Модуль и аргумент комплексного числа
Пусть задано комплексное число $ z = a+bi $.
Формула |
Модуль комплексного числа равен корню квадратному из суммы квадратов мнимой и действительной части и находится по формуле: $$ |z| = sqrt{a^2 + b^2} $$ |
Если комплексное число состоит только из действительной части $ z = a $, то его модуль равен $ |z| = |a| $.
Стоит заметить, что модуль комплексных чисел всегда неотрицательный $ |z| ge 0 $ и равен нулю $ |z| = 0 $, только в случае $ z = 0 $.
Формула |
Аргумент комплексного числа обозначается $ varphi = arg z $ и зависит от полуплоскости, в которой лежат числа $a,b$:
|
Введите комплексное число
Пример 1 Пример 2 Правила ввода
Пример 1 |
Найти модуль и аргумент комплексного числа $ z = 3 — 4i $. |
Решение |
Комплексное число состоит из действительной и мнимой части: $$ a = Re z = 3 $$ $$ b = Im z = -4 $$ Применяя формулу вычисления модуля получаем: $$ |z| = sqrt{a^2 + b^2} = sqrt{3^2 + (-4)^2} = sqrt{9+16} = 5 $$ Теперь вычисляем аргумент. Так как $a = 3 > 0$, то получаем аргумент: $$varphi = arctg frac{b}{a} = arctg frac{-4}{3} = -arctg frac{4}{3}.$$ |
Ответ |
$$ |z| = 5, varphi = -arctg frac{4}{3} $$ |
Пример 2 |
Найти модуль и аргумент комплексного числа $ z = 3i $ |
Решение |
В данном случае отсутствует действительная часть, а вернее она равна нулю: $$ a = Re z = 0 $$ Мнимая часть комплексного числа равна: $$ b = Im z = 3 $$ Вычисляем модуль по уже известной формуле: $$ |z| = sqrt{a^2 + b^2} = sqrt{0^2 + 3^2} = sqrt{9} = 3 $$ А вот аргумент здесь попадает под правило при $a = 0, b>0$ и значит равен $$varphi = frac{pi}{2}.$$ |
Ответ |
$$ |z| = 3, varphi = frac{pi}{2} $$ |
Пример 3 |
Найти модуль и аргумент комплексного числа $$ z = 1+sqrt{3}i $$ |
Решение |
Выписываем действительную и мнимую часть: $$ a = 1 $$ $$ b = sqrt{3} $$ Так как $ a > 0 $, то аргумент равен $$ varphi = arctg frac{sqrt{3}}{1} = arctg sqrt{3} = frac{pi}{3} $$ Находим модуль извлекая квадратный корень из суммы квадратов действительной и мнимой части: $$|z| = sqrt{1^2 + (sqrt{3})^2} = sqrt{1+3}=2.$$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ varphi = frac{pi}{3}, |z| = 2 $$ |
Пример 4 |
Найти аргумент комплексного числа $$ z = -1 + sqrt{3}i $$ |
Решение |
Действительная часть $$ a = Re z = -1 $$ Мнимая часть $$ b = Im z = sqrt{3} $$ Так как $ a < 0 $ и $ b > 0 $, то пользуемся второй формулой: $$ varphi = arg z = pi + arctg frac{sqrt{3}}{-1} = pi + arctg (-sqrt{3}) = $$ $$ = pi — arctg(sqrt{3}) = pi — frac{pi}{3} = frac{2pi}{3}. $$ |
Ответ |
$$ varphi = frac{2pi}{3} $$ |
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Определение 1
Длина радиус-вектора, который изображает заданное комплексное число $z=a+bi$, называется модулем данного комплексного числа.
Модуль заданного комплексного числа вычисляется по следующей формуле:
[r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } .]
Пример 1
Вычислить модуль заданных комплексных чисел $z_{1} =13,, , z_{2} =4i,, , , z_{3} =4+3i$.
Решение:
Модуль комплексного числа $z=a+bi$ вычислим по формуле: $r=sqrt{a^{2} +b^{2} } $.
