Как найти моду случайной величины по таблице

8.4. МОДА и МЕДИАНА (структурные средние)

 Мода и медиана наиболее часто используемые в экономической практике структурные средние.


Мода – это величина признака (варианта), который наиболее часто встречается  в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.


В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту.


Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

Статистика Формула Мода для интервального ряда

(8.16 – формула Моды)


где хо – начальная (нижняя) граница модального интервала;

h – величина интервала;

fМо – частота модального интервала;

fМо-1 – частота интервала, предшествующая модальному;

fМо+1– частота интервала следующая за модальным.



Медианой  называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится  непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле:

Статистика Формула Медиана для интервального ряда                                           (8.17 – формула Медианы)


где хо – нижняя граница медианного интервала;

NМе– порядковый номер медианы (Σf/2);

S Me-1 – накопленная частота до медианного интервала;

fМе –  частота медианного интервала.


Пример вычисления Моды.

Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4 – Распределение семей города N  по размеру среднедушевого дохода в январе 2018 г. руб.(цифры условные)

Группы семей по размеру дохода, руб. Число

семей

Накоп-

ленные частоты

в % к итогу

До 5000 600 600 6
5000-6000 700 1300

(600+700)

13
6000-7000 1700 (fМо-1) 3000 (S Me-1 )

(1300+1700)

30
7000-8000

 (хо)

2500

(fМо)

(fМе)

5500 (S Me) 55
8000-9000 2200 (fМо+1) 7700 77
9000-10000 1500 9200 92
Свыше 10000 800 10000 100
Итого 10000

Пример вычисления Моды. Найдем моду по формуле (8.16) см. обозначения в таблице, а h = 8000-7000=1000, т.е. получаем:

Статистика. Пример расчета Моды (структурные средние)

Пример вычисления Моды


Пример вычисления Медианы интервального вариационного ряда. Рассчитаем медиану по формуле (8.17):

1) сначала находим  порядковый  номер медианы: NМе = Σfi/2= 5000.

2) по накопленным частотам в соответствии с номером медианы определяем, что 5000 находится в интервале (7000 – 8000), далее  значение медианы  определим по формуле (8.17):

Статистика. Пример Медиана

Пример вычисления Медианы


Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – что половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.


Пример .СРЕДНИЙ, МЕДИАННЫЙ И МОДАЛЬНЫЙ УРОВЕНЬ ДЕНЕЖНЫХ ДОХОДОВ НАСЕЛЕНИЯ  ЦЕЛОМ ПО РОССИИ И ПО СУБЪЕКТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 год см. по ссылке. Источник: оценка на основании данных выборочного обследования бюджетов домашних хозяйств и макроэкономического показателя денежных доходов населения


Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию.

Если Мое имеет место правосторонняя асимметрия.

При Х<Мео следует сделать вы­вод о левосторонней асимметрии ряда.


Средние величины (арифметическая, гармоническая, геометрическая, квадратическая) см. по ссылке

Оценка статьи:

Загрузка…

Мода
и медиана

особого рода средние, которые используются
для изучения структуры вариационного
ряда. Их иногда называют структурными
средними, в отличие от рассмотренных
ранее степенных средних.

Мода
– это величина признака (варианта),
которая чаще всего встречается в данной
совокупности, т.е. имеет наибольшую
частоту.

Мода
имеет большое практическое применение
и в ряде случаев только мода может дать
характеристику общественных явлений.

Медиана
– это варианта, которая находится в
середине упорядоченного вариационного
ряда.

Медиана
показывает количественную границу
значения варьирующего признака, которой
достигла половина единиц совокупности.
Применение медианы наряду со средней
или вместо нее целесообразно при наличии
в вариационном ряду открытых интервалов,
т.к. для вычисления медианы не требуется
условное установление границ отрытых
интервалов, и поэтому отсутствие сведений
о них не влияет на точность вычисления
медианы.

