий закон распределения:

Х

0

1

2

n

Р

Как уже говорилось,
по биномиальному закону распределено
число успехов в схеме Бернулли. Пусть
производится n
независимых
испытаний, в каждом из которых некоторое
событие А
может появиться с одной и той же
вероятностью р.
Рассмотрим с.в. Х
– число появлений события А
во всех n
испытаниях (то, что ранее называли число
успехов). Тогда с.в. Х
распределена по биномиальному закону.
Мы уже находили формулы для математического
ожидания этой случайной величины,
которые и являются формулами математического
ожидания и дисперсии произвольной
случайной величины, распределенной по
схеме Бернулли:

,
.

Найдем моду d(X)
биномиально распределенной случайной
величины Х,
т.е. наивероятнейшее
число успехов в схеме Бернулли
.
По определению моды d(X)=k,
если вероятность

наибольшая среди всех вероятностей р0
, р1
, … , рn
. Найдем
такое число k
(это целое
неотрицательное число). При таком k
вероятность pk
должна быть не меньше соседних с ней
вероятностей: pk−1
pk
pk+1
. Подставив вместо каждой вероятности
соответствующую формулу, получим, что
число k
должно удовлетворять двойному неравенству:

.

Если расписать
формулы для числа сочетаний и провести
простые преобразования, можно получить,
что левое неравенство дает k
≤ (
n+1)∙p,
а правое k
≥ (
n+1)∙p
−1
. Таким
образом, число k
удовлетворяет двойному неравенству
(n+1)∙p
−1 ≤
k
≤ (
n+1)∙p
, т.е. принадлежит отрезку
[(n+1)∙p
−1, (
n+1)∙p]
. Поскольку длина этого отрезка, очевидно,
равна 1,
то в него может попасть либо одно, либо
2 целых числа. Если число (n+1)∙p
целое, то в
отрезке [(n+1)∙p
−1, (
n+1)∙p]
имеется 2 целых числа, лежащих на концах
отрезка. Если же число (n+1)∙p
не целое, то
в этом отрезке есть только одно целое
число.

Таким образом,
если число (n+1)∙p
целое, то
мода биномиально распределенной
случайной величины Х
принимает 2 соседних значения : d(X)=(n+1)∙p
−1
и
d(X)=(n+1)∙p
. Если же число (n+1)∙p
не целое,
то мода биномиально распределенной
случайной величины Х
одно значение
d(X)=k,
где k
есть
единственное целое число, удовлетворяющее
неравенству
(n+1)∙p
−1 ≤
k
≤ (
n+1)∙p
. Если вспомнить, что запись [a]
означает взятие целой части от числа
а,
то в этом случае можно записать
d(X)=[(n+1)∙p]
.

Пример.
Кубик подбрасывается 100 раз. Каково
наивероятнейшее число выпадений
шестерки?

Пример.
Вероятность попадания стрелком в цель
равна 0.7 . Найти наивероятнейшее число
попаданий в цель при 30 выстрелах.

Пример.
Вероятность изготовления бракованной
детали на станке равна 0.06 . Каково
наивероятнейшее число бракованных
деталей в партии из 200 деталей, выточенных
на этом станке?

Пример.
Банк выдал 7 кредитов. Известно, что в
среднем не возвращается 2 кредита из
10. Найти среднее число невозвращенных
кредитов.

Соседние файлы в папке методичка

  • #
  • #
  • #

Для нахождения моды и медианы случайной величины необходимы хорошие умения интегрировать и знания следующего теоретического материала. Модой дискретной случайной величины называют те ее возможное значение, которые соответствует наибольшей вероятности появления (т.е. такое значение величины , которое случается чаще всего при проведении экспериментов, опытов, наблюдений). В случае случайной величины модой называют то ее возможное значение, которому соответствует максимальное значение плотности вероятностей

В зависимости от вида функции случайная величина может иметь разное количество мод. Если случайная величина имеет одну моду, то такое распределение вероятностей называют одномодальным; если распределение имеет две моды — двухмодальным и более – мультимодальным.