Для исходного комплексного числа $z_{1} =13$ получим $r_{1} =|z_{1} |=|13+0i|=sqrt{13^{2} +0^{2} } =sqrt{169} =13$
Для исходного комплексного числа $, z_{2} =4i$ получим $r_{2} =|z_{2} |=|0+4i|=sqrt{0^{2} +4^{2} } =sqrt{16} =4$
Для исходного комплексного числа $, z_{3} =4+3i$ получим $r_{3} =|z_{3} |=|4+3i|=sqrt{4^{2} +3^{2} } =sqrt{16+9} =sqrt{25} =5$
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Определение 2
Угол $varphi $, образованный положительным направлением вещественной оси и радиус-вектором $overrightarrow{OM} $, который соответствует заданному комплексному числу $z=a+bi$, называется аргументом данного числа и обозначается $arg z$.
Примечание 1
Модуль и аргумент заданного комплексного числа в явном виде используются при представлении комплексного числа в тригонометрической или показательной форме:
- $z=rcdot (cos varphi +isin varphi )$ — тригонометрическая форма;
- $z=rcdot e^{ivarphi } $ — показательная форма.
Пример 2
Записать комплексное число в тригонометрической и показательной формах, заданное следующими данными: 1) $r=3;varphi =pi $; 2) $r=13;varphi =frac{3pi }{4} $.
«Модуль и аргумент комплексного числа» 👇
Решение:
1) Подставим данные $r=3;varphi =pi $ в соответствующие формулы и получим:
$z=3cdot (cos pi +isin pi )$ — тригонометрическая форма
$z=3cdot e^{ipi } $ — показательная форма.
2) Подставим данные $r=13;varphi =frac{3pi }{4} $ в соответствующие формулы и получим:
$z=13cdot (cos frac{3pi }{4} +isin frac{3pi }{4} )$ — тригонометрическая форма
$z=13cdot e^{ifrac{3pi }{4} } $ — показательная форма.
Пример 3
Определить модуль и аргумент заданных комплексных чисел:
1) $z=sqrt{2} cdot (cos 2pi +isin 2pi )$; 2) $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$; 3) $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $; 4) $z=13cdot e^{ipi } $.
Решение:
Модуль и аргумент найдем, используя формулы записи заданного комплексного числа в тригонометрической и показательной формах соответственно
[z=rcdot (cos varphi +isin varphi );] [z=rcdot e^{ivarphi } .]
1) Для исходного комплексного числа $z=sqrt{2} cdot (cos 2pi +isin 2pi )$ получим $r=sqrt{2} ;varphi =2pi $.
2) Для исходного комплексного числа $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$ получим $r=frac{5}{3} ;varphi =frac{2pi }{3} $.
3) Для исходного комплексного числа $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $ получим $r=sqrt{13} ;varphi =frac{3pi }{4} $.
4) Для исходного комплексного числа $z=13cdot e^{ipi } $ получим $r=13;varphi =pi $.
Аргумент $varphi $ заданного комплексного числа $z=a+bi$ можно вычислить, используя следующие формулы:
[varphi =tgfrac{b}{a} ;cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } ;sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } .]
На практике для вычисления значения аргумента заданного комплексного числа $z=a+bi$ обычно пользуются формулой:
$varphi =arg z=left{begin{array}{c} {arctgfrac{b}{a} ,age 0} \ {arctgfrac{b}{a} +pi ,a
или решают систему уравнений
$left{begin{array}{c} {cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } } \ {sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } } end{array}right. $. (**)
Пример 4
Вычислить аргумент заданных комплексных чисел: 1) $z=3$; 2) $z=4i$; 3) $z=1+i$; 4) $z=-5$; 5) $z=-2i$.
Решение:
1) $z=3$
Так как $z=3$, то $a=3,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{3} =arctg0=0.]
2) $z=4i$
Так как $z=4i$, то $a=0,b=4$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{4}{0} =arctg(infty )=frac{pi }{2} .]