Медиану
применяют также тогда, когда показатели,
которые нужно использовать в качестве
весов, неизвестны. Медиану применяют
вместо средней арифметической при
статистических методах контроля качества
продукции. Сумма абсолютных отклонений
варианты от медианы меньше, чем от любого
другого числа.

Рассмотрим
расчет моды и медианы в дискретном
вариационном ряду:

Стаж,
лет, X

Число
рабочих, чел, f

Накопленные
частоты

1

2

2

3

4

6

4

5

(11)

8

4

15

10

1

16

ИТОГО:

16

Определить моду и медиану.

Мода
Мо =
4 года, так как этому значению соответствует
наибольшая частота f
= 5.

Т.е.
наибольшее число рабочих имеют стаж 4
года.

Для
того, чтобы вычислить медиану, найдем
предварительно половину суммы частот.
Если сумма частот является числом
нечетным, то мы сначала прибавляем к
этой сумме единицу, а затем делим пополам:

Ме=16/2=8

Медианой
будет восьмая по счету варианта.

Для
того, чтобы найти, какая варианта будет
восьмой по номеру, будем накапливать
частоты до тех пор, пока не получим сумму
частот, равную или превышающую половину
суммы всех частот. Соответствующая
варианта и будет медианой.

Ме
= 4 года.

Т.е.
половина рабочих имеет стаж меньше
четырех лет, половина больше.

Если
сумма накопленных частот против одной
варианты равна половине сумме частот,
то медиана определяется как средняя
арифметическая этой варианты и
последующей.

Вычисление
моды и медианы в интервальном вариационном
ряду

Мода
в интервальном вариационном ряду
вычисляется по формуле

где ХМ0
— начальная
граница модального интервала,

hм0
– величина модального интервала,

fм0,
fм0-1,
fм0+1
– частота
соответственно модального интервала,
предшествующего модальному и последующего.

Модальным
называется такой интервал, которому
соответствует наибольшая частота.

Пример
1

Группы
по стажу

Число
рабочих, чел

Накопленные
частоты

1

2

3

До
2

4

4

2-4

23

27

4-6

20

47

6-8

35

82

8-10

11

93

свыше
10

7

100

ИТОГО:

100

Определить
моду и медиану.

Решение.

Модальный
интервал [6-8], т.к. ему соответствует
наибольшая частота f
= 35. Тогда:

Хм0=6,
0=35

hм0=2,
0-1=20

0+1=11

Вывод:
Наибольшее число рабочих имеет стаж
примерно 6,7 лет.

Для
интервального ряда Ме вычисляется по
следующей формуле:

где Хме

нижняя граница медиального интервала,

е
– величина медиального интервала,


половина суммы частот,

е
– частота медианного интервала,

е-1
–сумма
накопленных частот интервала,
предшествующего медианному.

Медианный
интервал – такой интервал, которому
соответствует кумулятивная частота,
равная или превышающая половину суммы
частот.

Определим
медиану для нашего примера.

Найдем:

т.к
82>50, то медианный интервал [6-8].

Тогда:

Хме
=6, е
=35,

е
=2, е-1=47,

Вывод: Половина рабочих имеет стаж
меньше 6,16 лет, а половина имеет стаж
больше, чем 6,16 лет.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Мода и медиана случайной величины.
Квантиль уровня случайной величины

  • Краткая теория
  • Примеры решения задач

Краткая теория


Кроме
математического ожидания и дисперсии, в теории вероятностей применяется еще ряд
числовых характеристик, отражающих те или иные особенности распределения.

Мода непрерывной и дискретной случайной величины

Модой
случайной величины называется ее наиболее вероятное значение, для которого
вероятность

 или плотность вероятности

 достигает максимума.

В
частности, наивероятнейшее значение числа успехов в схеме Бернулли – это мода
биномиального распределения.

Если
вероятность или плотность вероятности достигает максимума не в одной, а в
нескольких точках, распределение называется полимодальным.

Полимодальное распределение

Медиана непрерывной и дискретной случайной величины

Медианой случайной величины

 называют число

, такое, что

.