Существуют и такие распределения, которые не имеют моды, их называют антимодальными. Медианой случайной величины называют то ее значения, для которого выполняются равенство вероятностей событий, то есть, плотность вероятностей справа и слева одинаковы и равны половине (0,5)

Графически мода и медиана изображенные на рисунке

При таком значению случайной величины график функции распределения делится на части с одинаковой площадью. Непрерывная случайная величина имеет только одно значение медианы. Для дискретной случайной величины медиану обычно не определяют, однако в некоторой литературе приводятся правила, согласно которым, для ряда случайных величин размещенных в порядке возрастания (вариационного ряда) моду определяют распределения: если есть нечетное количество случайных величин то медиана равна средней величине

в случае четного количества полусумме средних величин

Рассмотрим примеры определения моды и медианы.

Пример 1. В развлекательном центре работник обслуживает четыре дорожки для боулинга. Вероятность того, что какая-то дорожка нуждается в уборке в течение смены является постоянной величиной с вероятностью 85%.

Построить закон распределения вероятностей дискретной случайной величины — количество дорожек, которые требуют уборки. Найти моду .

Решение. Случайной величина может принимать значения

Вероятности появления значений определяем по образующей функцией

Для заданной задачи входные величины принимают значения

Искомые вероятности входят множителями при степенях аргумента

Закон распределения вероятностей запишем в виде таблицы

С таблице определяем моду , как значение при максимальной вероятности. Получили одномодальное распределение

Пример 2. По заданной плотностью вероятностей

найти параметр , плотность вероятностей , моду .

Решение. Применяя условие нормирования выполняем интегрирование

после того определяем параметр

Плотность вероятностей, учитывая найденное значение будет иметь вид

а ее график изображен на рисунке ниже

Из графика плотности вероятностей видим, что мода принимает значение . Определим медиану с помощью функции распределения вероятностей. Ее значение на промежутке находим интегрированием

Функция распределения иметь следующий вид

а ее график будет иметь вид

Для определения медианы случайной величины применяем формулу

Медиану можно найти с помощью плотности вероятностей

для дискретной случайной величины из промежутка

Таким образом медиану — возможное значение случайной величины , при котором прямая, проведенная перпендикулярно соответствующей точки на плоскости , делит площадь фигуры, ограниченной функцией плотности вероятностей на две равные части.

——————————-

Задача на определение моды и медианы случайной величины встречаются на практике не так часто, как плотности распределения вероятностей, однако вышеприведенный теоретический материал и решения распространенных примеров помогут Вам находить эти величины без больших затрат времени. При необходимости Вы всегда можете заказать решение задач по теории вероятностей в нас.


Загрузить PDF


Загрузить PDF

В статистике модой во множестве чисел называется число, которое встречается в этом множестве наиболее часто. Мод может быть несколько: если в наборе данных одинаково часто встречаются два или больше разных числа, его называют соответственно бимодальным или мультимодальным — иными словами, все значения, встречающиеся максимальное число раз, образуют моды данного множества. В данной статье описано, как найти моду (моды) множества.

  1. Изображение с названием Find the Mode of a Set of Numbers Step 1

    1

    Запишите числа множества. Моду обычно определяют на наборе статистических данных или множестве численных значений. Таким образом, для нахождения моды вам понадобится набор чисел. Моду сложно определить в уме, если чисел достаточно много, поэтому в большинстве случаев лучше записать все числа или набрать их на компьютере. Если у вас есть карандаш и бумага, достаточно записать все числа. Если же вы работаете за компьютером, удобнее использовать Excel.

    • Метод определения моды легче понять на примере. Рассмотрим в данном разделе следующий набор чисел: {18, 21, 11, 21, 15, 19, 17, 21, 17}. В приведенных ниже шагах мы найдем моду этого множества.
  2. Изображение с названием Find the Mode of a Set of Numbers Step 2

    2

    Расположите числа в порядке возрастания. После того как вы выпишете все числа, полезно переписать их в порядке возрастания. Хотя можно обойтись и без этого, так найти моду будет проще, поскольку одинаковые числа расположатся рядом. Для больших наборов данных это просто необходимо, так как попытка просмотреть неупорядоченный список и подсчитать, сколько раз каждое число появляется в нем, довольно трудоемка и может привести к ошибкам.

