Как найти модуль абсолютную величину числа

Модуль числа — теория и решение задач

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Вот смотри…

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что  «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Модуль числа — коротко о главном

Определение модуля:

Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):

( displaystyle left| x right|=left{ begin{array}{l}x, xge 0\-x, x<0end{array} right.)

Свойства модуля:

  • Модуль числа есть число неотрицательное: ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0);
  • Модули противоположных чисел равны: ( left| -x right|=left| x right|);
  • Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
  • Модуль частного двух чисел равен частному их модулей: ( displaystyle left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0});
  • Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
  • Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
  • Квадрат модуля числа равен квадрату этого числа: ( {{left| x right|}^{2}}={{x}^{2}}).

Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.

И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).

Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).

Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).

То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).

Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).

Какое расстояние было пройдено в первом и во втором случае?

Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).

Таким образом, мы приблизились к понятию модуля.

Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).

Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.

Обозначается модуль просто:

( |mathbf{a}|,) (( a) — любое число).

Итак, найдём модуль числа ( 3) и ( -3):

( left| mathbf{3} right|=mathbf{3})

( left| -mathbf{3} right|=mathbf{3}.)

Основные свойства модуля

Первое свойство модуля

Модуль не может быть выражен отрицательным числом ( |mathbf{a}|text{ }ge text{ }mathbf{0})

То есть, если ( mathbf{a}) – число положительное, то его модуль будет равен этому же числу.

Если ( mathbf{a}text{ }>text{ }mathbf{0},) то ( displaystyle left| a right|=a).

Если ( a) – отрицательное число, то его модуль равен противоположному числу.

Если ( atext{ }<text{ }mathbf{0},) то ( |mathbf{a}|text{ }=text{ }-mathbf{a})

А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):

Если ( a=0), то ( |mathbf{a}|=mathbf{a}), или ( displaystyle left| 0 right|=0).

Из этого следует, что модули противоположных чисел равны, то есть:

( left| -4 right|text{ }=text{ }left| 4 right|text{ }=text{ }4;)

( left| -7 right|text{ }=text{ }left| 7 right|text{ }=text{ }7.)

А теперь потренируйся:

  • ( left| 9 right|text{ }=text{ }?;)
  • ( left| -3 right|text{ }=text{ }?;)
  • ( left| 16 right|text{ }=text{ }?;)
  •  ( left| 8 right|text{ }=text{ }?;)
  • ( left| -17 right|text{ }=text{ }?.)

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt{5} right|=?)

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим ( 2-sqrt{5}):

( 2<sqrt{5}) (Забыл, что такое корень? Бегом повторять!)

Если ( 2<sqrt{5}), то какой знак имеет ( 2-sqrt{5})? Ну конечно, ( 2-sqrt{5}<0)!

А, значит, знак модуля раскрываем, меняя знак у выражения:

( left| 2-sqrt{5} right|=-left( 2-sqrt{5} right)=-2+sqrt{5}=sqrt{5}-2)

Разобрался? Тогда попробуй сам:

  • ( left| sqrt{3}-1 right|=?)
  • ( left| 3-sqrt{7} right|=?)
  • ( left| 2-sqrt{7} right|=?)
  • ( left| sqrt{13}-4 right|=?)

Ответы:

( sqrt{3}-1; 3-sqrt{7}; sqrt{7}-2; 4-sqrt{13.})

Какими же ещё свойствами обладает модуль?

Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

То есть: ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|)

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

( left| mathbf{5}cdot mathbf{7} right|text{ }=text{ }left| mathbf{5} right|cdot left| mathbf{7} right|text{ }=text{ }mathbf{5}cdot mathbf{7}text{ }=text{ }mathbf{35};)

( left| mathbf{3}cdot left( -mathbf{2} right) right|text{ }=text{ }left| mathbf{3} right|cdot left| -mathbf{2} right|text{ }=text{ }mathbf{3}cdot mathbf{2}text{ }=text{ }mathbf{6}.)

А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

( displaystyle |frac{a}{b}|=frac{|a|}{|b|}) при условии, что ( mathbf{b}ne mathbf{0}) (так как на ноль делить нельзя).

Еще одно свойство модуля…

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.

( |a+bleft| text{ }le text{ } right|aleft| + right|b|)

Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.

Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:

( left| mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{10} right|text{ }=text{ }mathbf{10}) ( left| mathbf{3} right|+left| mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Выражения также равны, если оба числа отрицательны:

( displaystyle |-3+(-7)|~=~|-3-7|~)( displaystyle=|-10|=10) ( |-mathbf{3}left| + right|-mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

( left| -mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{4} right|text{ }=text{ }mathbf{4}) ( |-mathbf{3}left| + right|mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

или

( left| mathbf{3}+left( -mathbf{7} right) right|text{ }=text{ }left| -mathbf{4} right|text{ }=text{ }mathbf{4}) ( left| mathbf{3} right|+left| -mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

( mathbf{4}<mathbf{10})

Рассмотрим еще парочку полезных свойств модуля

Что если перед нами такое выражение:

( left| 7x right|)

Что мы можем сделать с этим выражением?

Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:

( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

( left| cx right|=ccdot left| x right|,) при ( c>0)

А чему равно такое выражение:

( {{left| x right|}^{2}}=?)

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.

И что же получается? А вот что:

( {{left| x right|}^{2}}={{x}^{2}})

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

( {{left| 5 right|}^{2}}={{5}^{2}}=25)

( {{left| -5 right|}^{2}}=?)

Ну, и почему сомнения? Действуем смело!

( {{left| -5 right|}^{2}}={{5}^{2}}=25)

Во всем разобрался? Тогда вперед тренироваться на примерах!

Тренировка на примерах

1. Найдите значение выражения ( |xleft| text{ }+text{ } right|y|), если ( x=text{ }-7,5text{ },y=text{ }12.)

2. У каких чисел модуль равен ( 5)?

3. Найдите значение выражений:

а) ( |3|text{ }+text{ }|-9|;)

б) ( |-5|text{ }-text{ }|6|;)

в) ( |15left| cdot right|-3|;)

г) ( displaystyle frac{|8|}{|-2|}).

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1:

Итак, подставим значения ( x) и ( y) в выражение ( |mathbf{x}left| text{ }-text{ } right|mathbf{y}|.) Получим:

( |-7,5|text{ }+text{ }|12|text{ }=7,5text{ }+text{ }12text{ }=text{ }19,5.)

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).

Решение 3:

а) ( |3|text{ }+text{ }|-9|=text{ }3+9=text{ }12;)
б) ( |-5|-text{ }left| 6 right|text{ }=text{ }5-6=text{ }-1;)
в) ( |15left| cdot right|-3|text{ }=text{ }15cdot 3=text{ }45;)
г) ( frac{|8|}{|-2|}=frac{8}{2}=4.)

Все уловил? Тогда пора перейти к более сложному!

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):

( left| x right|=left{ begin{array}{l}x,text{ }xge 0\-x,text{ }x<0end{array} right.)

Например: ( left| 4 right|=4;text{ }left| 0 right|=0;text{ }left| -3 right|=-left( -3 right)=3.)

Пример:

Упростите выражение ( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|).

Решение:

( sqrt{5}-3<0Rightarrow left| sqrt{5}-3 right|=-left( sqrt{5}-3 right)=3-sqrt{5};)

( sqrt{5}+1>0Rightarrow left| sqrt{5}+1 right|=sqrt{5}+1;)

( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|=3-sqrt{5}+sqrt{5}+1=4.)

Основные свойства модуля (итог)

Для всех ( x,yin mathbb{R}):

  • ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0;)
  • ( left| -x right|=left| x right|;)
  • ( left| xcdot y right|=left| x right|cdot left| y right|;)
  • ( left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0};)
  • ( left| x+y right|le left| x right|+left| y right|)
  • ( left| cx right|=ccdot left| x right|, при text{ }c>0)
  • ( {{left| x right|}^{2}}={{x}^{2}})

Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})

а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text{ }c>0)

Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text{ }Rightarrow text{ }left| c right|=c), тогда

( left| cx right|=ccdot left| x right|), ч.т.д.

Упростите выражение ( left| frac{31}{8}-sqrt{15} right|+left| frac{15}{4}-sqrt{15} right|)

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Видеоурок 1: Что Такое Модуль Числа И Как С Ним Разобраться. Часть 1

Видеоурок 2: Что Такое Модуль Числа И Как С Ним Разобраться. Часть 2

Лекция: Модуль (абсолютная величина) числа

Модуль числа — это величина, которая не может быть отрицательной. 