3) $z=1+i$.
Так как $z=1+i$, то $a=1,b=1$. Вычислим аргумент исходного комплексного числа, решая систему (**):
[left{begin{array}{c} {cos varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } \ {sin varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } end{array}right. .]
Из курса тригонометрии известно, что $cos varphi =sin varphi =frac{sqrt{2} }{2} $ для угла, соответствующего первой координатной четверти и равного $varphi =frac{pi }{4} $.
4) $z=-5$
Так как $z=-5$, то $a=-5,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{0}{-5} +pi =arctg0+pi =0+pi =pi .]
5) $z=-2i$
Так как $z=-2i$, то $a=0,b=-2$. Вычислим аргумент исходного комплексного числа, используя формулу (*):
[varphi =arg z=arctgfrac{-2}{0} =arctg(-infty )=frac{3pi }{2} .]
Примечание 3
Аргумент чисто мнимых чисел равен соответственно:
- $frac{pi }{2} $ с положительной мнимой частью;
- $frac{3pi }{2} $ с отрицательной мнимой частью.
Решение:
Число $z_{1} $ изображено точкой $(3;0)$, следовательно, длина радиус-вектора равна 3, т.е. $r=3$, а аргумент $varphi =0$ по примечанию 2.
Число $z_{2} $ изображено точкой $(-2;0)$, следовательно, длина соответствующего радиус-вектора равна 2, т.е. $r=2$, а аргумент $varphi =pi $ по примечанию 2.
Число $z_{3} $ изображено точкой $(0;1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{pi }{2} $ по примечанию 3.
Число $z_{4} $ изображено точкой $(0;-1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{3pi }{2} $ по примечанию 3.
Число $z_{5} $ изображено точкой $(2;2)$, следовательно, длина соответствующего радиус-вектора равна $sqrt{2^{2} +2^{2} } =sqrt{4+4} =sqrt{8} =2sqrt{2} $, т.е. $r=2sqrt{2} $, а аргумент $varphi =frac{pi }{4} $ по свойству прямоугольного треугольника.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Определение.
Модулем
комплексного числа
называется длина вектора, изображающего
это число, и обозначается
.
Модуль
числа z
= x
+ iy
определяется однозначно и может быть
найден по формуле
=
.
Нетрудно
видеть, что z
∙
=
и
.
Если
z
= 0 , то
.
Определение.
Аргументом
комплексного числа
z
≠ 0 называется любой угол ,
отсчитываемый от положительного луча
оси ОХ до радиус-вектора z.
Этот угол считается положительным, если
отсчет производится против часовой
стрелки, и отрицательным – в противоположном
случае. Для числа z
= 0 аргумент не определен.
В
отличие от модуля, аргумент комплексного
числа определяется неоднозначно.
Пример
6.1 Найти
аргумент комплексного числа 1 + i.
Решение.
Аргументами
числа 1 + i
являются углы
(рисунок 4),
(рисунок 5),
(рисунок 6) и, вообще, любой из углов.
,
k
Z.
Рисунок
4 Рисунок 5
Рисунок
6
Все
множество аргументов числа z
обозначается Arg
z,
(фр. Ar-gument
– аргумент). Такое значение
Arg
z,
которое принадлежит промежутку –
<
≤
либо 0 ≤
< 2
и называется главным
аргументом.
Он обозначается arg
z
и определяется однозначно
Arg
z = arg z + 2k,
k
Z,
–
< arg z ≤ .
Упражнения
7 Отметить на
плоскости точки, изображающие следующие
комплексные числа:
а)
2i
– 3; б)
;
в)
–6 + 2i;
г)
–2 – 2i; д)
(1 – i)4;
е)
.
8 Найти модуль и
аргумент комплексного числа:
а)
–
;
б)
;
в) 3 – 2;
г)
(i + 1)(i – 2); д)
.
§ 7 Тригонометрическая (полярная) форма
комплексного
числа
Модуль
и аргумент
комплексного числа z
= x
+ iy
≠ 0 – это, по существу, полярные координаты
(r;
)
точки М(х; у) – рису- нок 7.