    • Если вы используете карандаш и бумагу, переписывание поможет вам сэкономить время в дальнейшем. Просмотрите числа, найдите наименьшее значение, вычеркните его из первоначального множества и занесите в новый список. Повторите то же самое для второго, затем для третьего наименьшего числа и так далее, при этом записывайте каждое число столько раз, сколько оно встречается в исходном наборе данных.
    • Компьютер предоставляет больше возможностей — например, в большинстве программ для работы с электронными таблицами можно упорядочить список значений от наименьшего к наибольшему всего лишь несколькими щелчками мыши.
    • В нашем примере после упорядочения получаем следующую последовательность чисел: {11, 15, 17, 17, 18, 19, 21, 21, 21}.
  3. Изображение с названием Find the Mode of a Set of Numbers Step 3

    3

    Подсчитайте, сколько раз повторяется каждое число. После того как вы перепишете значения в порядке возрастания, подсчитайте, сколько раз встречается каждое число. Поищите число, которое чаще всего попадается в списке. Если чисел сравнительно немного и они расположены в порядке возрастания, это довольно просто: найдите самую большую группу одинаковых значений и подсчитайте, сколько раз они повторяются.

    • Если вы используете карандаш и бумагу, попробуйте записать над каждой группой одинаковых чисел, сколько раз они повторяются. Если вы пользуетесь компьютерной программой для работы с электронными таблицами, можно поступить подобным образом: запишите результаты подсчетов в соседние ячейки или используйте одну из опций для анализа данных.
    • В нашем списке ({11, 15, 17, 17, 18, 19, 21, 21, 21}) 11 и 15 встречаются по одному разу, 17 попадается дважды, 18 и 19 встречаются по одному разу, а 21 встречается три раза. Таким образом, в данном наборе значений чаще всего встречается число 21.
  4. Изображение с названием Find the Mode of a Set of Numbers Step 4

    4

    Определите значение (или значения), которые встречаются наиболее часто. После того как вы подсчитаете, сколько раз встречается каждое число, найдите значения, которые повторяются наибольшее количество раз. Это и есть мода данного множества. Помните, что набор чисел может иметь не одну, а несколько мод. Если в множестве наиболее часто встречаются два числа (то есть они повторяются одинаковое количество раз), такое множество называют бимодальным, если три числа — тримодальным и так далее.

    • В нашем множестве ({11, 15, 17, 17, 18, 19, 21, 21, 21}) наиболее часто встречается значение 21, поэтому 21 является модой.
    • Если бы кроме 21 нашлось еще одно число, которое также встречается три раза, (например, если бы множество включало еще одно число 17), то оно наряду с 21 было бы модой.
  5. Изображение с названием Find the Mode of a Set of Numbers Step 5

    5

    Не путайте моду множества чисел с его средним значением и медианой. При статистическом анализе часто рассматривают вместе такие понятия, как среднее значение, медиана и мода. Их легко спутать, так как они имеют схожие названия и иногда их значения совпадают. Однако независимо от того, совпадает или нет мода множества с его медианой или средним значением, следует помнить, что это три абсолютно разных понятия (смотрите ниже).

    • Чтобы найти среднее значение множества, следует сложить все числа и поделить на их количество. Для нашего примера ({11, 15, 17, 17, 18, 19, 21, 21, 21}) среднее значение составляет 11 + 15 + 17 + 17 + 18 + 19 + 21 + 21 + 21 = 160/9 = 17,78. Мы поделили сумму значений на 9, поскольку данное множество состоит из 9 чисел.

      Изображение с названием Find the Mode of a Set of Numbers Step 5Bullet1

    • Медиана представляет собой «среднее число», которое разделяет меньшие и бо́льшие значения множества на две равные половины. Например, для нашего набора значений ({11, 15, 17, 17, 18, 19, 21, 21, 21}) медианой является число 18, так как слева и справа от него стоит по четыре числа. Учтите, что если множество содержит четное количество чисел, оно не имеет единственной медианы. В этом случае медианой обычно считают среднее значение тех двух чисел, которые расположены посередине.