То есть вероятность того, что
случайная величина

 примет
значение, меньшее медианы

 или больше ее,
одна и та же и равна

.

Для дискретной случайной величины

 это число может
не совпадать ни с одним из значений

. Поэтому медиану дискретной случайной величины
определяют как любое число

, лежащее между двумя соседними возможными значениями

 и

 такими, что

.

Для непрерывной случайной величины,
геометрически, вертикальная прямая

, проходящая через точку с абсциссой, равной

, делит площадь фигуры под кривой распределения на две
равные части.

Медиана на графике плотности вероятности непрерывной
случайной величины

Очевидно, что в точке

  функция распределения непрерывной случайной
величины равна

, то есть

.

Медиана на графике функции распределения непрерывной
случайной величины

Квантили и процентные точки случайной величины

Наряду с отмеченными выше числовыми
характеристиками для описания случайной величины используется понятие квантилей
и процентных точек.

Квантилем уровня

 (или

 – квантилем)
называется такое значение

 случайной
величины, при котором функция ее распределения принимает значение, равное

, то есть:

Некоторые квантили получили особое
называние. Очевидно, что введенная выше медиана случайной величины есть
квантиль уровня 0,5, то есть

. Квантили

 и

 получили
название соответственно верхнего и нижнего квантилей. Также в литературе
встречаются термины: децили (под которыми понимают квантили

) и процентили (квантили

).

С понятием квантиля тесно связано
понятие процентной точки. Под

 точкой
подразумевается квантиль

, то есть такое значение случайной величины

, при котором

.

Смежные темы решебника:

  • Структурные средние в статистике — мода, медиана, квантиль, дециль
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

Найти
моду, медиану, квантиль

 и 40%-ну точку случайной величины

 c плотностью распределения:

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Исследуем
функцию на наибольшее и наименьшее значение на отрезке

Производная:

Производная
не обращается в нуль.

Значения
на концах отрезка:

Следовательно,
мода:

Медиану

 найдем из условия:

В нашем
случае получаем:

Значение

 принадлежит отрезку

,
следовательно, искомая медиана:

Квантиль

 найдем из уравнения:

Значение

 принадлежит отрезку

,
следовательно, искомый квантиль:

Найдем
40%-ную точку случайной величины

, или квантиль

 из уравнения:

Значение

 принадлежит отрезку

,
следовательно, искомая точка:

Ответ:

.


Пример 2

Найти
моду, медиану, квантиль

 случайной величины

, заданной функцией
распределения:

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Найдем
плотность распределения:

Исследуем
функцию на наибольшее и наименьшее значение на отрезке

Производная:

Значения
функции

 в стационарных точках и на концах отрезка:

Распределение
полимодальное:

Медиану

 найдем из уравнения:

Итак,
медиана:

Квантиль

 найдем из уравнения:

Итак:

Ответ:

.

  • Краткая теория
  • Примеры решения задач

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

как считать среднее арифметическое чисел

Иногда при работе с данными нужно описать множество значений каким-то одним числом. Например, при исследовании эффективности сотрудников, уровня вовлеченности в аккаунте, KPI или времени ответа на сообщения клиентов. В таких случаях используют меры центральной тенденции. Их можно называть проще — средние значения.

Но в зависимости от вводных данных, находить среднее значение нужно по-разному. Основной набор задач закрывается с использованием среднего арифметического, медианы и моды. Но если выбрать неверный способ — выводы будут необъективны, а результаты исследования нельзя будет признать действительными. Чтобы не допустить ошибку, нужно понимать особенности разных способов нахождения средних значений.

Cтратег, аналитик и контент-продюсер. Работает с агентством «Палиндром».

Как считать среднее арифметическое

Использовать среднее арифметическое стоит тогда, когда множество значений распределяются нормально ― это значит, что значения расположены симметрично относительно центра. Как выглядит нормальное распределение на графике и в таблице, можно посмотреть на примере:

 использование чужих публикаций

Если данные распределяются как в примерах — вам повезло. Можно без лишних заморочек считать среднее арифметическое и быть уверенным, что выводы будут объективны. Однако, нормальное распределение на практике встречается крайне редко, поэтому среднее арифметическое в большинстве случаев лучше не использовать.