Например, если в условии задачи Вам не важно, какое число больше, а какое меньше, а лишь важно, какая разница между ними, то вы находите именно модуль. Если рассматривать числовую прямую, то модуль — это расстояние между двумя точками. Например, расстояние между точкой 0 и точкой -10 равно десяти, то есть числу не отрицательному.

Для модуля справедливо следующее соотношение:

Например, если у вас есть выражения:

В первом случае мы опускаем модуль без каких-либо изменений, поскольку величина, получившаяся под его знаком, всегда будет положительной. Во втором случае в соотношение вносится знак минус, который меняет слагаемые местами.

Основные свойства модулей:

Модуль числа

Модуль числа и уравнения с модулем — тема особенная, прямо-таки заколдованная :-) Она совсем не сложная, просто в школе её редко объясняют нормально. В результате без специальной подготовки почти никто из школьников не может дать правильное определение модуля и тем более решить уравнение с модулем. И эту картину мы наблюдаем на протяжении многих лет.

Поэтому осваивайте тему «Уравнения и неравенства с модулем» по нашим статьям и на наших занятиях! Вы сумеете обойти множество конкурентов на ЕГЭ, олимпиадах и вступительных экзаменах.

Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет никакого знака, поэтому модуль положительного числа равен ему самому. Например,  Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному (без знака!).
Например,

Обратите внимание: модуль числа всегда неотрицателен:

Определение модуля

Вот оно:

От большинства известных из школы определений оно отличается лишь одним: в нём есть выбор. Есть условие. И в зависимости от этого условия мы раскрываем модуль либо так, либо иначе.

Так же, как в информатике — в разветвляющихся алгоритмах с применением условных операторов. Как, вообще-то, и в жизни: сдал ЕГЭ на минимальный балл — можешь подавать документы в ВУЗ. Не сдал на минимальный балл — можешь идти в армию :-)

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,


В некоторых случаях модуль раскрывается однозначно. Например,  так как выражение под знаком модуля неотрицательно при любых x и y. Или:  так так как выражение под модулем неположительно при любых z.

Геометрическая интерпретация модуля

Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например, То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.

Рассмотрим простейшее уравнение . Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения  есть два решения: x = 3 и x = −3.

Вообще, если имеются два числа, a и b, то равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение длины отрезка AB, то есть расстояния от точки A
до точки B.)

Ясно, что (расстояние от точки a до точки b равно расстоянию от точки b до точки a).

Решим уравнение . Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.

Перейдём к неравенствам. Решим неравенство: .

Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.

Ответ: (-11; -3).

Другой пример. Решим неравенство: |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно 7. Отметим эти точки на числовой прямой.
Ответ: .

График функции 

Этот график надо знать обязательно. Для имеем y = x. Для имеем y = −x. В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.

Корень из квадрата

Нередко в задачах ЕГЭ требуется вычислить , где a – некоторое число или выражение. Не забывайте, что 

Действительно, по определению арифметического квадратного корня — это такое неотрицательное число, квадрат которого равен . Оно равно a при и -a при , т. е. как раз .

Примеры заданий ЕГЭ

1. Найдите значение выражения:  при .

Заметим, что при . Следовательно, значение нашего выражения равно: .

2. Найдите значение выражения:  при .

Действуем аналогично:

.

В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.

Читайте также: Уравнения с модулем

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Модуль числа» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Абсолютная величина – это модуль действительного числа (неотрицательное число), определение которого зависит от типа числа.

Абсолютная величина и свойства модуля

Абсолютная величина или модуль x (обозначается |x|) называется отрицательное число, что совпадает с x, если xgeq{0} и взятое со знаком минус, если x < 0, то есть

    [|x| = left{ = begin{aligned} x\ -x end{aligned} right]

(1)

В первом уравнении  x, если xgeq{0}, а во втором уравнении -x, если x < 0.

Например, |+5| = +5 = 5, |-3| = -(-3) = 3, |0| = 0.

Есть такие свойства модулей:

|x| = |-x|

(2)

xgeq{0}, тогда согласно (1) |x| = x. В это же время -x < 0, поэтому из первого свойства получается |-x| = -(-x) = x Значит |x| = |-x|. Теперь пусть x < 0, тогда из (1) имеем |x| = -x. В то же время -x > 0, поэтому |-x| = -x. Значит |x| = |-x|.

xleq{|x|, -xleq{|x|}

(3)

Доказательство неравенства (3).