Используя
связь между декартовыми и полярными
координатами точки М (рисунок
,
можно
любое комплексное число z
≠ 0 представить в виде:
z
= x + iy = r ∙ cos
+ ir ∙ sin
= r(cos
+ i sin ).
Рисунок
7 Рисунок 8
Запись
z
= r(cos
+ i
sin
)
называется тригонометрической
или полярной
формой
комплексного числа.
Чтобы
записать число z
= x
+ iy
≠ 0 в тригонометрической форме, следует
найти его модуль по формуле
и один из аргументов, решив систему
.
Аргумент
комплексного числа можно определить
из соотношения
,
являющегося следствием последней
системы. Откуда
.
Однако
не все решения этого соотношения являются
решением системы. Напомним, что период
функции y
= tg
x равен .
При с
R
одно из решений уравнения tg
= c,
удовлетворяющее условию
,
обозначается arctg
c.
Таким образом, в промежутке (– ;
]
имеются два угла, тангенсы которых равны
.
Для определения четверти, в которой
лежит угол ,
нужно еще учесть знаки х, у – координат
точки z:
-
если
точка z
лежит в I
и IV
четверти, x
> 0, то
=
arg
z
=
(рисунок 9);
2)
если точка z
лежит во II
четверти, т.е. x
< 0, y
> 0, то
и
arg
z
=
(рисунок 10);
3)
Если точка z
лежит в III
четверти, т.е. x
< 0, y
< 0, то
и
(рисунок
11).
Рисунок 9
Рисунок 10
Рисунок 11
Для главного
аргумента справедливы формулы:
Пример
7.1 Записать
числа в тригонометрической форме:
1)
z = 4 + 4i.
Решение.
x
= 4, y
= 4 (I
четверть);
.
Так
как arg
z
=
,
то
z
= 4 + 4i =
2)
z =
–
i.
Решение.
x
=,
y
= –1 (IVчетверть);
Так
как x
> 0,
= arg
z
= arctg
=
Поэтому
– i
= 2
3)
z = – 2 –
i.
Решение.
x
= –2, y = –
(III четверть);
Так
как x
< 0 и y
< 0,
= arg
z
= –
–2
–
i
=
4)
z = –+
i.
Решение.
x
= –,
y
= 1 (II
четверть);
.
Так как x
< 0, y
> 0,
=
arg z =
–+
i =
5)
z = 5.
Решение.
Так
как число z
= 5 действительное и 5 > 0, то
= 0.
6)
z = –.
Решение.
,
=
(так как –<
0).
).
7)
z = 3i.
Решение.
Так
как число z
= 3i
– мнимое (х = 0, у = 3), причем y
= Im
z
=
=
3 > 0, то
,
= arg
z
=.
z = –i.
Решение.
x
= 0, y = –<
0;
,
= arg
z
= –
.
9)
z = cos
– isin
.
Решение.
Данная
запись числа не является тригонометрической.
Это чис-ло записано в алгебраической
форме, где
, у = –
.
Искомая
запись имеет вид z
= cos
+ isin
.
;
;
arg z = –.
–
Данное представление
могло быть получено, учитывая чет-ность
функции y = cos x и нечетность функции y =
sin x.
10)
z = –
Решение.
,
поэтому искомая запись имеет вид: z
= cos
+ i sin .
Так
как
,
то –
– sin
Соседние файлы в папке КЧ
- #
- #
Что такое комплексное число
Комплексное число — это выражение типа (z;=;a;+;ib). Здесь a и b будут являться любыми действительными числами, а i — специальным числом, называемым мнимой единицей. Действительная часть комплексного числа обозначается как (a;=;RE;z ), а мнимая часть — (b;=;Im;z).
Во множестве комплексных чисел содержится множество вещественных чисел. Если множество комплексных чисел — это всевозможные пары (x, y), то содержащееся в нем множество вещественных чисел — это пары (x, 0). Те же комплексные числа, которые задают пары (0, y) являются мнимыми.