Как рассчитать

Сумму значений нужно поделить на их количество. Например, вы хотите узнать средний ER за 4 дня при нормальном распределении значений и без аномальных выбросов. Для этого считаем среднее арифметическое: складываем ER всех дней и делим полученное число на количество дней.

курирование контента

Если хотите автоматизировать вычисления и узнать среднее арифметическое для большого числа показателей — используйте Google Таблицы:

  1. Заполните таблицу данными.
  2. Щелкните по пустой ячейке, в которую хотите записать среднее арифметическое.
  3. Введите «=AVERAGE(» и выделите ряд чисел, для которых нужно вычислить среднее арифметическое. Нажмите «Enter» после ввода формулы.

курирование контента

Когда можно не использовать

Если данные распределены ненормально, то наши расчеты не будут отражать реальную картину. На ненормальность распределения указывают:

  • Отсутствие симметрии в расположении значений.
  • Наличие ярко выраженных выбросов.

Как пример ненормального распределения (с выбросами) можно рассматривать среднее время ответа на комментарии по неделям:

курирование контента

Если посчитать среднее значение для такого набора данных с помощью среднего арифметического, то получится завышенное число. В итоге наши выводы будут более позитивными, чем реальное положение дел. Еще стоит учитывать, что выбросы могут не только завышать среднее значение, но и занижать его. В таком случае вы получите более скромный показатель, который не будет соответствовать реальности.

Например, в группе «Золотое Яблоко» во ВКонтакте иногда публикуют конкурсные посты. Они набирают более высокие показатели вовлеченности чем обычные публикации. Если посчитать средний ER с учетом конкурсов, мы получим 0,37%, а без учета конкурсов — только 0,29%. Аналогичная ситуация с числом комментариев. С конкурсами в среднем получаем 917 комментариев, а без конкурсов — всего лишь 503. Очевидно, что из-за розыгрышей средние показатели вовлеченности завышаются. В этом случае конкурсные посты следует исключить из анализа, чтобы объективно оценить эффективность контента в группе.

курирование контента

Еще часто бывает так, что данных очень много, заметны явные выбросы, но на их обработку и исключение аномальных значений не хватит ни времени, ни терпения. Тем более нет гарантий, что исключив выбросы, вы получите нормальное распределение. В таком случае лучше подсчитать средние значения, используя медиану.

Как найти медиану и когда ее применять

Если вы имеете дело с ненормальным распределением или замечаете значительные выбросы — используйте медиану. Так можно получить более адекватное среднее значение, чем при использовании среднего арифметического. Чтобы понять, как работать с медианой, рассмотрим аналогичный пример с ненормальным распределением времени ответов на комментарии.

курирование контента

Ниже в таблице уже введены данные из графика и рассчитано среднее время ответа с помощью среднего арифметического и медианы. Из расчетов видна наглядная разница между средним арифметическим и медианой ― она составляет 17 минут. Такое различие появляется из-за низкого темпа работы на выходных и в нестандартных ситуациях, когда к ответу на сообщения нужно относиться с особой ответственностью (события конца февраля). Подобные выбросы сильно завышают среднее арифметическое, а вот на медиану они практически не влияют. Поэтому если хотите посчитать среднее значение избегая влияния выбросов, — используйте медиану. Такие данные будут без искажений.

курирование контента

Как рассчитать

Разберем на примере. В аккаунте опубликовали семь постов и они набрали разное количество комментариев: 35, 105, 2, 15, 2, 31, 1. Чтобы вычислить медиану, нужно пройти два этапа:

  • Расположите числа в порядке возрастания. Итоговый ряд будет выглядеть так: 1, 2, 2, 15, 31, 35, 105.
  • Найдите середину сформированного ряда. В центре стоит число 15 — его и нужно считать медианой.