а) Если x > 0, тогда в первом соотношении x = |x|, а во втором – -x < |x|.

б) Если же x < 0, тогда x < |x|, а -x = |x|.

|x + y|leq{|x| + |y|

(4)

Аналогично можно доказать (4).

Пусть:

а) x + y > 0 тогда согласно (1) |x + y| = x + y, а согласно (3) дальше у нас получается x + y leq{|x| + |y|.

б) x + y < 0, поэтому снова согласно (1), (3), и (2) имеем:

|x + y| = -(x + y) = (-x) + (-y)leq{|-x| + |-y| = |x| + |y|}.

Свойство доказано.

||x| - |y||leq{|x - y|}

(5)

Доказательство неравенства (5).

|x| = |x - y + y| = |(x - y) + y|leq [согласно (4)]leq{|x - y| + |y|to|x| - |y|leq{|x - y|}.

Аналогично:

|y| = |y - x + x| = |(y - x) + x|leq|y - x| + |x| = |x - y| + |x|to\{to}{|y| - |x|leq{|x - y|}.

Так как ||x| - |y|| = ||y| - |x||, тогда из полученных соотношений получается неравенство (5).

|xy| = |x| * |y|

(6)

По определению модуль произведения чисел x и y равен либо x x y, если x * ygeq{0}, либо -(x x y), если x x y < 0. Из правил умножения действительных чисел следует, что произведение модулей чисел x и y равно либо x x y. x * y geq{0}, либо -(x * y), если x * y < 0. что доказывает рассматриваемое свойство.

Рассмотрим (7) свойство:

Модуль частного от деления x на y = частному от деления модуля числа x на модуль числа y

mid{xover {y}}mid = {|x|over{|y|}}, где yneq{0}

(7)

Так как частное {xover{y}} = {x} * {1over{y}}, тогда {mid{xover {y}}} =  {mid{x} * {1over{y}}

Определение и свойство вышеперечисленных модулей применяются при исследовании функций, построения их графиков, решения уравнений и неравенств с модулями.

Геометрические свойства абсолютной величины

Если смотреть с точки зрения геометрической абсолютной величины, тогда модуль вещественного (действительного) или комплексного чисел находится расстояние между числом и началом координат. Рассмотрим комплексные и вещественные (действительные числа.

Вещественные числа

Комплексные числа

  • Область определения, то есть, вся комплексная плоскость.
  • Область значений – [0, +infty).
  • Модуль как комплексная функция ни в одной точке не дифференцируема

Обратим внимание, что абсолютной величине можно дать геометрическое объяснение: если задать на числовой оси OX точку с абсциссой x, тогда |x| – это расстояние этой точки x к точке O.

Алгебраические свойства абсолютной величины

Для любых вещественных чисел x, y имеют место такие соотношения:

Примеры решения задач с модулем

Задача

1) Построить график функции y = |x|.

2) Решить уравнение |x| = a, a > 0.

3) Решить неравенство |x| = leq{a}, a > 0.

4) Решить неравенство |x| > a, a > 0.

Решение

Сначала построим график функции y = |x|, а за основу берём (1) неравенство:

    [y = |x| = left{ begin{aligned} -x\ x end{aligned} right]

(8)

При этом в первом уравнении -x, если x < 0, а x, если xgeq{0}. Поэтому графиком функции y = |x| будет ломаная, см. рис. 1.

Абсолютная величина

Рис. 1

2) Первую часть задания выполнили, то есть, график построили а теперь нам необходимо решить уравнение |x| = a, a > 0.

Пользуясь изображением выше (рис. 1) по формуле (8) решим сначала уравнение |x|= a на интервале -infty < x < 0. Так как |x| = -x, тогда |x| = ato{-x} = ato{x} = -a.

Если же 0leq{x}leq{+infty}, тогда y = |x| = x, поэтому |x| = ato{x} = a.

Если a = 0, тогда у нас получается единственное решения x = 0.

Решили уравнение и получилось, что x = -a, x = aquad{a > 0}.

