Электрическую цепь любой сложности, имеющую две пары зажимов для подключения к источнику и приемнику электрической энергии, в технике связи называют четырехполюсником. Зажимы, к которым подключается источник, называются входными, а зажимы, к которым присоединяется приемник (нагрузка) – выходными зажимами (полюсами).
В общем виде четырехполюсник изображают, как показано на рис. 1.1. К входу четырехполюсника 1–1′ подключен источник электрической энергии с комплексным действующим значением напряжения и внутренним сопротивлением . К выходным зажимам 2–2′ присоединена нагрузка с сопротивлением . К входным зажимам приложено напряжение с комплексным действующим значением , к выходным – с комплексным действующим значением . Через входные зажимы протекает ток с комплексным действующим значением , через выходные зажимы – с комплексным действующим значением . Заметим, что в роли источника и приемника электрической энергии могут выступать другие четырехполюсники.
Рис. 1.1
На рис. 1.1 использованы символические обозначения напряжений и токов. Это означает, что анализ электрической цепи проводится для гармонического колебания определенной частоты. Для данного гармонического колебания можно определить передаточную функцию нагруженного четырехполюсника, которая будет представлять собой отношение комплексного действующего значения выходной электрической величины к комплексному действующему значению входной электрической величины.
Если входным воздействием считать напряжение генератора с комплексным действующим значением , а реакцией четырехполюсника на это воздействие – напряжение с комплексным действующим значением или ток с комплексным действующим значением , то получаются комплексные передаточные функции общего вида:
, (1.1)
. (1.2)
В частных случаях, когда заданными воздействиями являются напряжение на входных зажимах четырехполюсника или ток, протекающий через эти зажимы, получают следующие четыре разновидности передаточных функций:
– комплексный коэффициент передачи по напряжению (для активных четырехполюсников, например усилителей, он носит название коэффициента усиления по напряжению);
– комплексный коэффициент передачи по току (для активных цепей – коэффициент усиления по току);
– комплексное передаточное сопротивление;
– комплексная передаточная проводимость.
Часто в теории цепей используют нормированную или рабочую передаточную функцию четырехполюсника:
, (1.3)
которая получается путем нормирования (1.1) множителем .
Как всякую комплексную величину Н можно представить в показательной форме:
, (1.4)
где – модуль комплексной передаточной функции, а j – ее аргумент.
Рассмотрим комплексную передаточную функцию по напряжению
, (1.5)
Подставляя в (1.5) запись комплексных действующих значений
,
получим
.
Из сравнения этого выражения с (1.4) видно, что
,
т. е. модуль комплексной передаточной функции по напряжению (или комплексного коэффициента усиления по напряжению) показывает во сколько раз изменяется действующее значение (амплитуда) гармонического колебания напряжения на выходе цепи по сравнению с аналогичным значением на входе цепи, а аргумент этой функции определяет сдвиг фаз между гармоническими колебаниями напряжения на входе и выходе.
Точно так же можно найти:
.
Все сказанное выше о коэффициенте передачи по напряжению справедливо и для коэффициента передачи по току.
Если мы будем изменять частоту гармонического колебания, то выражение (1.4) следует записать в виде:
. (1.6)
Функция частоты называется амплитудно-частотной характеристикой цепи (АЧХ). Она показывает какие изменения в амплитуды гармонических колебаний вносит цепь на каждой частоте.
Функция частоты называется фазо-частотной характеристикой цепи (ФЧХ). Соответственно эта характеристика показывает какой фазовый сдвиг приобретает гармоническое колебание каждой частоты при распространении по цепи.
Комплексную передаточную функцию можно представить также в алгебраической форме:
,
где Re и Im означают реальную и мнимую части комплексной величины.
Из теории комплексных величин известно, что
Пример 1.1
Определить коэффициент передачи по напряжению , АЧХ и ФЧХ цепи, изображенной на рис. 1.2, а.
Согласно (1.5) запишем
.
Найдем комплексную функцию на выходе цепи:
.
Подставив в формулу для , получим комплексную передаточную функцию:
;
Рис. 1.2
АЧХ цепи
;
ФЧХ цепи
.
Изменяя частоту w от 0 до Ґ , можем изобразить графики АЧХ и ФЧХ цепи (рис. 1.2, б и в).
АЧХ и ФЧХ цепи можно представить единым графиком, если построить зависимость комплексной передаточной функции от частоты w на комплексной плоскости. При этом конец вектора опишет некоторую кривую, которая называется годографом комплексной передаточной функции (рис. 1.3).
Рис. 1.3
Часто специалисты оперируют понятием логарифмической амплитудно-частотной характеристики (ЛАХ):
.
Значения величины К оцениваются в децибелах (дБ). В активных цепях, содержащих усилители, величину К называют еще логарифмическим усилением. Для пассивных цепей вместо коэффициента усиления вводят понятие ослабления цепи:
, (1.7)
которое также оценивается в децибелах.
Пример 1.2
Известно, что модуль коэффициента передачи по напряжению цепи принимает следующие значения:
f = 0 кГц Н(f) = 1
f = 1 кГц Н(f) = 0,3
f = 2 кГц Н(f) = 0,01
f = 4 кГц Н(f) = 0,001
f = 8 кГц Н(f) = 0,0001
Рис. 1.4
Изобразить график ослабления цепи.
Значения ослабления цепи, рассчитанные по (1.7), приведены в таблице:
f, кГц |
0 |
1 |
2 |
4 |
8 |
А(f), дБ |
0 |
12 |
40 |
60 |
80 |
График А(f) приведен на рис. 1.4.
Если вместо комплексных сопротивлений емкости и индуктивности иметь дело с операторными сопротивлениями емкости и индуктивность pL, то в выражении нужно заменить на р.
Операторная передаточная функция цепи может быть записана в общем виде как дробно-рациональная функция с вещественными коэффициентами:
, (1.8)
или в виде
, (1.9)
где – нули; – полюсы передаточной функции; .
Заменив в (1.8) оператор р на jw , вновь получим комплексную передаточную функцию цепи
,
где АЧХ цепи
; (1.10)
ФЧХ цепи
. (1.11)
Учитывая, что является иррациональной функцией, обычно при анализе и синтезе цепей имеют дело с квадратом АЧХ:
, (1.12)
где коэффициенты получаются путем объединения коэффициентов при одинаковых степенях переменной w .
Пример 1.3
Найти коэффициент передачи по напряжению и квадрат АЧХ цепи, изображенной на рис. 1.5, а.
Коэффициент передачи по напряжению этой цепи равен
где Н = 1, , .
Корни числителя этой рациональной дроби, т. е. нули передаточной функции,
.
Корни знаменателя, или полюсы передаточной функции,
Рис. 1.5
.
На рис. 1.5, б показано расположение нулей и полюсов функции при .
По теореме Виета
.
Амплитудно-частотная характеристика определяется из путем замены р на и вычисления модуля полученной функции
.
Квадрат АЧХ запишется в виде
где ; ;
;
.
АЧХ цепи изображена на рис. 1.5, в.
Перечислим основные свойства операторных передаточных функций и квадрата АЧХ пассивных цепей:
1. Передаточная функция является дробно-рациональной функцией с вещественными коэффициентами. Вещественность коэффициентов объясняется тем, что они определяются элементами схемы.
2. Полюсы передаточной функции располагаются в левой полуплоскости комплексной переменной р. На расположение нулей ограничений нет. Докажем это свойство на примере передаточной функции . Выберем входное воздействие или в операторной форме . Изображение выходного напряжения в этом случае численно равно , т. е.
где – полином числителя передаточной функции; – коэффициенты разложения дробно-рациональной функции на сумму простых дробей.
Перейдем от изображения к оригиналу :
, (1.13)
где в общем случае .
В пассивных и устойчивых активных четырехполюсниках колебания на выходе четырехполюсника после прекращения воздействия должны иметь затухающий характер. Это означает, что в (1.13) вещественные части полюсов должны быть отрицательными , т. е. полюсы должны находиться в левой полуплоскости переменной р.
3. Степени полиномов числителей передаточной функции и квадрата АЧХ не превышают степеней полиномов знаменателей, т. е. n Ф m. Если бы это свойство не выполнялось, то на бесконечно больших частотах АЧХ принимала бы бесконечно большое значение (так как числитель рос бы с увеличением частоты быстрее знаменателя), т. е. цепь обладала бы бесконечным усилением, что противоречит физическому смыслу.
4. Квадрат АЧХ является четной рациональной функцией переменной w с вещественными коэффициентами. Это свойство с очевидностью вытекает из способа получения квадрата АЧХ по передаточной функции.
5. Квадрат АЧХ не может принимать отрицательных и бесконечно больших значений при w > 0. Неотрицательность следует из свойств квадрата модуля комплексной величины. Конечность значений АЧХ на реальных частотах объясняется так же, как и в свойстве 3.
В большинстве цепей с зависимыми источниками имеется по крайней мере два пути прохождения сигнала: прямой (от входа к выходу) и обратный (с выхода на вход). Обратный путь прохождения сигнала реализуется с помощью специальной цепи обратной связи (ОС). Таких путей, а значит и цепей ОС, может быть несколько. Наличие в цепях с зависимыми источниками ОС придает им новые ценные качества, которыми не обладают цепи без ОС. Например, с помощью цепей ОС можно осуществить температурную стабилизацию режима работы цепи, уменьшить нелинейные искажения, возникающие в цепях с нелинейными элементами и т. д.
Любую цепь с обратной связью можно представить состоящей из двух четырехполюсников (рис. 1.6).
Рис. 1.6
Активный линейный четырехполюсник с передаточной функцией по напряжению является усилителем. Его иногда называют основным элементом цепи и говорят, что он образует канал прямого усиления.
Пассивный четырехполюсник с передаточной функцией по напряжению называется цепью обратной связи. На входе цепи осуществляется суммирование входного напряжения и напряжения обратной связи .
Выведем формулу передаточной функции по напряжению цепи, изображенной на рис. 1.6. Пусть на вход подается напряжение . Его операторное изображения . На выходе цепи возникает напряжение . В соответствии с рис. 1.6 его операторное изображение
. (1.14)
Операторное изображение можно записать через передаточную функцию цепи обратной связи
.
Тогда выражение (1.14) можно переписать в виде
или
. (1.15)
Операторная передаточная функция по напряжению цепи с ОС (см. рис. 1.6).
. (1.16)
Пример 1.4
На рис. 1.7 изображена цепь на операционном усилителе (ОУ), предназначенная для масштабирования напряжения. Найти передаточную функцию этой цепи.
Получим передаточную функцию этой цепи как цепи с обратной связью, используя формулу (1.16).