Что такое модуль комплексного числа
Модуль комплексного числа — это длина вектора, который изображает комплексное число.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Любое комплексное число кроме 0 может быть выражено в тригонометрической форме.
(z;=;left|zright|;cdot;(cosleft(varphiright);+;isinleft(varphiright)))
В этом виде (left|zright|) — модуль комплексного числа z. Может обозначаться как p и r.
Если (left|zright|;=;r,) то r будет обозначать длину радиус-вектора точки M (x, y).
Вычисление модуля комплексного числа, если в алгебраической форме оно выглядит как z = x + iy, возможно по следующей формуле:
(left|zright|;=;sqrt{x^2;+;y^2})
То есть модуль комплексного числа можно вычислить как квадратный корень из суммы квадратов действительной и мнимой его частей.
Модуль комплексного числа имеет следующие свойства:
- Модуль не отрицателен — (left|xright|;geq;0). (left|xright|;=;0) только в том случае, если z = 0.
- Модуль суммы двух комплексных чисел будет меньше или равен сумме модулей: (left|z_1;+;z_2right|;leq;left|z_1right|;+;left|z_2right|.)
- Модуль результата умножения двух комплексных числе будет равен произведению модулей: (left|z_1;cdot;z_2right|;=;left|z_1right|;cdot;left|z_2right|.)
- Модуль результата деления двух комплексных чисел будет равняться частному модулей: (left|z_1;div;z_2right|;=;left|z_1right|;div;left|z_2right|.)
- Модуль неравенства комплексных чисел будет равен расстоянию между этими числами на комплексной плоскости: (left|z_1;-;z_2right|;=;sqrt{left(x_1;-;x_2right)^2;+;left(y_1;-;y_2right)^2}).
Что такое аргумент комплексного числа
Аргумент комплексного числа — это угол (varphi) радиус-вектора точки, соответствующей комплексному числу (z;:;varphi;=;arg;z) на комплексной плоскости. Этот угол измеряется в радианах.
Каждое комплексное число, которое не равно нулю, имеет бесконечное множество аргументов. Эти аргументы отличаются друг от друга на целое число полный оборотов — (360^circ;cdot;k) при k — любое число.
Связь аргумента комплексного числа с его координатами отражена в следующих формулах:
(tanleft(varphiright);=;frac ba)
(cosleft(varphiright);=;frac a{sqrt{a^2;+;b^2}})
(sinleft(varphiright);=;frac b{sqrt{a^2;+;b^2}})
Важно помнить, что ни одна из этих формул отдельно недостаточна для того, чтобы найти аргументы. Формулы используются в совокупности, а также учитывается номер четвертый на координатной плоскости, в которой находится комплексное число.
Аргумент может быть записан в тригонометрической форме. Для комплексного числа (z = x + iy), это будет выглядеть следующим образом:
(z;=;r;(cosleft(varphiright);+;i;sinleft(varphiright)))
Здесь (r) будет модулем комплексного числа (z), а (varphi) — arg z.
Важно отметить, arg z имеет смысл лишь при (z neq 0), комплексное число ноль не имеет аргумента.
Как вывести формулу модуля
В соответствии с теоремой Пифагора длина вектора с координатами a и b равна (sqrt{a^2;+;b^2}).
Так как именно эта величина называется модулем комплексного числа (z = a + bi), тогда (left|xright|;=;sqrt{a^2;+;b^2}).
Примеры решения задач
Задача
Найти модуль числа (z;=;-5;+;15i)
Решение
(x;=;Re;z;=;-15) — действительная часть, а (y;=;Im;z;=;15) — мнимая часть комплексного числа (z;=;-5;+;15i.)
Таким образом, модуль числа равен следующему выражению:
(r;=;sqrt{x^2;+;y^2};=sqrt{{(-5)}^2;+;15^2};=;sqrt{25;+;225};=;sqrt{250} )
Ответ: (r;=;sqrt{250})
Задача
Найти расстояние между числами (z_1;=;1;-;3i,;z_2;=;-2;+;2i) на комплексной плоскости.