Обратим ваше внимание, что решения x = -a и x = a легко понять по рис. 1. А если выходить из геометрического содержания абсолютной величины, тогда очевидно, что на расстоянии |x| = a от точки 0 на оси OX находятся две точки x = -a и x = a.

3) Решаем неравенство |x| = leq{a}, a > 0.

Можно осуществить на каждом из интервалов (-infty, 0) и 0, +infty или проще воспользоваться нашим уже построенным рисунком, из которого видно, что график ломаной y = |x| находится не выше прямой y = a, a > 0 для -aleq{x}leq{a}, то есть

|x|leq{a}longleftrightarrow{-a}leq{x}leq{a}, где a > 0

(9)

4) Итак, решаем последнее неравенство |x| > a, a > 0.

Запишем, согласно с рис. 1:

|x| > a longleftrightarrow{x}in{(-infty, -a)}cup (a, +infty), a > 0.

(10)

Соотношение (9) и (10) будут использоваться и в дальнейшем.

Ответ

Решили уравнение и у нас получилось:  x = -a, x = aquad{a > 0};

Из первого неравенства получилось, что |x|leq{a}longleftrightarrow{-a}leq{x}leq{a}, где a > 0.

Второе неравенство – |x| > a longleftrightarrow{x}in{(-infty, -a)}cup (a, +infty), a > 0.

Задача

Записать без знака модуля для функции y = |x + 2|. Построить её график.

Решение

Приравняем подмодульное выражение к нулю x + 2 = 0to{x} = -2.

Теперь разделим ось на два интервала I = (-infty, -2) и II = (-2, +infty).

Абсолютная величина

Если xin{I}, тогда  x + 2 < 0, поэтому, согласно с (1) |x + 2| = -(x + 2).

Если же xin{II}, тогда x + 2 > 0, поэтому |x + 2| = x + 2. Значит

    [y = |x + 2| = left{ begin{aligned} -x - 2, xin{(-infty, -2),\ x + 2, xin[2, +infty). end{aligned} right]

Строим отдельно графики: y = -x - 2 для xin{(-infty, -2)} и y = x + 2 для xin{[-2, +infty). (см. рис. 2)

Абсолютная величина

Рис. 2

Мы видим, что график функции y = |x + 2| можно получить параллельным переносом графика y = |x| влево вдоль оси OX на две единицы.

Очевидно, что по большому счёту график функции y = |x - b| можно получить параллельным переносом графика y = |x| по направлению оси OX на b единиц  вправо, если b > 0 и влево, если b < 0.

Как и в примере 1 после построения графика y = |x - b| можно легко найти решение уравнения |x - b| = a, (a > 0), а также неравенств |x - b| < a, |x - b| > a.

Ответ

Запишем: y - |x - b||x - b| = a, (a > 0) и неравенство |x - b| < a, |x - b| > a.

Задача

Построить график функции y = |x + 2| + |x - 3|.

Решение

Аналогично предыдущему примеру, приравняем к нулю подмодульное выражение: x + 2 = 0to{x = -2}; x - 3 = 0to{x = 3}.

Разбиваем на три интервала:

Абсолютная величина

1. Если xin{(-infty, -2)}, тогда x + 2 < 0, x - 3 < 0, поэтому |x + 2| = -(x + 2), |x - 3| = -(x - 3}),

y = |x + 2| + |x - 3| = -x - 2 - x + 3 = -2x + 1.

2. Если xin{[-2, +3), тогда x + 2 geq{0} и |x + 2| = x + 2, а x - 3 < 0 и |x - 3| = -x + 3, поэтому y = |x + 2| + |x - 3| = x + 2 - x + 3 = 5.

3. Если xin{[+3, +infty), тогда x + 2 > 0, x - 3 geq{0}, поэтому y = x + 2 + x - 3 = 2x - 1.

Значит, для нашей функции имеем:

    [y = left{ begin{aligned} -2x + 1{x}in{(-infty, -2),\ 5 {x}in[-2, 3)\ 2x - 1{x}in{[3, +infty, end{aligned} right]

её график см. на рис. 3.

Абсолютная величина

Рис. 3

Понравилась статья? Поделить с друзьями:
  • Как найти артикул товара на озон
  • Как найти количество интервалов в статистике
  • Как найти лиру аполлона
  • Как найти экватор на географической карте
  • Как найти девушку если ты прыщавый