Цепью обратной связи на схеме рис. 1.7 служит Г-образный делитель напряжения, составленный из резистивных сопротивлений и . Выходное напряжение усилителя поступает на вход цепи ОС; напряжение ОС снимается с резистора . Передаточная функция по напряжению цепи ОС
Рис. 1.7
.
Воспользуемся формулой (1.16) и учтем, что входное напряжение и напряжение обратной связи не суммируются, а вычитаются. Тогда получим передаточную функцию масштабного усилителя:
.
Учитывая, что в реальных ОУ значение >> 1, окончательно имеем:
,
Пример 1.5
Звено на ОУ с частотно-зависимой ОС представлено на рис. 1.8. Найти передаточную функцию этого звена.
Рис. 1.8
Чтобы проанализировать прямой путь прохождения сигнала и путь прохождения сигнала ОС, необходимо воспользоваться методом наложения. Для этого следует поочередно исключать источники входного напряжения и напряжения обратной связи, заменяя их внутренним сопротивлением. В случае идеальных источников напряжения их внутреннее сопротивление равно нулю. Напряжение , приложенное к звену, ослабляется входной цепью, представляющей собой Г-образный делитель напряжения с сопротивлениями и в плечах. Передаточная функция по напряжению такого делителя равна
.
Цепь обратной связи также является Г-образным четырехполюсником с передаточной функцией.
Коэффициент усиления ОУ .
В соответствии с формулой (1.16) получаем передаточную функцию звена:
Учитывая, что >> 1, получаем:
.
Данное звено может выполнять различные функции в зависимости от вида сопротивлений и . При и звено превращается в инвертирующий масштабный усилитель; при и – в интегратор; при и – в дифференциатор.
Пример 1.6
Звено второго порядка с регулируемым коэффициентом усиления представлено на рис. 1.9, а. Найти передаточную функцию этого звена.
Анализ прохождения входного сигнала и сигнала в цепи ОС показывает, что звено имеет входную цепь, изображенную на рис. 1.9, б и цепь ОС, показанную на рис. 1.9, в. Передаточные функции этих цепей можно получить матричным методом, например, рассматривая каждую цепь как каскадное соединение соответствующих Г-образных четырехполюсников.
Рис. 1.9
Для входной цепи
. (1.17)
Для цепи ОС
. (1.18)
С учетом (1.16) получим передаточную функцию звена
. (1.19)
Коэффициент передачи усилителя . Тогда, подставляя (1.17) и (1.18) в (1.19), после преобразования имеем
.
Переходя в (1.16) от оператора р к оператору , получаем комплексную передаточную функцию
. (1.20)
Произведение представляет собой комплексную передаточную функцию усилителя и цепи обратной связи при условии, что обратная связь разорвана (рис. 1.10). Функцию называют передаточной функцией по петле ОС или петлевым усилением. Введем понятия положительной и отрицательной обратной связи. Эти понятия играют заметную роль в теории цепей с обратной связью.
Рис. 1.10
Предположим вначале, что передаточные функции , , не зависят от частоты и являются вещественными числами. Такая ситуация возможна, когда в цепи отсутствуют LC-элементы. При этом может быть как положительным, так и отрицательным числом. В первом случае сдвиг фаз между входным и выходным напряжениями или, другими словами, сдвиг фаз по петле обратной связи равен нулю или , k = 0, 1, 2, … Во втором случае, когда , сдвиг фаз по этой петле равен или .
Если в цепи с обратной связью сдвиг фаз по петле равен нулю, то обратная связь называется положительной, если же сдвиг фаз равен , то такая обратная связь называется отрицательной.
Передаточную функцию можно изобразить в виде векторов и показать их на комплексной плоскости. При положительной обратной связи вектор находится на положительной вещественной полуоси, а при отрицательной обратной связи – на отрицательной вещественной полуоси.
Кривая, которую описывает конец вектора при изменении частоты w (рис. 1.11), называется, как известно, годографом.
Рис. 1.11
Представление в виде годографа позволяет определить вид обратной связи в случае частотнозависимой обратной связи.
Обратная связь называется положительной, если годограф лежит в правой, и отрицательной – если в левой полуплоскости комплексной плоскости. Отрицательная ОС применяется для стабилизации коэффициента усиления, подавления паразитных сигналов, коррекции частотных характеристик; положительная ОС может являться причиной неустойчивости цепи.
Введем понятия устойчивой и неустойчивой цепи. Цепь называется устойчивой, если свободные колебания с течением времени стремятся к нулю. В противном случае цепь называется неустойчивой. Из теории переходных процессов следует, что цепь является устойчивой, если корни характеристического уравнения лежат в левой полуплоскости комплексной переменной р. Если корни такого уравнения лежат в правой полуплоскости, то цепь является неустойчивой, т. е. она находится в режиме самовозбуждения. Таким образом, для определения условий устойчивости цепи достаточно найти характеристическое уравнение и его корни. Как видим, условия устойчивости можно определить и не вводя понятие обратной связи. Однако здесь возникает ряд проблем. Дело в том, что вывод характеристического уравнения и определение его корней являются громоздкой процедурой, особенно для цепей высокого порядка. Введение понятия обратной связи облегчает получение характеристического уравнения или даже дает возможность обойтись без него. Крайне важно и то, что понятие обратной связи адекватно физическим процессам, возникающим в цепи, поэтому они становятся более наглядными. Глубокое понимание физических процессов облегчает работу по созданию автогенераторов, усилителей и т. д.
Рассмотрим цепь (см. рис. 1.6) и выведем ее характеристическое уравнение. Пусть и, значит, . Тогда из (1.15) следует:
. (1.21)
Здесь (в противном случае цепь нельзя считать возбужденной) и поэтому равенство (1.21) выполняется при условии
. (1.22)
Если записать передаточную функцию основной цепи в виде , а цепи ОС – , то уравнение (1.22) перепишется следующим образом:
.
Это равенство выполняется при
. (1.23)
Выражение в левой части этого равенства является полиномом, поэтому (1.23) можно записать в общем виде:
. (1.24)
Это и есть характеристическое уравнение цепи.
Корни уравнения (1.24) в общем случае являются комплексными величинами
где . Зная корни характеристического уравнения, можно записать выходное напряжение:
. (1.25)
Чтобы напряжение не возрастало безгранично, всем корням характеристического уравнения необходимо иметь отрицательные вещественные части, т. е. корни должны располагаться в левой полуплоскости комплексной переменной . Цепь с ОС, обладающая такими свойствами, называется абсолютно устойчивой.
При исследовании цепей с обратной связью могут возникать две проблемы. Если проектируемая цепь должна быть устойчивой, то необходимо располагать критерием, который по виду функций и позволял бы судить об отсутствии корней характеристического уравнения в правой полуплоскости р. Если обратная связь используется для создания неустойчивой автоколебательной цепи, то следует убедиться, что корни уравнения (1.24) расположены, наоборот, в правой полуплоскости. При этом необходимо иметь такое расположение корней, при котором самовозбуждение происходило бы на требуемой частоте.
Рассмотрим критерий устойчивости цепи, названный критерием Найквиста, и позволяющий судить об устойчивости цепи с обратной связью по свойствам разомкнутой цепи (рис. 1.10).
Передаточная функция разомкнутой цепи, или петлевое усиление, входит в характеристическое уравнение (1.22):
, (1.26)
Если найдется такая частота w , для которой конец вектора попадает в точку с координатами (1, j0), то это будет означать, что выполняется условие (1.26), т. е. на этой частоте в цепи произойдет самовозбуждение. Значит, по годографу можно определить, устойчива цепь или нет. Для этого используется критерий Найквиста, который формулируется следующим образом: если годограф передаточной функции разомкнутой цепи не охватывает точку с координатами (1, j0), то при замкнутой цепи обратной связи цепь является устойчивой. В том случае, когда годограф охватывает точку (1, j0), цепь неустойчива. На рис. 1.11 показаны годографы трех цепей с положительной обратной связью (цифра 1 соответствует годографу устойчивой цепи).
Пользуясь критерием Найквиста, легко получить условия самовозбуждения цепи с ОС. Запишем выражение для в виде
,
где , – модули передаточных функций;
, – фазовые сдвиги соответственно в основном элементе и в цепи ОС.
Условия пересечения годографом оси абсцисс при Х 1 можно записать в виде двух условий:
- условие (уравнение) баланса фаз , где n = 0, 1, 2, …;
- амплитудное условие
Х 1, или Х 1.
Выполнение неравенства соответствует режиму возникновения колебаний с нарастающей амплитудой, что характерно для начального этапа самовозбуждения. Выполнение равенства соответствует режиму генерации гармонического напряжения на частоте с постоянной амплитудой и носит название баланса амплитуд.
Как будет показано ниже, уравнение баланса фаз позволяет определить частоту, на которой происходит самовозбуждение цепи с ОС, а уравнение баланса амплитуд дает возможность определить величину амплитуды генерируемого колебания с частотой в стационарной режиме.
Пример 1.7
Исследуем устойчивость цепи, изображенной на рис. 1.9, а. В ней можно выделить усилительный элемент с передаточной функцией и цепь обратной связи (рис. 1.9, в) с передаточной функцией (1.18)
,
где .
Кроме того, напомним, что на усилитель сигнал поступает через входную цепь (рис. 1.9, б), передаточная функция которой (см. (1.17))
.
Получим характеристическое уравнение цепи:
или
.
Откуда окончательно получаем
.
Корни этого характеристического уравнения
зависят от коэффициента усиления усилителя К. Расположение корней и на плоскости комплексного переменного р для разных коэффициентов усиления и соответствующие этому графики свободных колебаний в цепи показаны на рис. 1.12.
Устойчивость данной цепи можно исследовать и с помощью критерия Найквиста. Комплексная передаточная функция разомкнутой цепи равна
Рис. 1.12
На рис. 1.11 приведены годографы устойчивой (К = 2, кривая 1) и неустойчивой (К = 3, кривая 2; К = 4, кривая 3) цепи.
Вопросы и задания для самопроверки
1. Что такое комплексная передаточная функция? Какие виды комплексных передаточных функций четырехполюсника известны?
2. Определить коэффициент передачи по напряжению , АЧХ и ФЧХ цепи, изображенной на рис. 1.2, а, если выходным напряжением является напряжение на резисторе R. Построить графики АЧХ и ФЧХ.
Ответ: ; ; 90° – arctg wRC.
3. Определить коэффициент передачи по напряжению при холостом ходе и коэффициент передачи по току при коротком замыкании для П-образного четырехполюсника в продольную ветвь которого включена индуктивность L, а в поперечные ветви – емкость С. Ответ: .