Немного сложнее найти медиану, если вы работаете с четным количеством чисел. Например, вы собрали количество лайков на последних шести постах: 32, 48, 36, 201, 52, 12. Чтобы найти медиану, выполните три действия:

  • Расставьте числа по возрастанию: 12, 32, 36, 48, 52, 201.
  • Возьмите два из них, наиболее близких к центру. В нашем случае — это 36 и 48.
  • Сложите два этих числа и разделите на два: (36 + 48) / 2 = 42. Результат и есть медиана.

Чтобы вычислять медиану быстрее и обрабатывать большие объемы данных — используйте Google Таблицы:

  • Внесите данные в таблицу.
  • Щелкните по свободной ячейке, в которую хотите записать медиану.
  • Введите формулу «=MEDIAN(» и выделите ряд чисел, для которых нужно рассчитать медиану. Нажмите «Enter», чтобы все посчиталось.

курирование контента

Когда можно не использовать

Если данные распределены нормально и вы не видите заметных выбросов — медиану можно не использовать. В этом случае значение среднего арифметического будет очень близким к медиане. Можете выбрать любой способ нахождения среднего, с которым вам работать проще. Результат от этого сильно не изменится.

Что такое мода и где ее использовать

Мода ― это самое популярное/часто встречающееся значение. Например, стоит задача узнать, сколько комментариев чаще всего набирают посты в аккаунте. В этом случае можно не высчитывать среднее арифметическое или медиану ― лучше и проще использовать моду.

Еще пример. Нужно узнать, в какое время аудитория чаще всего взаимодействует с публикациями. Для этого можно посчитать данные вручную или использовать готовую таблицу из LiveDune (вкладка «Вовлеченность» ― таблица «Лучшее время для поста»). По ее данным ― больше всего реакций пользователи оставляют в среду в 16 часов. Это время и есть мода. Таким образом, если вам нужно найти самое популярное значение, а не классическое среднее — проще использовать моду.

курирование контента

Как рассчитать

Чтобы найти наиболее часто встречающееся значение в наборе данных, нужно посмотреть, какое число встречается в ряду чаще всех. Например, для ряда 5, 4, 2, 4, 7 ― модой будет число 4.

Иногда в ряде значений встречается несколько мод. Например, ряду 7, 7, 21, 2, 5, 5 свойственны две моды — 7 и 5. В этом случае совокупность чисел называется мультимодальной. Также поиск моды можно упростить с помощью Google Таблиц:

  • Внесите значения в таблицу.
  • Щелкните по ячейке, в которую хотите записать моду.
  • Введите формулу «=MODE(» и выделите ряд чисел, для которых нужно вычислить моду. Нажмите «Enter».

курирование контента

Однако важно иметь в виду, что табличная функция выдает только самую меньшую моду. Поэтому будьте внимательны — можно упустить из виду несколько мод.

Когда использовать не стоит

Моду нет смысла использовать, если вас не просят найти самое популярное значение. Там, где надо найти классическое среднее значение, про моду лучше забыть.

Памятка по использованию

Среднее арифметическое

Как находим: сумма чисел / количество чисел.
Используем: если данные распределены нормально и нет ярких выбросов.
Не используем: если видим явные выбросы или ненормальное распределение.

Медиана

Как находим: располагаем числа в порядке возрастания и находим середину сформированного ряда.
Используем: если работаем с ненормальным распределением или видим выбросы.
Не используем: если выбросов нет и распределение нормальное.

Мода

Как находим: определяем значение, которое чаще всего встречается в ряду чисел.
Используем: если нужно найти не среднее, а самое популярное значение.
Не используем: если нужно найти классическое среднее значение.

Только важные новости в ежемесячной рассылке

Нажимая на кнопку, вы даете согласие на обработку персональных данных.

Подписывайся сейчас и получи гайд аудита Instagram аккаунта

Маркетинговые продукты LiveDune — 7 дней бесплатно

Наши продукты помогают оптимизировать работу в соцсетях и улучшать аккаунты с помощью глубокой аналитики

Анализ своих и чужих аккаунтов по 50+ метрикам в 6 соцсетях.