Решение
Расстояние между двумя комплексными числами находятся как модуль разности комплексных чисел. Используем необходимую формулу:
(left|z_1;-;z_2right|;=;sqrt{{(x_1;-;x_2)}^2;+;left(y_1;-;y_2right)^2};=;sqrt{(1;-;{(-2))}^2;+;{(-2;-;2)}^2};=;sqrt{34})
Ответ: (sqrt{34})
Задача
Найти значение аргумента комплексного числа (sqrt{34}) и выразить его в тригонометрической форме.
Решение
Если действительно частью комплексного числа (z;=;1;+;sqrt{3i}) является число (x = Re z = 1), а мнимой частью является (y = Im z;=sqrt3), то аргумент можно вычислить по формуле:
(varphi;=;arg;z;=;arctg;frac yx;=;arctg;frac{sqrt3}1;=;arctg;sqrt3;=;frac{mathrmpi}3)
Теперь для нахождения тригонометрической формы записи комплексного числа необходимо найти модуль.
(r;=;sqrt{x^2;+;y^2};=;sqrt{1^2;+;{(sqrt3)}^2};=;sqrt{1+3};=;sqrt4;=;2)
Исходя из этого, тригонометрическая форма комплексного числа выглядит следующим образом:
(z;=;2;(cosleft(frac{mathrmpi}3right);+;i;sinleft(frac{mathrmpi}3right)))
Ответ: аргумент равен (frac{mathrmpi}3). Тригонометрическая форма записана выше.
Задача
Найти модуль и аргумент числа (z = 2 — i)
Решение
Найдем (left|zright|;=;sqrt{2^2;+;{(-;1)}^2};=;sqrt5.)
Так как (Re z = 2 > 0), (Im z = -1 < 0), точка расположена в 4 четверти. Тогда из равенства (tanleft(varphiright);=;-frac12) следует:
(varphi;=;arctanleft(-frac12right))
Ответ: (varphi;=;arctanleft(-frac12right))
Комплексные числа в тригонометрической
и показательной формах
Тригонометрическая форма комплексного числа
Каждому комплексному числу геометрически соответствует точка на плоскости . Но положение точки на плоскости, кроме декартовых координат , можно зафиксировать другой парой — ее полярных координат в полярной системе (рис. 1.3,a).
Величина является неотрицательной и для данной точки определяется единственным образом, а угол может принимать бесчисленное множество значений (при этом ): если точке соответствует некоторое значение , то ей также соответствуют значения . Например, если для точки (см. рис. 1.1) выбрать , то ей соответствует любое , в частности при . Если же выбрать , то , а при получаем .
Используя связь декартовых и полярных координат точки (рис. 1.3,б), из алгебраической формы записи комплексного числа получаем тригонометрическую форму:
(1.3)
Показательная форма комплексного числа
Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получим показательную форму записи комплексного числа:
(1.4)
Равенство называется формулой Эйлера.
Заметим, что геометрически задание комплексного числа равносильно заданию вектора , длина которого равна , то есть , а направление — под углом к оси (рис. 1.3,б).
Модуль комплексного числа
Число — длина радиуса-вектора точки называется модулем комплексного числа . Обозначение: .
Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме
(1.5)
Очевидно, что и только для числа .
С помощью правила вычитания запишем модуль числа , где и
А это, как известно, есть формула для расстояния между точками и .
Таким образом, число есть расстояние между точками и на комплексной плоскости.
Пример 1.13. Найти модули комплексных чисел:
Решение
Аргумент комплексного числа
Полярный угол точки называется аргументом комплексного числа . Обозначение: .
В дальнейшем, если нет специальных оговорок, под будем понимать значение , удовлетворяющее условию . Так, для точки (см. рис. 1.1) .