4. Определить ослабление, вносимое цепью рис. 1.2, а, при R = 31,8 кОм и = 10 кОм.
Ответ: 12 дБ.
5. Что такое операторная передаточная функция? Как она связана с комплексной передаточной функцией? Как определить нули и полюсы операторной передаточной функции?
6. Определить операторную передаточную функцию, комплексный коэффициент передачи по напряжению, АЧХ и квадрат АЧХ последовательного колебательного контура, изображенного на рис. 1.5, а, если выходным напряжением является напряжение на емкости С. Построить график АЧХ цепи.
Ответ: ; .
7. Перечислить основные свойства операторных передаточных функций пассивных цепей.
8. Как рассчитывается передаточная функция цепи с обратной связью?
9. Доказать, что операторная передаточная функция дифференциатора на операционном усилителе равна (–pRC). Построить график АЧХ такого дифференциатора.
10. Рассчитать передаточную функцию каскадного соединения цепей, изображенных на рис. 1.2, а и 1.7. Построить график АЧХ полученной цепи.
11. Определить передаточную функцию фильтра, изображенного на рис. 1.13.
Рис. 1.13
Ответ: .
12. Что такое годограф петлевого усиления? Как по годографу определить тип обратной связи?
13. Как формулируется критерий устойчивости Найквиста? Для каких цепей он используется?
14. Определить комплексную передаточную функцию разомкнутой цепи, изображенной на рис. 1.13. Исследуйте зависимость устойчивости цепи от величины коэффициента усиления К.
Ответ: .
Y (z) = H (z) X (z) ;
N −1 |
|||
∑bi z −i |
|||
Y (z) = |
i=0 |
X (z) |
|
M −1 |
|||
1 + ∑ ak z −k |
|||
k =1 |
автоматически перейти к соответствующим соотношениям в час-
тотной области:
Y |
) |
) |
) |
||||||
(e jω) = H (e jω) X (e jω) ; |
|||||||||
N −1 |
) |
||||||||
) |
∑bi e− jiω |
) |
|||||||
Y (e |
jω |
) = |
i=0 |
X (e |
jω |
) , |
|||
M −1 |
) |
||||||||
1 + ∑ ak e− jkω |
k =1
где
X (e jω) ) = X (e jωT ) ; Y (e jω) ) =Y (e jωT )
– фурье-изображения воздействия и реакции соответственно.
На основании этого частотную характеристику можно определить как отношение фурье-изображений реакции и воздействия при нулевых начальных условиях, подобно передаточной функции
(1.45) при подстановке z = e jω) :
) |
||||||||
) |
Y (z) |
Y (e |
jω |
|||||
H (e jω) = |
= |
)) |
. |
|||||
X (z) z=e jω |
||||||||
X (e jω) |
||||||||
) |
||||||||
1.ЧХ H (e jωT ) , АЧХ A(ω) и ФЧХ ϕ(ω) – непрерывные функции частоты по определению.
2.ЧХ H (e jωT ) , АЧХ A(ω) и ФЧХ ϕ(ω) – периодические функ-
ции частоты с периодом, равным частоте дискретизации
ωд = 2Tπ .
Доказательство периодичности функций следует из того, что их аргумент e jωT – периодическая функция частоты с периодом 2Tπ
42
e jωT = e j(ω±2Tπk )T = e jωT e j2πk ≡ e jωT .
Взависимости от используемой шкалы частот период ЧХ, АЧХ
иФЧХ равен
f → fд ; |
(1.70) |
ω→ ωд ; |
(1.71) |
ω→ 2π . |
(1.72) |
Если коэффициенты ПФ вещественные (а другие не рассматриваются), то АЧХ будет четной, а ФЧХ – нечетной функцией часто-
ты [1]:
A(ω) = A(−ω) ;
ϕ(ω) = −ϕ(−ω) .
Напомним, что четной называется такая функция, которая не изменяет своего значения при изменении знака переменной.
Если же при изменении знака переменной изменяется знак функции, а ее абсолютное значение сохраняется неизменным, то такая функция называется нечетной.
На практике представляют интерес графики АЧХ и ФЧХ в основной полосе частот (см. п. 1.1.2).
1.5.3. Расчет АЧХ и ФЧХ
Получим частотную характеристику H (e jωT ) по известной передаточной функции H (z) общего вида (1.46)
N −1 |
|||
∑bi z −i |
|||
H (z) = |
i=0 |
. |
|
M −1 |
|||
1 + ∑ ak z −k |
|||
Выполнив замену |
k =1 |
||
z = e jωT , |
(1.73) |
запишем частотную характеристику в виде
N−1
∑bi e− j(iωT )
H (e jωT ) = i=0− . (1.74)
1 + M∑1 ak e− j(kωT ) k =1
43
Раскроем экспоненты по формуле Эйлера, например, в знаменателе
e− jkωT = cos(kωT ) − j sin(kωT ) , |
(1.75) |
после чего выделим вещественные и мнимые части в числителе и знаменателе (1.74):
H (e |
jωT |
) = |
Reч + |
j Imч |
, |
(1.76) |
Reз + |
j Imз |
|||||
где индексы «ч» и «з» означают числитель и знаменатель. Определим модуль (АЧХ) и аргумент (ФЧХ) частотной харак-
теристики H (e jωT ) |
||||||||||||
A(ω) = H (e jωT ) = Reч |
2 |
+ Imч |
2 |
; |
(1.77) |
|||||||
Reз |
2 |
+ Imз |
2 |
|||||||||
Im |
ч |
Im |
з |
|||||||||
ϕ(ω) = arg{H |
(e jωT )}= arctg |
− arctg |
. |
(1.78) |
||||||||
Reч |
Reз |
Полученные выражения используются для расчета АЧХ и ФЧХ в основной полосе частот.
1.5.4. Расчет АЧХ и ФЧХ звена 2-го порядка
Пользуясь описанной выше методикой, определим АЧХ и ФЧХ звена 2-го порядка по его передаточной функции H (z) (1.49):
b |
0 |
+ b z −1 |
+ b |
2 |
z −2 |
|||||
H (z) = |
1 |
. |
||||||||
1 + a z −1 |
+ a |
|||||||||
2 |
z −2 |
|||||||||
1 |
Выполнив замену переменных (1.73) и используя нормированную частоту ω = ωT , получим частотную характеристику
) |
) |
|||||||||
) |
b0 |
+ b1e |
− jω |
+ b2e |
− j2ω |
|||||
H (e jω) = |
) |
) |
. |
(1.79) |
||||||
1 + a e− jω |
+ a |
2 |
e− j2ω |
|||||||
1 |
Раскрыв экспоненты по формуле Эйлера (1.75)
H (e jω) ) = b0 + b1[[cos()ω)) − j sin(ω)))]]+ b2 [[cos(2)ω)) − j sin(2)ω))]] 1 + a1 cos(ω) − j sin(2ω) + a2 cos(ω) − j sin(2ω)
и выделив вещественные и мнимые части согласно (1.76), запишем частотную характеристику в виде
H (e jω) ) = [[b0 +b1 cos()ω)) +b2 cos(2)ω))]]− [j[b1 sin()ω)) +b2 sin(2)ω))]]. (1.80) 1 + a1 cos(ω) + a2 cos(2ω) − j a1 sin(ω) + a2 sin(2ω)
44
) |
|||||||||||||||||||
Модуль (АЧХ) данной H (e jω) согласно (1.77) равен |
|||||||||||||||||||
) |
) |
) |
) |
) |
|||||||||||||||
[b +b cos(ω) +b |
cos(2ω)]2 |
+[b sin(ω) +b |
sin(2ω)]2 |
,(1.81) |
|||||||||||||||
A(ω) = |
0 |
1 |
) |
2 |
) |
1 |
2 |
) |
|||||||||||
[1 + a |
) |
||||||||||||||||||
cos(ω) + a |
2 |
cos(2ω)]2 +[a |
sin(ω) + a |
2 |
sin(2ω)]2 |
||||||||||||||
1 |
1 |
||||||||||||||||||
аргумент (ФЧХ) согласно (1.78) равен |
) |
||||||||||||||||||
) |
a |
) |
|||||||||||||||||
sin(ω) + a |
sin(2ω) |
||||||||||||||||||
ϕ(ω) |
= arctg |
1 |
) |
2 |
) |
− |
|||||||||||||
1 + a |
|||||||||||||||||||
cos(ω) |
+ a |
2 |
cos(2ω) |
. |
(1.82) |
||||||||||||||
1 |
) |
) |
|||||||||||||||||
b sin(ω) + b |
sin(2ω) |
||||||||||||||||||
− arctg |
b0 |
1 |
) |
2 |
) |
||||||||||||||
+ b1 cos(ω) + b2 cos(2ω) |
Особенности расчета по данным формулам обсуждаются ниже.
1.5.5. Экспресс-анализ АЧХ и ФЧХ звена 2-го порядка
На практике часто требуется оценить АЧХ и ФЧХ при минимуме расчетов. С этой целью строят приближенные графики рассматриваемых характеристик по их значениям в нескольких точках, количество которых должно быть минимально достаточным. Такой быстрый способ оценки частотных характеристик называется экс-
пресс—анализом.
Экспресс-анализ АЧХ предполагает заранее известными особенности анализируемой функции: гладкость, количество экстремумов, нулей и др.
Проведем экспресс-анализ АЧХ и ФЧХ звена 2-го порядка. Методами математического анализа можно показать, что в ос-
новной полосе частот АЧХ звена 2-го порядка (1.81):
—имеет экстремум либо нуль на границах основной полосы, при этом нуль будет наименьшим значением, но не минимумом АЧХ;
—может иметь один максимум и один минимум либо нуль внутри основной полосы, при этом нуль будет наименьшим значением, но не минимумом АЧХ.
При отсутствии нулей АЧХ представляет собой гладкую функцию.
Следовательно, для оценки АЧХ звена 2-го порядка достаточно построить ее график по пяти точкам:
—двум – на границах основной полосы,
—одной (уточняющей) – посередине основной полосы,
—двум – внутри основной полосы, соответствующим максимуму и минимуму (либо нулю) АЧХ.