      Изображение с названием Find the Mode of a Set of Numbers Step 5Bullet2

    Реклама

  1. Изображение с названием Find the Mode of a Set of Numbers Step 6

    1

    Множество не имеет моды, если каждое значение встречается в нем одинаковое число раз. Если все значения в данном наборе чисел попадаются одинаковое количество раз, то у этого множества нет моды, поскольку ни одно число не встречается чаще, чем любое другое. Например, моды не имеют те множества, в которые каждое число входит по одному разу. Это же касается тех множеств, в которых каждое число встречается дважды, трижды и так далее.

    • Если мы изменим набор чисел в нашем примере на {11, 15, 17, 18, 19, 21}, так чтобы каждое значение встречалось лишь один раз, то он не будет иметь моды. То же верно и для множества, в котором все числа встречаются дважды, например {11, 11, 15, 15, 17, 17, 18, 18, 19, 19, 21, 21}.
  2. Изображение с названием Find the Mode of a Set of Numbers Step 7

    2

    Помните, что моду нечислового набора данных можно определить точно так же, как для числовых множеств. Как правило, большинство наборов данных являются «количественными», то есть содержат данные в виде чисел. Тем не менее встречаются и такие множества, члены которых выражены не в виде чисел. В таких случаях можно сказать, что «мода» — это то значение, которое встречается чаще всего в наборе данных (как и для числовых множеств).[1]
    При этом определить моду будет возможно, в то время как медиану или среднее значение — нельзя.

    • Предположим, при осмотре небольшого участка земли определили вид каждого растущего на нем дерева. Получился следующий список: {кедр, ольха, кедр, сосна, кедр, кедр, ольха, ольха, сосна, кедр}. Такой набор данных называют номинальным, поскольку входящие в него члены представляют собой названия. В этом случае модой является кедр, так как данное слово встречается чаще других (пять раз), в то время как ольха и сосна встречаются соответственно три и два раза.
    • В рассмотренном выше примере невозможно найти среднее значение и медиану, так как набор данных содержит не числа, а названия.
  3. Изображение с названием Find the Mode of a Set of Numbers Step 8

    3

    При одномодальном симметричном распределении мода, среднее значение и медиана совпадают. Как отмечалось выше, в некоторых случаях мода, медиана и/или среднее значение могут совпадать. В частности, если плотность распределения того или иного набора данных образует идеально симметричную кривую с одной модой (например, гауссиану или колоколообразную кривую), мода, среднее значение и медиана равны друг другу. Плотность распределения отображает относительную частоту определенных значений, поэтому мода будет находиться точно посередине симметричной кривой распределения, так как эта самая высокая точка на графике соответствует наиболее распространенному значению. Поскольку набор данных симметричен, эта точка на графике будет соответствовать также медиане (центральной точке в наборе данных) и среднему значению.

    • В качестве примера рассмотрим набор чисел {1, 2, 2, 3, 3, 3, 4, 4, 5}. Если мы отложим эти значения на графике, то получим симметричную кривую, которая достигает максимальной высоты 3 при x = 3 и опускается до 1 при x = 1 и x = 5. Значение 3 встречается чаще всего, поэтому оно является модой. Так как 3 расположено в центре и по обе стороны от него находится четыре числа, оно является также медианой. И наконец, среднее значение данного множества составляет 1 + 2 + 2 + 3 + 3 + 3 + 4 + 4 + 5 = 27/9 = 3, то есть число 3 является также средним значением.
    • Исключение из этого правила составляют симметричные множества с более чем одной модой — они имеют по одной медиане и среднему значению, с которыми не совпадают несколько мод.

    Реклама

Советы

  • Набор данных может иметь несколько мод.
  • Если все числа встречаются лишь по одному разу, множество не имеет моды.

Реклама

Что вам понадобится

  • Бумага, карандаш и ластик

Об этой статье

Эту страницу просматривали 47 353 раза.

Была ли эта статья полезной?

Понравилась статья? Поделить с друзьями:
  • Советы как найти учеников
  • Приложение собака на айфон нет нижней строчки поиска как исправить
  • Как найти среднюю линию треугольника по рисунку
  • Как найти смысл абзаца
  • Как найти работу на вайлдберриз удаленно