Оптимизация обработки сообщений: операторы, статистика, теги и др.

Автоматические отчеты по 6 соцсетям. Выгрузка в PDF, Excel, Google Slides.

Контроль за прогрессом выполнения KPI для аккаунтов Инстаграм.

Аудит Инстаграм аккаунтов с понятными выводами и советами.

Поможем отобрать «чистых» блогеров для эффективного сотрудничества.

Для нахождения моды и медианы случайной величины необходимы хорошие умения интегрировать и знания следующего теоретического материала. Модой дискретной случайной величины называют те ее возможное значение, которые соответствует наибольшей вероятности появления (т.е. такое значение величины , которое случается чаще всего при проведении экспериментов, опытов, наблюдений). В случае случайной величины модой называют то ее возможное значение, которому соответствует максимальное значение плотности вероятностей

В зависимости от вида функции случайная величина может иметь разное количество мод. Если случайная величина имеет одну моду, то такое распределение вероятностей называют одномодальным; если распределение имеет две моды — двухмодальным и более – мультимодальным.

Существуют и такие распределения, которые не имеют моды, их называют антимодальными. Медианой случайной величины называют то ее значения, для которого выполняются равенство вероятностей событий, то есть, плотность вероятностей справа и слева одинаковы и равны половине (0,5)

Графически мода и медиана изображенные на рисунке

При таком значению случайной величины график функции распределения делится на части с одинаковой площадью. Непрерывная случайная величина имеет только одно значение медианы. Для дискретной случайной величины медиану обычно не определяют, однако в некоторой литературе приводятся правила, согласно которым, для ряда случайных величин размещенных в порядке возрастания (вариационного ряда) моду определяют распределения: если есть нечетное количество случайных величин то медиана равна средней величине

в случае четного количества полусумме средних величин

Рассмотрим примеры определения моды и медианы.

Пример 1. В развлекательном центре работник обслуживает четыре дорожки для боулинга. Вероятность того, что какая-то дорожка нуждается в уборке в течение смены является постоянной величиной с вероятностью 85%.

Построить закон распределения вероятностей дискретной случайной величины — количество дорожек, которые требуют уборки. Найти моду .

Решение. Случайной величина может принимать значения

Вероятности появления значений определяем по образующей функцией

Для заданной задачи входные величины принимают значения

Искомые вероятности входят множителями при степенях аргумента

Закон распределения вероятностей запишем в виде таблицы

С таблице определяем моду , как значение при максимальной вероятности. Получили одномодальное распределение

Пример 2. По заданной плотностью вероятностей

найти параметр , плотность вероятностей , моду .

Решение. Применяя условие нормирования выполняем интегрирование

после того определяем параметр

Плотность вероятностей, учитывая найденное значение будет иметь вид

а ее график изображен на рисунке ниже

Из графика плотности вероятностей видим, что мода принимает значение . Определим медиану с помощью функции распределения вероятностей. Ее значение на промежутке находим интегрированием

Функция распределения иметь следующий вид

а ее график будет иметь вид

Для определения медианы случайной величины применяем формулу

Медиану можно найти с помощью плотности вероятностей

для дискретной случайной величины из промежутка

Таким образом медиану — возможное значение случайной величины , при котором прямая, проведенная перпендикулярно соответствующей точки на плоскости , делит площадь фигуры, ограниченной функцией плотности вероятностей на две равные части.

——————————-

Задача на определение моды и медианы случайной величины встречаются на практике не так часто, как плотности распределения вероятностей, однако вышеприведенный теоретический материал и решения распространенных примеров помогут Вам находить эти величины без больших затрат времени. При необходимости Вы всегда можете заказать решение задач по теории вероятностей в нас.

Понравилась статья? Поделить с друзьями:
  • Как найти радианную меру угла 180
  • Как исправить ошибку диска при установке виндовс
  • Как составить план рассказа 2 класс литературное чтение сова
  • Как исправить ошибку при начислении отпускных
  • Как найти страницу в интернете которую удалили