45
Полагая, что передаточная функция H (z) (1.49) звена 2-го по-
рядка известна, получим формулы экспресс-анализа АЧХ и ФЧХ по следующим пяти точкам
ω) = 0 ; π; π2 ; ω) ; ω)o,
где ω) – частота, на которой АЧХ имеет максимум внутри основ-
ной полосы (частота максимума АЧХ);
ω)o – частота, на которой АЧХ имеет минимум или равна нулю
внутри основной полосы (частота минимума или нуля АЧХ). Определим значения АЧХ и ФЧХ в указанных пяти точках: 1) в точке ω= 0 (рис. 1.15)
z = e j0 =1; z −1 =1 , |
||||||||||||||||||||
откуда |
||||||||||||||||||||
A(0) = |
H (1) |
= |
b0 + b1 + b2 |
; |
(1.83) |
|||||||||||||||
1 + a + a |
2 |
|||||||||||||||||||
1 |
||||||||||||||||||||
ϕ(0) = arg{H (1)}= 0 ; |
(1.84) |
|||||||||||||||||||
j Im |
||||||||||||||||||||
j |
||||||||||||||||||||
−1 |
1 |
Re |
||||||||||||||||||
• |
||||||||||||||||||||
− j |
||||||||||||||||||||
) |
и z =1 |
|||||||||||||||||||
Рис. 1.15. Соответствие значенийω = 0 |
||||||||||||||||||||
2) в точке ω = π (рис. 1.16) |
||||||||||||||||||||
z = e jπ = −1 ; z −1 = −1 , |
||||||||||||||||||||
откуда |
||||||||||||||||||||
A(π) = |
H (−1) |
= |
b0 − b1 + b2 |
; |
(1.85) |
|||||||||||||||
1 − a |
+ a |
2 |
||||||||||||||||||
1 |
||||||||||||||||||||
ϕ(π) = arg{H (−1)}= 0 ; |
(1.86) |
46
j Im
j |
||||||||||||||||||||||||||||
−1 |
1 |
Re |
||||||||||||||||||||||||||
• |
− j |
|||||||||||||||||||||||||||
) |
||||||||||||||||||||||||||||
Рис. 1.16. Соответствие значений ω = π и z = −1 |
||||||||||||||||||||||||||||
) |
π |
|||||||||||||||||||||||||||
3) в точке ω= 2 |
(рис. 1.17) |
|||||||||||||||||||||||||||
z = e j |
π |
|||||||||||||||||||||||||||
2 = j ; z −1 = − j , |
||||||||||||||||||||||||||||
откуда |
||||||||||||||||||||||||||||
π |
= H |
( j) = |
(b |
− b |
2 |
) |
− |
jb |
= |
(b |
− b |
2 |
)2 |
+ b |
2 |
; |
(1.87) |
|||||||||||
A |
0 |
1 |
0 |
1 |
||||||||||||||||||||||||
2 |
(1 − a2 ) − ja1 |
(1 − a |
2 |
)2 + a 2 |
||||||||||||||||||||||||
1 |
||||||||||||||||||||||||||||
ϕ |
π = arg{H ( j)} |
= arg |
(b0 − b2 ) − |
jb1 |
= |
|||||||||||||||||||||||
(1 − a2 ) − |
ja1 |
|||||||||||||||||||||||||||
2 |
(1.88) |
|||||||||||||||||||||||||||
a |
b |
|||||||||||||||||||||||||||
= arctg |
1 |
− arctg |
1 |
. |
||||||||||||||||||||||||
1 − a |
− b |
|||||||||||||||||||||||||||
2 |
b |
2 |
||||||||||||||||||||||||||
0 |
||||||||||||||||||||||||||||
j Im |
||||||||||||||||||||||||||||
• |
j |
|||||||||||||||||||||||||||
−1 |
1 |
Re |
||||||||||||||||||||||||||
− j |
||||||||||||||||||||||||||||
) |
π |
и z = j |
||||||||||||||||||||||||||
Рис. 1.17. Соответствие значений ω = |
||||||||||||||||||||||||||||
2 |
||||||||||||||||||||||||||||
4) точка ω) = ω) определяет местоположение максимума АЧХ, который находится приблизительно на частоте ϕ полюса [1]
z 1,2 = r e± jϕ ;
47
Соседние файлы в папке залык
- #
- #
- #
- #
- #
- #
Содержание:
Частотные методы анализа электрических цепей:
Частотные характеристики являются компонентами комплексных функций цепи.
Комплексная функция цепи (КФЦ)
Амплитудно-частотная характеристика (АЧХ)
Фазочастотная характеристика (ФЧХ)
Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)
где — вещественная частотная характеристика (ВЧХ); — мнимая частотная характеристика (МЧХ).
Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.
На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания
Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в раз по сравнению с максимальными значениями.
Полоса пропускания может измеряться в радианах в секунду или в герцах (Гц).
Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)
Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные характеристики цепей с одним реактивным элементом
Примеры решения типовых задач:
Пример 4.2.1.
Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.
Решение
1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
2. Определим комплексное напряжение на выходе цепи в виде
Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие . После преобразований получим
Следовательно.
Введем обозначения:
Величина называется постоянной времени цепи и измеряется в секундах. Величина имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте
С учетом принятых обозначений
Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:
3. Из (4.3) запишем АЧХ и ФЧХ соответственно:
4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения для крайних значений частот:
График АЧХ (рис. 4.4, а) является кривой, монотонно возрастающей от значения
График функции ФЧХ можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как что следует из формулы (4.1). Поэтому функция следовательно, дифференцирующий RС-контур вносит опережение по фазе.
Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте
где
Подставляя в (4.5), получим
Графики АЧХ и ФЧХ изображены на рис. 4.4.
Пример 4.2.2.
Для электрической цепи, изображенной на рис. 4.5, определить АЧХ граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи:
Решение
1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Преобразуем полученное выражение к виду
Обозначим:
Следовательно,
Отсюда: АЧХ
ФЧХ
2. Рассчитаем граничную частоту. По определению
Из (4.7) найдем
Следовательно,
Из уравнения (4.9) получаем, что
Отсюда
3. Построим график функций.
Вычислим значения (4.7) и (4.8) для частот с дискретностью
Графики и таблицы выполним в среде Mathcad (рис. 4.6).
Пример 4.2.3.
Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.
Параметры цепи:
Решение
1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.
2.Составим матрицы контурных сопротивлений для двух независимых контуров
3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.
где сопротивление нагрузки равно
Подставляя найденные выражения, получаем
или
где
4. Рассчитаем для крайних значений частоты и
Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией С ростом частоты емкостное сопротивление уменьшается. Если то и шунтирует сопротивление . При этом
= 0.
По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.
5. Определяем полосу пропускания. По определению
Поэтому из (4.11) имеем
После преобразований уравнения (4.12) получаем
откуда
или
Следовательно, цепь имеет полосу пропускания
На рис. 4.8 указана граничная частота
Данная цепь представляет собой фильтр нижних частот с полосой пропускания сигналы на частотах проходят с большим затуханием.
Пример 4.2.4.
Найти комплексную передаточную проводимость для цепи, изображенной на рис. 4.9, а методом узловых напряжений.
Параметры цепи:
Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Решение
1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае
2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей из последовательно включенных пассивных элементов, находится из соотношения , где — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными
В начале рассчитывают комплексное сопротивление этой ветви, , а затем комплексную проводимость
Составим матрицу проводимостей цепи 1 2
Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения направлены одинаково, к базисному yзлy.
3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1
где -комплексная проводимость ветви, по которой протекает ток ,так как по определению
Найдем алгебраические дополнения:
После подстановки найденных значений получим
Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента
4. Рассчитаем значения на частотах
Примечание. Эти значения можно найти без вывода аналитического выражения для Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.
Учитывая, что получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Для первой схемы:
Следовательно,
Аналогично для второй схемы получим
При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.
Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Пример 4.2.5.
Для интегрирующего RС-контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если
Решение
1. Составим комплексную схему замещения цепи (рис. 4.12, б).
2. Определим из соотношения где
Следовательно.
3. Для нахождения АЧХ и ФЧХ комплексную функцию представленную в виде отношения двух полиномов мнимой частоты записывают в показательной форме
Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;
Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:
4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения для трех значений частот: Результаты расчетов для удобства построения графиков сведем в табл. 4.2.
Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.
Графики характеристик приведены на рис. 4.13.
АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).
ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения
Взяв производную, получим
Решая полученное уравнение относительно , найдем
Подставляя в выражение определим максимальное значение фазовой частотной характеристики.
АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси в точке с абсциссой, равной
Радиус окружности нетрудно определить из соотношения:
МЧХ:
Отрицательное значение свидетельствует о том, что
принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.
5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для частот (рис. 4.14).
На частоте цепь разомкнута (рис. 4.14, а), поэтому
При схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи
Подставляя эти значения частот в аналитическое выражение (4.14) для получаем
Следовательно, расчет АЧХ выполнен верно.
Частотные характеристики последовательного колебательного контура
Основные теоретические сведения:
В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие
т. е.
Резонансная частота
Волновое сопротивление контура
Сопротивление контура при резонансе
Собственная добротность контура
Добротность нагруженного контура
Затухание контура
Абсолютная расстройка
Относительная расстройка
Обобщенная расстройка
Фактор расстройки:
Абсолютная полоса пропускания (рис. 4.22)
Относительная полоса пропускания
Для нагруженного контура:
Комплексные коэффициенты передачи по напряжению:
на активном сопротивлении
на индуктивности
на емкости
Примеры решения типовых задач:
Пример 4.3.1.
Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.
Параметры цепи:
Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.
Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.
Решение
1. Определяем резонансную частоту контура
2. Находим волновое сопротивление контура
3. Вычисляем добротность нагруженного контура
4. Определяем полосу пропускания
5. Рассчитываем ток и напряжения на элементах контура при резонансе
Напряжение на R равно
Напряжения на реактивных элементах
6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.
Учитывая (4.22), из (4.29) получим:
Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.
Следует заметить, что максимум А11Х достигается на частоте
т.е. при смещение максимума мало, тогда
Задача 4.3.2.
К последовательному колебательному контуру (рис. 4.25) с параметрами подключена нагрузка
Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.
Решение
1. Рассчитаем вторичные параметры ненагруженного контура:
2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.
Для определения добротности рассчитаем сопротивление , вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как то
Следовательно,
Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.
Пример 4.3.3.
На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: . На резонансной частоте антенна наводит в контуре ЭДС Емкость конденсатора катушка индуктивности имеет
Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.
Решение
1. Определяем эквивалентную емкость контура
2. Рассчитываем резонансную частоту контура
3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):
4. Определяем добротность нагруженного контура
5. Рассчитаем абсолютную полосу пропускания нагруженного контура
6. Находим ток в контуре
Пример 4.3.4.
Рассчитать емкость последовательного колебательного контура, если резонансная частота контура полоса пропускания при сопротивлении потерь 0,5 Ом.
Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.
Решение
1. Определим требуемую добротность контура
2. Рассчитаем емкость конденсатора. Из формулы найдем
3. Рассчитаем АЧХ и ФЧХ.
Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:
Вычислим значения функций на частотах:
Определим частоту, при которой АЧХ имеет максимум
Смещением частоты можно пренебречь.
Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.
Частотные характеристики параллельного колебательного контура
Основные теоретические сведения:
Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений
где резонансная частота колебаний
Для реального контура поэтому при расчете можно полагать, что
При резонансе сопротивление контура является активным, поэтому ток в цепи и напряжение в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.
Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
где
Добротность нагруженного контура меньше собственной добротности Ее можно выразить через сопротивления элементов цепи
или через их проводимости
Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)
При этом напряжение на контуре максимально и равно
Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный
Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ
где -обобщенная расстройка контура без учета внешних цепей; — фактор расстройки.
Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.
На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.
Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.
Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:
где — коэффициенты включения:
Примеры решения типовых задач:
Пример 4.4.1.
Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Контур настроен в резонанс на длину волны, равную 1000 м.
Параметры катушки индуктивности:
Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.
Решение
1. Определим резонансную частоту колебания
2. Рассчитаем волновое сопротивление
3. Определим сопротивление контура при резонансе
4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе
5. Определим соответственную добротность контура
6. Найдем ток в контуре и напряжение на нем:
7. Определим добротность нагруженного контура
8. Рассчитаем абсолютную и относительную полосы пропускания:
9. Определяем добавочное cопротивление из (4.31)
Пример 4.4.2.
Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).
Дано:
Определить сопротивление шунта, необходимого для расширения полосы пропускания до 10 кГц.
Решение
1. Рассчитаем волновое сопротивление и резонансную частоту контура:
2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:
Тогда
3. Определим полосу пропускания
4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,
В этом случае добротность цепи должна быть равна
Тогда из (4.32) получаем
Следовательно, сопротивление шунта должно быть равно
Пример 4.4.3.
Параллельный колебательный контур с параметрами: подключен к источнику
Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.
Решение
1. Определим волновое сопротивление контура
2. Рассчитаем собственную добротность контура
3. Найдем сопротивление контура при резонансе
4. Определим добротность нагруженного контура по формуле (4.31)
5. Рассчитаем резонансную частоту
6. Найдем полосу пропускания
7. Определим граничные частоты полосы пропускания:
8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем
Напряжение па контуре при резонансе
Для построения резонансной характеристики задаемся характерными значениями частот: Результаты расчетов в графическом виде представлены на рис. 4.33.
Пример 4.4.4.
Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.
Дано:
Решение
1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:
Сопротивление контура при резонансе
2. Рассчитаем эквивалентное сопротивление сложного контура II вида
3. Найдем добротность нагруженного контура II вида
Сравним значения с добротностью простого нагруженного контура
Вывод. За счет неполного включения индуктивности уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.
Частотные характеристики связанных колебательных контуров
Основные теоретические сведения:
С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).
Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Эквивалентные схемы связанных контуров
Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).
Количественной характеристикой связи является сопротивление связи в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи в П-образной эквивалентной схеме (рис. 4.38, б).
Удобным параметром для оценки связи является коэффициент связи
В случае реактивной связи для Т-образной схемы
Для П-образной схемы
где — сопротивление (проводимость) связи; — сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.
Для этого используют понятия вносимого сопротивления и вносимой проводимости Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:
Резонансы в связанных контурах:
При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.
Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.
Резонансные характеристики связанных контуров:
Для двух неидентичных связанных контуров: последовательного питания
где
параллельного питания:
где — параметр связи.
Если контуры идентичны, то обобщенная расстройка
На рис. 4.40 приведены резонансные характеристики при различных факторах связи.
Относительная полоса пропускания:
а) связь слабая
б) связь критическая
в) связь сильная
При достигается максимально возможная полоса пропускания
Примеры решения типовых задач:
Пример 4.5.1.
В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи
Определить емкость при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.
Решение
Емкость конденсатора определим но реактивному сопротивлению первого контура:
отсюда
Определим реактивное сопротивление , первого контура из условия первого частного резонанса (см. табл. 4.3)
Peaктивное сопротивление второго контура
Рассчитаем полное сопротивление второго контура
Определим сопротивление связи контуров
Следовательно
Находим емкость первого контура
Пример 4.5.2.
Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.
Дано:
Решение
1. Определим емкость конденсатора , полагая, что
Отсюда
2. Сопротивление оптимальной связи при полном резонансе
3. Рассчитаем токи в первом и втором контурах при полном резонансе
4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:
Пример 4.5.3.
На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи:
Решение
1. Определим полосу пропускания одиночного контура
2. Рассчитаем полосу пропускания системы связанных контуров:
1) определим параметр связи для
Таким образом при связь меньше критической При этом относительная полоса пропускания
Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)
2) при параметр связи Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае
3) если то параметр связи следовательно, связь больше критической.
Рассчитаем полосу пропускания для этого случая.
Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Пример 4.5.4.
Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту принимаемого сигнала. В антенном контуре наводится
Дано:
Входное сопротивление УВЧ считать бесконечно большим.
Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.
Решение
1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура
Емкость конденсатора второго контура
2. Рассчитаем волновое сопротивление контуров:
3. Рассчитаем добротности контуров и параметр связи:
4. Определим взаимную индуктивность двух связанных контуров
5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе
Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем
Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:
С учетом этого рассчитаем ток во втором контуре
6. Найдем напряжение на конденсаторе вторичного контура
Пример 4.5.5.
На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту
Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры:
Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.
Решение
1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора и емкости монтажа получаем
Емкость второго контура с учетом влияния входной емкости транзистора и емкости монтажа
2. Определим емкость связи
3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
где
где
4. Рассчитаем параметр связи
5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе
Тогда, учитывая, что контуры настроены в резонанс из (4.35) получаем
Найдем проводимость контуров
Тогда
6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.
Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях
Основные теоретические сведения:
Зная частотную характеристику электрической цепи можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого то в установившемся режиме комплексное изображение выходного напряжения
где амплитуда и сдвиг по фазе выходных колебаний соответственно.
С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие . Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].
Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид
т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида
Каждому из этих колебаний соответствует выходное колебание а реакция системы на единичную ступенчатую функцию выражается интегралом
Представляя в алгебраической форме и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:
где — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.
Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:
Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от В области частот влияние ВЧХ на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]
В результате интегрирования получают совокупность значений переходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.
В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл
Вид подынтегральной функции, соответствующей выражению
при фиксированном времени приведен на рис. 4.47, кривая для t = 10 с, кривая 2 для , а кривая 3 изображает ВЧХ электрической цепи. Функция представляет функцию модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Если интервал аргумента разбить на равных частей, то длина одного интервала будет равна Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями и высотой Тогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:
Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов разбиения аргумента при конкретном времени При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.
В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.
Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].
Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид
Алгебраическая форма КФ
где — вещественная и мнимая части КФ. Построим кривую (рис. 4.49) в среде Mathcad, если .
Из графика ВЧХ видно, что при Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту можно принять частоту, при которой ВЧХ принимает значение Эту частоту принято называть «существенной частотой» и обозначать . В нашем примере Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при ВЧХ КФ этой цепи Тогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением
Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.
Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:
Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.
Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.
Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]
где
После соответствующих преобразований выражение (4.46) примет вид:
I) для ступенчатой входной функции спектром
2) для линейной входной функции со спектром
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции со спектром
4) для полиномиального воздействия вида
Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.
Примеры решения типовых задач:
Пример 4.6.1.
Определить комплексный коэффициент передачи по напряжению для дифференцирующего -контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.
Решение
1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).
2. Определим комплексное напряжение на выходе цепи в виде
Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие После преобразований получим
Следовательно
Введем обозначения:
Величина называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте С учетом принятых обозначений
Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме
где
Примем:
Для определения частоты в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).
Из частотных характеристик КПФ принимаем Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.
Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.
Пример 4.6.2.
Для электрической цепи, изображенной на рис, 4.53, определить КПФ построить ВЧХ и МЧХ . Рассчитать и построить график переходной функции. Параметры цепи:
Решение
1. Найдем комплексную функцию по формуле делителя напряжения
Преобразуем полученное выражение к виду
Обозначим:
Следовательно,
Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме
где
Для определения частоты в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).
По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.
Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Пример 4.6.3.
Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида где
Параметры цепи:
Решение
1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.
2.Составим матрицы контурных сопротивлений для двух независимых контуров
3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.
где сопротивление нагрузки
Подставляя найденные выражения, получаем
т.е.
где
4. Рассчитаем для крайних значений частоты и
Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если то и шунтирует сопротивление. При этом
5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме
где вещественная частотная характеристика:
— мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде
6. В среде Mathcad построим частотные характеристики и определим
По ВЧХ на рис. 4.57 определяем, что существенная частота
7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.
Переходная функция электрической цепи соответствует апериодическому звену.
8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).
- Операторные передаточные функции
- Свободные колебания в пассивных электрических цепях
- Цепи с распределёнными параметрами
- Волновые параметры длинной линии
- Энергетические характеристики двухполюсников
- Комплексные функции электрических цепей
- Гармонические колебания в колебательном контуре
- Частотные характеристики линейных электрических цепей
Амплитудно-частотная характеристика
Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как «frequency response», что в дословном переводе означает «частотный отклик». Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов. АЧХ устройства определяется по зависимости коэффициента передачи (или коэффициента усиления) от частоты.
Коэффициент передачи
Что такое коэффициент передачи? Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Или формулой:
где
Uвых — напряжение на выходе цепи
Uвх — напряжение на входе цепи
В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.
Коэффициент передачи может быть выражен через децибелы:
Строим АЧХ RC-цепи в программе Proteus
Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.
Итак, имеем «черный ящик», на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной.
Что нам делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.
Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая RC-цепь с уже известными номиналами радиоэлементов.
Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков — это Proteus. С него и начнем.
Собираем данную схему в рабочем поле программы Proteus
Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку «Генераторы», выбираем SINE, а потом соединяем его со входом нашей схемы.
Для измерения выходного сигнала достаточно кликнуть на значок с буквой «V» и соединить выплывающий значок с выходом нашей схемы:
Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:
Ну вот, пол дела уже сделано.
Теперь осталось добавить важный инструмент. Он называется «frequency response», как я уже говорил, в дословном переводе с английского — «частотный отклик». Для этого нажимаем кнопочку «Диаграмма» и в списке выбираем «frequency»
На экране появится что-то типа этого:
Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.
Здесь же выбираем диапазон частоты, который будем «загонять» на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.
Нажимаем ОК.
Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»
Долго не думая, выбираем в первом же окошке наш выход out
и в результате должно появится окошко с нашим выходом
Нажимаем пробел и радуемся результату
Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их «давить». И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша RC-цепь является самым простейшим фильтром низкой частоты (ФНЧ).
Полоса пропускания
В среде радиолюбителей и не только встречается также такой термин, как полоса пропускания. Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.
Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.
Частота, которая получается на уровне в -3 дБ, называется частотой среза. Для RC-цепи ее можно найти по формуле:
Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.
Кто не желает связываться с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в 100%.
Как построить АЧХ на практике?
Как построить АЧХ на практике, имея в своем арсенале генератор частоты и осциллограф?
Итак, поехали. Собираем нашу цепь в реале:
Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.
Для экспериментального изучения АЧХ нам потребуется собрать простенькую схемку:
Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.
Постоянный ток, проходящий через эту цепь, на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.
Следующее значение смотрим на осциллограмме:
Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)
Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.
Четвертая точка (109;3.2)
Пятая точка (159;2.8)
Шестая точка (201;2.4)
Седьмая точка (273;2)
Восьмая точка (361;1.6)
Девятая точка (542;1.2)
Десятая точка (900;0.8)
Ну и последняя одиннадцатая точка (1907;0.4)
В результате измерений у нас получилась табличка:
Строим график по полученным значениям и получаем нашу экспериментальную АЧХ
Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.
Давайте вернемся к этой осциллограмме:
Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.
АЧХ полосового фильтра
Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.
Собственно сама схема:
А вот ее АЧХ:
Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.
Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер
В результате перестроения получилась такая АЧХ:
Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой «усилитель») Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза — это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.
На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза
Фазо-частотная характеристика
ФЧХ расшифровывается как фазо-частотная характеристика, phase response — фазовый отклик. Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.
Разность фаз
Думаю, вы не раз слышали такое выражение, как » у него произошел сдвиг по фазе». Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все :-). И в электронике такое тоже часто бывает) Разницу между фазами сигналов в электронике называют разностью фаз. Вроде бы «загоняем» на вход какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.
Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны. Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.
Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:
Строим ФЧХ RC-цепи в Proteus
Для нашей исследуемой цепи
Для того, чтобы отобразить ее в Proteus мы снова открываем функцию «frequency response»
Все также выбираем наш генератор
Не забываем проставлять испытуемый диапазон частот:
Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»
Долго не думая, выбираем в первом же окошке наш выход out
И теперь главное отличие: в колонке «Ось» ставим маркер на «Справа»
Нажимаем пробел и вуаля!
Можно его развернуть на весь экран
При большом желании эти две характеристики можно объединить на одном графике
Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)
В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.
Строим ФЧХ на практике
ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или π/4 в радианах.
Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц
Нам надо узнать разность фаз между этими двумя сигналами
Весь период — это 2п, значит половина периода — это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:
Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.
Если Вы лучше воспринимаете информацию через видео, то к Вашему вниманию:
Резюме
Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.
И еще интересная статья — последовательное и параллельное соединение проводников.
Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.
Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.
Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.
3. Частотные характеристики систем автоматического управления (АФЧХ, ЛАХ, ФЧХ) ч. 3.1
Лекции по курсу «Управление Техническими Системами» читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки» факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность!
Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.
В этом разделе мы будем изучать частотные характеристики. Тема сегодняшней статьи:
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ
Будет интересно, познавательно и жестко.
3.1. Амплитудно-фазовая частотная характеристика: годограф АФЧХ, ЛАХ, ФЧХ
Определение: Частотными характеристиками называются формулы и графики, характеризующие реакцию звена (системы) на единичное синусоидальное воздействие в установившемся режиме, т.е. в режиме вынужденных гармонических колебаний звена (системы).
Формула синусоидального воздействия может быть записана как:
— сдвиг фазы (нередко называют — фаза);
— амплитуда;
т.е. амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия x(t).
Используем показательную форму записи функции единичного гармонического воздействия и отклика на это воздействие (рис. 3.1.1):
Определим связь между передаточной функцией и гармоничным воздействием, пользуясь показательной формой.
Рассмотрим звено уравнение динамики которого имеет следующий вид:
В показательной форме:
Запишем в показательной форме используя соотношения 3.1.1:
Подставим эти соотношения в (3.1.1) получим:
Поскольку (амплитуда на выходе звена(системы) и сдвиг фазы зависят от частоты входного воздействия), то можно записать:
если вспомнить, что в преобразования Лапласа , то:
Получаем выражение для передаточной функции
— Амплитудно-фазовая частотная характеристика (АФЧХ)
Иногда называют частотной передаточной функцией.
Модуль АФЧХ= тождественно равен амплитуде выходного сигнала:
Сдвиг фазы выходного сигнала:
Обычно АФЧХ изображается на комплексной плоскости. Формулы (3.1.6) и (3.1.7) позволяют изобразить в полярных координатах
Так же можно изображать в традиционных декартовых координатах:
Если использовать для представления W(s) форму W(s)=K·N(s)/L(s), где L(s)- полиномы по степеням s, (причем свободные члены равны 1), а К – общий коэффициент усиления звена (системы), то
Сдвиг фазы можно определить по виду многочленов и (см. формулу (3.1.9)) т.е. как разность фаз (аргументов) числителя и знаменателя:
Постоим АФЧХ для «абстрактного» звена (системы) с передаточной функцией:
Подставляя в формулу различные значения , получаем набор векторов, на комплексной плоскости
Рассмотрим действительную и мнимую части полученных векторов Из рисунка 3.1.3 видно, что:
Амплитуда и сдвиг фазы рассчитываются для векторов, соответствующих положительным частотам и лежащих в 4 квадранте по формулам:
В общем случае для любых углов сдвига необходимо учитывать переход между квадрантами на плоскости. Тогда формула принимает вид:
где:
j = 0, 2, 3, 4. если вектор в I и IV квадрант;
j = 1, 3, 4, 4. если вектор в II и III квадранте.
Во всех технических системах отклик системы, как правило, отстает от входного воздействия, то есть сдвиг фазы всегда отрицательный. Исходя из формулы 3.1.10, степень полинома L(s) выше, чем полинома N(s). Поскольку обычно степень полинома L(s) выше, чем полинома N(s), то с увеличением частоты на входе в звено (в систему) сдвиг фазы обычно отрицателен, т.е. сигнал на выходе звена еще больше отстает по фазе от входного сигнала при увеличении частоты.
В предельном случае, если частота растет до бесконечности, мы можем вообще не получить выходного воздействия. Обычно при ω→ ∞ величина амплитуды на выходе звена стремится к 0, то есть lim A(ω→∞) = 0.
при замене на имеет зеркальное изображение.
Анализируя годографы АФЧХ при > 0 (сплошная линия на рисунке 3.1.3) и при Рисунок 3.1.4 – «Зеркальная» симметрия относительно оси ординат.
Кроме анализа свойств звена (системы) по годографу АФЧХ, широкое распространение получили анализ логарифмической амплитудной характеристики (ЛАХ) и фазочастотной характеристики (ФЧХ).
ЛАХ определяется как Lm(ω)=20lgA(ω).
Поскольку зачастую удобнее использовать десятичные логарифмы (lg), чем натуральные(ln), в теории управления (также и в акустике) значительно чаще используется специальная единица – децибел (1/10 часть Бела):
+1Бел – единица, характеризующая увеличение в 10 раз.
+1дБ (децибел) – соответствует увеличению в раз.
В формуле Lm(ω)=20lgA(ω) величина Lm(ω) измеряется также в децибелах. Происхождение множителя 20 таково: A(ω) – амплитуда, линейная величина, а мощность — квадратичная величина (например, напряжение в сети измеряется в Вольтах, а мощность () пропорциональна квадрату напряжения, поэтому в формуле для Lm(ω) стоит множитель 20 (чтобы привести ЛАХ (Lm(ω)) к традиционной мощностной характеристике).
Если больше на 20 дБ, то это означает, амплитуда больше амплитуды в 10 раз,
Окончательно: Lm(ω)=20lg│W(iω)│= 20lgA(ω)
Из этого следует, что +1 децибел (+1 дБ) соответствует увеличению амплитуды в раз (очень малая величина); -1 дБ – уменьшение амплитуды в раз.
Графики A(ω) и φ(ω) имеют вид:
Учитывая, что “ω” обычно изменяется на порядки и значение A(ω) – также на порядки, график Lm(ω) строится, фактически, в логарифмических координатах, т.е. Lm(ω) =Lm(lg(ω)), например:
Наклон (– 40 дБ/дек) соответствует уменьшению амплитуды в 100 раз при увеличении частоты в 10 раз.
Рассмотренные характеристики Lm(ω), то есть ЛАХ и ФЧХ имеют широкое распространение при анализе динамических свойств звена (системы), например, при анализе устойчивости САР (см. раздел “Устойчивость систем автоматического управления”).
Рисунок 3.1.10 – пример ЛАХ и ФЧХ для сложной системы
Пример 1
В качестве примера построим АФЧХ для демпфера, модель которого разобрана в этой статье. . Добавим на схему блок «Построение частотных характеристик», в качестве входа возьмем возмущающее воздействие, в качестве выхода — положение положение груза. Для наглядности иллюстрации примем в качестве выхода положение в миллиметрах (х1000), поскольку модель у нас размерная и результат получается в метрах уже достаточно маленьким примерно 0.004 метра. см. рис. 3.11
Параметры блока «Построение частотных характеристик» приведены на рисунке 3.1.12, для иллюстрации зависимости АЧХ и ЛАХ. Результат работы блока — график с выбранными параметрами — изображен на рисунке 3.1.13:
Анализ графика в линейном масштабе по ω чаще всего не очень удобен, поскольку весь график собирается в узкой области, а дальше график абсолютной амплитуды практически сливается с 0. Если мы хотим исследовать частоты хотя бы до 1000 Гц, мы увидим практически вертикальные и горизонтальные прямые. Изменения масштаба шкалы АЧХ и ω на логарифмический дает возможность лучше исследовать частотные характеристики (см. рис. 3.1.14).
На рисунке 3.1.14 представлены частотные характеристики демпфера в логарифмическом масштабе и иллюстрация соотношения между абсолютной величиной амплитуды АФЧХ и ЛАХ в децибелах.
Пример 2
Постоим частотные характеристики для чуть более сложной модели, а именно — для гидравлического демпфера, рассмотренного в предыдущей лекции.
Для начала посмотрим на модель в виде блоков.
Модель, подготовленная для анализа, представлена на рисунке 3.1.15. В отличие от исходной модели, описанной ранее, входное воздействие задается блоком «ступенька» с скачком с 0 до 1 на 10 секунде расчёта. В блоке «линейная функция» происходит пересчет сигнала «ступенька»:
0 — соответствует 200 бар в камере (конечное состояние в предыдущем примере)
1 — соответствует 400 бар в камере.
Это сделано для того, чтобы можно было подавать синусоидальный сигнал и не получать отрицательное давление в камере плунжера. Также для наглядности графика мы усиливаем выходное перемещение, переводя его из метров в миллиметры.
Частотные характеристики, получаемые в конце расчёта, приведены на рисунке 3.1.16. Видно что характеристики отличаются от простого пружинного демпфера (сравните с 3.1.14)
Блок «Построение частотных характеристик» осуществляет расчет характеристик для линеаризованной модели в окрестности заданной точки. Это означает, что частотные характеристики системы в разные моменты времени могут отличаться для нелинейных моделей. Например, в нашем случае характеристики в начале расчёта будут отличаться от характеристик, полученных в конце расчёта.
Для подробных и нелинейных моделей, блок «Построение частотных характеристик» может не работать из за наличия разрывов и нелинейностей в модели. Как например, для «точной» модели демпфера, которую мы проверяли в предыдущей статье. В этом случае возможно построить частотные характеристики непосредственно моделированием, путем подачи синусоидального сигнала с разной частотой и измерения отклика. В SimInTech для этого используется блок «Гармонический анализатор», который подключается ко входу модели и генерирует синусоидальное воздействие. В этот же блок направляется отклик системы, и производится вычисление необходимых параметров для построения различных характеристик системы, которые можно вывести на графики с помощью блока «фазовый портрет».
Модель гидравлического демпфера, собранного из библиотечных блоков SimInTech, представлена на рисунке 3.1.7
Расчеты с моделью показывают, что при сохранении общего вида графиков значения, полученные для «подробной модели», отличаются от линеаризованной модели (см. рис. 3.18 — 3.19)
Использование прямого моделирования для получения характеристик является более надежным способом и работает не только с линейными моделями, но также может быть применимо для построения характеристик некоторых реальных объектов, если их можно подключить к среде моделирования и воздействовать в реальном режиме времени. Однако затраты на вычисления значительно будут больше. Например, для получения характеристик демпфера пришлось выполнить процесс в 40 000 секунд модельного времени, на обычном компьютере это заняло порядка 35 минут. График процесса перемещения плунжера в процессе вычисления характеристик приведен на рисунке 3.1.20.
Блок «Гармонический анализатор» имеет выходы:
Re(w*t) – текущее значение действительной части амплитудно-фазовой частотной характеристики исследуемой системы;
Im(w*t) – текущее значение мнимой части амплитудно-фазовой частотной характеристики.
Это позволяет построить годограф исследуемой системы с помощью фазового портрета. (см. рис. 3.1.21)
Модели, использованные для иллюстрации в лекции можно взять здесь…
Частотные методы анализа и расчёта электрических цепей
Содержание:
Частотные методы анализа электрических цепей:
Частотные характеристики являются компонентами комплексных функций цепи.
Комплексная функция цепи (КФЦ)
Амплитудно-частотная характеристика (АЧХ)
Фазочастотная характеристика (ФЧХ)
Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)
где — вещественная частотная характеристика (ВЧХ); — мнимая частотная характеристика (МЧХ).
Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.
На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания
Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в раз по сравнению с максимальными значениями.
Полоса пропускания может измеряться в радианах в секунду или в герцах (Гц).
Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)
Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные характеристики цепей с одним реактивным элементом
Примеры решения типовых задач:
Пример 4.2.1.
Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.
Решение
1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
2. Определим комплексное напряжение на выходе цепи в виде
Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие . После преобразований получим
Следовательно.
Величина называется постоянной времени цепи и измеряется в секундах. Величина имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте
С учетом принятых обозначений
Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:
3. Из (4.3) запишем АЧХ и ФЧХ соответственно:
4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения для крайних значений частот:
График АЧХ (рис. 4.4, а) является кривой, монотонно возрастающей от значения
График функции ФЧХ можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как что следует из формулы (4.1). Поэтому функция следовательно, дифференцирующий RС-контур вносит опережение по фазе.
Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте
где
Подставляя в (4.5), получим
Графики АЧХ и ФЧХ изображены на рис. 4.4.
Пример 4.2.2.
Для электрической цепи, изображенной на рис. 4.5, определить АЧХ граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи:
Решение
1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Преобразуем полученное выражение к виду
Отсюда: АЧХ
2. Рассчитаем граничную частоту. По определению
Из (4.7) найдем
Следовательно,
Из уравнения (4.9) получаем, что
Отсюда
3. Построим график функций.
Вычислим значения (4.7) и (4.8) для частот с дискретностью
Графики и таблицы выполним в среде Mathcad (рис. 4.6).
Пример 4.2.3.
Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.
Параметры цепи:
Решение
1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.
2.Составим матрицы контурных сопротивлений для двух независимых контуров
3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.
где сопротивление нагрузки равно
Подставляя найденные выражения, получаем
или
где
4. Рассчитаем для крайних значений частоты и
Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией С ростом частоты емкостное сопротивление уменьшается. Если то и шунтирует сопротивление . При этом
= 0.
По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.
5. Определяем полосу пропускания. По определению
Поэтому из (4.11) имеем
После преобразований уравнения (4.12) получаем
Следовательно, цепь имеет полосу пропускания
На рис. 4.8 указана граничная частота
Данная цепь представляет собой фильтр нижних частот с полосой пропускания сигналы на частотах проходят с большим затуханием.
Пример 4.2.4.
Найти комплексную передаточную проводимость для цепи, изображенной на рис. 4.9, а методом узловых напряжений.
Параметры цепи:
Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Решение
1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае
2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей из последовательно включенных пассивных элементов, находится из соотношения , где — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными
В начале рассчитывают комплексное сопротивление этой ветви, , а затем комплексную проводимость
Составим матрицу проводимостей цепи 1 2
Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения направлены одинаково, к базисному yзлy.
3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1
где -комплексная проводимость ветви, по которой протекает ток ,так как по определению
Найдем алгебраические дополнения:
После подстановки найденных значений получим
Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента
4. Рассчитаем значения на частотах
Примечание. Эти значения можно найти без вывода аналитического выражения для Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.
Учитывая, что получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Для первой схемы:
Аналогично для второй схемы получим
При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.
Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Пример 4.2.5.
Для интегрирующего RС-контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если
Решение
1. Составим комплексную схему замещения цепи (рис. 4.12, б).
2. Определим из соотношения где
3. Для нахождения АЧХ и ФЧХ комплексную функцию представленную в виде отношения двух полиномов мнимой частоты записывают в показательной форме
Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;
Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:
4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения для трех значений частот: Результаты расчетов для удобства построения графиков сведем в табл. 4.2.
Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.
Графики характеристик приведены на рис. 4.13.
АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).
ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения
Взяв производную, получим
Решая полученное уравнение относительно , найдем
Подставляя в выражение определим максимальное значение фазовой частотной характеристики.
АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси в точке с абсциссой, равной
Радиус окружности нетрудно определить из соотношения:
Отрицательное значение свидетельствует о том, что
принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.
5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для частот (рис. 4.14).
На частоте цепь разомкнута (рис. 4.14, а), поэтому
При схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи
Подставляя эти значения частот в аналитическое выражение (4.14) для получаем
Следовательно, расчет АЧХ выполнен верно.
Частотные характеристики последовательного колебательного контура
Основные теоретические сведения:
В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие
т. е.
Волновое сопротивление контура
Сопротивление контура при резонансе
Собственная добротность контура
Добротность нагруженного контура
Затухание контура
Абсолютная расстройка
Относительная расстройка
Фактор расстройки:
Абсолютная полоса пропускания (рис. 4.22)
Относительная полоса пропускания
Для нагруженного контура:
Комплексные коэффициенты передачи по напряжению:
на активном сопротивлении
на индуктивности
Примеры решения типовых задач:
Пример 4.3.1.
Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.
Параметры цепи:
Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.
Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.
Решение
1. Определяем резонансную частоту контура
2. Находим волновое сопротивление контура
3. Вычисляем добротность нагруженного контура
4. Определяем полосу пропускания
5. Рассчитываем ток и напряжения на элементах контура при резонансе
Напряжение на R равно
Напряжения на реактивных элементах
6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.
Учитывая (4.22), из (4.29) получим:
Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.
Следует заметить, что максимум А11Х достигается на частоте
т.е. при смещение максимума мало, тогда
Задача 4.3.2.
К последовательному колебательному контуру (рис. 4.25) с параметрами подключена нагрузка
Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.
Решение
1. Рассчитаем вторичные параметры ненагруженного контура:
2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.
Для определения добротности рассчитаем сопротивление , вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как то
Следовательно,
Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.
Пример 4.3.3.
На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: . На резонансной частоте антенна наводит в контуре ЭДС Емкость конденсатора катушка индуктивности имеет
Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.
Решение
1. Определяем эквивалентную емкость контура
2. Рассчитываем резонансную частоту контура
3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):
4. Определяем добротность нагруженного контура
5. Рассчитаем абсолютную полосу пропускания нагруженного контура
6. Находим ток в контуре
Пример 4.3.4.
Рассчитать емкость последовательного колебательного контура, если резонансная частота контура полоса пропускания при сопротивлении потерь 0,5 Ом.
Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.
Решение
1. Определим требуемую добротность контура
2. Рассчитаем емкость конденсатора. Из формулы найдем
3. Рассчитаем АЧХ и ФЧХ.
Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:
Вычислим значения функций на частотах:
Определим частоту, при которой АЧХ имеет максимум
Смещением частоты можно пренебречь.
Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.
Частотные характеристики параллельного колебательного контура
Основные теоретические сведения:
Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений
где резонансная частота колебаний
Для реального контура поэтому при расчете можно полагать, что
При резонансе сопротивление контура является активным, поэтому ток в цепи и напряжение в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.
Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
где
Добротность нагруженного контура меньше собственной добротности Ее можно выразить через сопротивления элементов цепи
или через их проводимости
Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)
При этом напряжение на контуре максимально и равно
Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный
Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ
где -обобщенная расстройка контура без учета внешних цепей; — фактор расстройки.
Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.
На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.
Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.
Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:
где — коэффициенты включения:
Примеры решения типовых задач:
Пример 4.4.1.
Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Контур настроен в резонанс на длину волны, равную 1000 м.
Параметры катушки индуктивности:
Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.
Решение
1. Определим резонансную частоту колебания
2. Рассчитаем волновое сопротивление
3. Определим сопротивление контура при резонансе
4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе
5. Определим соответственную добротность контура
6. Найдем ток в контуре и напряжение на нем:
7. Определим добротность нагруженного контура
8. Рассчитаем абсолютную и относительную полосы пропускания:
9. Определяем добавочное cопротивление из (4.31)
Пример 4.4.2.
Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).
Дано:
Определить сопротивление шунта, необходимого для расширения полосы пропускания до 10 кГц.
Решение
1. Рассчитаем волновое сопротивление и резонансную частоту контура:
2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:
3. Определим полосу пропускания
4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,
В этом случае добротность цепи должна быть равна
Тогда из (4.32) получаем
Следовательно, сопротивление шунта должно быть равно
Пример 4.4.3.
Параллельный колебательный контур с параметрами: подключен к источнику
Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.
Решение
1. Определим волновое сопротивление контура
2. Рассчитаем собственную добротность контура
3. Найдем сопротивление контура при резонансе
4. Определим добротность нагруженного контура по формуле (4.31)
5. Рассчитаем резонансную частоту
6. Найдем полосу пропускания
7. Определим граничные частоты полосы пропускания:
8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем
Напряжение па контуре при резонансе
Для построения резонансной характеристики задаемся характерными значениями частот: Результаты расчетов в графическом виде представлены на рис. 4.33.
Пример 4.4.4.
Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.
Дано:
Решение
1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:
Сопротивление контура при резонансе
2. Рассчитаем эквивалентное сопротивление сложного контура II вида
3. Найдем добротность нагруженного контура II вида
Сравним значения с добротностью простого нагруженного контура
Вывод. За счет неполного включения индуктивности уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.
Частотные характеристики связанных колебательных контуров
Основные теоретические сведения:
С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).
Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Эквивалентные схемы связанных контуров
Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).
Количественной характеристикой связи является сопротивление связи в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи в П-образной эквивалентной схеме (рис. 4.38, б).
Удобным параметром для оценки связи является коэффициент связи
В случае реактивной связи для Т-образной схемы
Для П-образной схемы
где — сопротивление (проводимость) связи; — сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.
Для этого используют понятия вносимого сопротивления и вносимой проводимости Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:
Резонансы в связанных контурах:
При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.
Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.
Резонансные характеристики связанных контуров:
Для двух неидентичных связанных контуров: последовательного питания
где
где — параметр связи.
Если контуры идентичны, то обобщенная расстройка
На рис. 4.40 приведены резонансные характеристики при различных факторах связи.
Относительная полоса пропускания:
а) связь слабая
б) связь критическая
в) связь сильная
При достигается максимально возможная полоса пропускания
Примеры решения типовых задач:
Пример 4.5.1.
В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи
Определить емкость при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.
Решение
Емкость конденсатора определим но реактивному сопротивлению первого контура:
Определим реактивное сопротивление , первого контура из условия первого частного резонанса (см. табл. 4.3)
Peaктивное сопротивление второго контура
Рассчитаем полное сопротивление второго контура
Определим сопротивление связи контуров
Находим емкость первого контура
Пример 4.5.2.
Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.
Дано:
Решение
1. Определим емкость конденсатора , полагая, что
2. Сопротивление оптимальной связи при полном резонансе
3. Рассчитаем токи в первом и втором контурах при полном резонансе
4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:
Пример 4.5.3.
На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи:
Решение
1. Определим полосу пропускания одиночного контура
2. Рассчитаем полосу пропускания системы связанных контуров:
1) определим параметр связи для
Таким образом при связь меньше критической При этом относительная полоса пропускания
Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)
2) при параметр связи Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае
3) если то параметр связи следовательно, связь больше критической.
Рассчитаем полосу пропускания для этого случая.
Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Пример 4.5.4.
Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту принимаемого сигнала. В антенном контуре наводится
Дано:
Входное сопротивление УВЧ считать бесконечно большим.
Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.
Решение
1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура
Емкость конденсатора второго контура
2. Рассчитаем волновое сопротивление контуров:
3. Рассчитаем добротности контуров и параметр связи:
4. Определим взаимную индуктивность двух связанных контуров
5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе
Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем
Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:
С учетом этого рассчитаем ток во втором контуре
6. Найдем напряжение на конденсаторе вторичного контура
Пример 4.5.5.
На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту
Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры:
Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.
Решение
1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора и емкости монтажа получаем
Емкость второго контура с учетом влияния входной емкости транзистора и емкости монтажа
2. Определим емкость связи
3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
4. Рассчитаем параметр связи
5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе
Тогда, учитывая, что контуры настроены в резонанс из (4.35) получаем
Найдем проводимость контуров
6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.
Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях
Основные теоретические сведения:
Зная частотную характеристику электрической цепи можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого то в установившемся режиме комплексное изображение выходного напряжения
где амплитуда и сдвиг по фазе выходных колебаний соответственно.
С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие . Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].
Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид
т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида
Каждому из этих колебаний соответствует выходное колебание а реакция системы на единичную ступенчатую функцию выражается интегралом
Представляя в алгебраической форме и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:
где — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.
Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:
Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от В области частот влияние ВЧХ на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]
В результате интегрирования получают совокупность значений переходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.
В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл
Вид подынтегральной функции, соответствующей выражению
при фиксированном времени приведен на рис. 4.47, кривая для t = 10 с, кривая 2 для , а кривая 3 изображает ВЧХ электрической цепи. Функция представляет функцию модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Если интервал аргумента разбить на равных частей, то длина одного интервала будет равна Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями и высотой Тогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:
Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов разбиения аргумента при конкретном времени При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.
В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.
Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].
Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид
Алгебраическая форма КФ
где — вещественная и мнимая части КФ. Построим кривую (рис. 4.49) в среде Mathcad, если .
Из графика ВЧХ видно, что при Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту можно принять частоту, при которой ВЧХ принимает значение Эту частоту принято называть «существенной частотой» и обозначать . В нашем примере Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при ВЧХ КФ этой цепи Тогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением
Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.
Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:
Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.
Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.
Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]
где
После соответствующих преобразований выражение (4.46) примет вид:
I) для ступенчатой входной функции спектром
2) для линейной входной функции со спектром
y 2 r0(
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Что такое АЧХ и ФЧХ
Амплитудно-частотная характеристика
Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как «frequency response», что в дословном переводе означает «частотный отклик». Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов. АЧХ устройства определяется по зависимости коэффициента передачи (или коэффициента усиления) от частоты.
Коэффициент передачи
Что такое коэффициент передачи? Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Или формулой:
Uвых — напряжение на выходе цепи
Uвх — напряжение на входе цепи
В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.
Коэффициент передачи может быть выражен через децибелы:
Строим АЧХ RC-цепи в программе Proteus
Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.
Итак, имеем «черный ящик», на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной.
Что нам делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.
Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая RC-цепь с уже известными номиналами радиоэлементов.
Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков — это Proteus. С него и начнем.
Собираем данную схему в рабочем поле программы Proteus
Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку «Генераторы», выбираем SINE, а потом соединяем его со входом нашей схемы.
Для измерения выходного сигнала достаточно кликнуть на значок с буквой «V» и соединить выплывающий значок с выходом нашей схемы:
Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:
Ну вот, пол дела уже сделано.
Теперь осталось добавить важный инструмент. Он называется «frequency response», как я уже говорил, в дословном переводе с английского — «частотный отклик». Для этого нажимаем кнопочку «Диаграмма» и в списке выбираем «frequency»
На экране появится что-то типа этого:
Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.
Здесь же выбираем диапазон частоты, который будем «загонять» на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.
Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»
Долго не думая, выбираем в первом же окошке наш выход out
и в результате должно появится окошко с нашим выходом
Нажимаем пробел и радуемся результату
Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их «давить». И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша RC-цепь является самым простейшим фильтром низкой частоты (ФНЧ).
Полоса пропускания
В среде радиолюбителей и не только встречается также такой термин, как полоса пропускания. Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.
Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.
Частота, которая получается на уровне в -3 дБ, называется частотой среза. Для RC-цепи ее можно найти по формуле:
Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.
Кто не желает связываться с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в 100%.
Как построить АЧХ на практике?
Как построить АЧХ на практике, имея в своем арсенале генератор частоты и осциллограф?
Итак, поехали. Собираем нашу цепь в реале:
Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.
Для экспериментального изучения АЧХ нам потребуется собрать простенькую схемку:
Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.
Постоянный ток, проходящий через эту цепь, на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.
Следующее значение смотрим на осциллограмме:
Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)
Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.
Четвертая точка (109;3.2)
Пятая точка (159;2.8)
Шестая точка (201;2.4)
Седьмая точка (273;2)
Восьмая точка (361;1.6)
Девятая точка (542;1.2)
Десятая точка (900;0.8)
Ну и последняя одиннадцатая точка (1907;0.4)
В результате измерений у нас получилась табличка:
Строим график по полученным значениям и получаем нашу экспериментальную АЧХ
Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.
Давайте вернемся к этой осциллограмме:
Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.
АЧХ полосового фильтра
Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.
Собственно сама схема:
Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.
Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер
В результате перестроения получилась такая АЧХ:
Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой «усилитель») Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза — это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.
На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза
Фазо-частотная характеристика
ФЧХ расшифровывается как фазо-частотная характеристика, phase response — фазовый отклик. Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.
Разность фаз
Думаю, вы не раз слышали такое выражение, как » у него произошел сдвиг по фазе». Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все :-). И в электронике такое тоже часто бывает) Разницу между фазами сигналов в электронике называют разностью фаз. Вроде бы «загоняем» на вход какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.
Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны. Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.
Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:
Строим ФЧХ RC-цепи в Proteus
Для нашей исследуемой цепи
Для того, чтобы отобразить ее в Proteus мы снова открываем функцию «frequency response»
Все также выбираем наш генератор
Не забываем проставлять испытуемый диапазон частот:
Далее нажимаем ПКМ на самой табличке Frequency Response и видим вот такой выплывающий список, в котором нажимаем «Добавить трассы»
Долго не думая, выбираем в первом же окошке наш выход out
И теперь главное отличие: в колонке «Ось» ставим маркер на «Справа»
Нажимаем пробел и вуаля!
Можно его развернуть на весь экран
При большом желании эти две характеристики можно объединить на одном графике
Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)
В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.
Строим ФЧХ на практике
ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или π/4 в радианах.
Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц
Нам надо узнать разность фаз между этими двумя сигналами
Весь период — это 2п, значит половина периода — это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:
Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.
Если Вы лучше воспринимаете информацию через видео, то к Вашему вниманию:
Резюме
Амплитудно-частотная характеристика цепи показывает зависимость уровня сигнала на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.
Фазо-частотная характеристика — это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.
Коэффициент передачи — это отношение напряжения на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.
Полоса пропускания — это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.
http://www.evkova.org/chastotnyie-metodyi-analiza-i-raschyota-elektricheskih-tsepej
http://www.ruselectronic.com/achh-and-fchh/