Формулу для нахождения аргумента комплексного числа , заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для , у которых , получаем ; для точек мнимой положительной полуоси, т.е. для , у которых , имеем ; для точек мнимой отрицательной полуоси, т.е. для , у которых , соответственно .
Аргумент числа — величина неопределенная.
Нахождение аргумента при сводится к решению тригонометрического уравнения . При , т.е. когда — число действительное, имеем при и при . При решение уравнения зависит от четверти плоскости . Четверть, в которое расположена точка , определяется по знакам и . В результате получаем:
(1.6)
При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.
Пример 1.14. Найти аргументы чисел из примера 1.13.
Решение
Пример 1.15. Найти модуль и аргумент числа .
Решение. Находим . Так как , т.е. точка расположена в четвертой четверти, то из равенства получаем (рис. 1.5).
Главное значение аргумента комплексного числа
Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций и .
Всякий угол, отличающийся от на слагаемое, кратное , обозначается и записывается равенством:
(1.7)
где — главное значение аргумента, .
Пример 1.16. Записать и для чисел .
Решение. Числа и — действительные, расположены на действительной оси (рис. 1.6), поэтому
числа и — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому
Пример 1.17. Записать комплексные числа из примера 1.16:
а) в тригонометрической форме;
б) в показательной форме.
Решение
Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:
а)
б) .
Пример 1.18. Записать в тригонометрической форме числа .
Решение
Числа и записаны в алгебраической форме (заметим, что заданная запись числа не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):
Далее находим аргументы. Для числа имеем и, так как (точка расположена в третьей четверти), получаем (см. рис. 1.5). Для числа имеем , или , и, так как (точка расположена в четвертой четверти (см. рис. 1.5)), получаем .
Записываем числа и в тригонометрической форме
Заметим, что для числа решение можно найти иначе, а именно используя свойства тригонометрических функций: .
Число является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем и ): . Здесь, как и для числа , при решении удобно использовать преобразования тригонометрических выражений, а именно .
Рассуждая, как выше, найдем . Для числа , записанного в алгебраической форме, получаем тригонометрическую форму:
Равенство комплексных чисел в тригонометрической форме
Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел из условия . очевидно, следует:
или
(1.8)
Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное .
Для пары сопряженных комплексных чисел и справедливы следующие равенства:
(1.9)
Умножение комплексных чисел в тригонометрической форме
Зададим два комплексных числа в тригонометрической форме и и перемножим их по правилу умножения двучленов:
или
Получили новое число , записанное в тригонометрической форме: , для которого .
Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:
(1.10)
В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.
Пример 1.19. Найти модули и аргументы чисел:
Решение
Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:
Для чисел и находим модули и аргументы: . Используя формулы (1.10), получаем
б) . Для числа имеем: ; для числа , и так как (точка расположена в четвертой четверти), то . Используя формулы (1.10), получаем .
Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти и , используя формулы (1.5), (1.6).
Деление комплексных чисел в тригонометрической форме
Рассмотрим частное комплексных чисел , заданных в тригонометрической форме. Из определения частного имеем и, применяя к произведению правило умножения (формулы (1.10)), получаем .
Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:
(1.11)
В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.
Пример 1.20. Записать в тригонометрической форме комплексное число .
Решение. Обозначим . Для чисел и находим модули и аргументы: (см. пример 1.19). По формуле (1.11) получаем и
Возведение в степень комплексного числа в тригонометрической форме
Из определения степени и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем
, где .
Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:
(1.12)
Записывая число в тригонометрической форме , получаем формулу возведения в степень:
(1.13)
При это равенство принимает вид и называется формула Муавра
(1.14)
Пример 1.21. Найти модуль и аргумент комплексного числа .
Решение. Обозначим . Находим модуль и аргумент числа . Поэтому и . Так как по определению для главного значения аргумента выполняется условие , то .
Пример 1.22. Записать в тригонометрической форме число .
Решение
Пример 1.23. Используя формулу Муавра, найти выражения для и через тригонометрические функции угла .
Решение
Из формулы (1.14) при имеем . Возведем левую часть в степень, учитывая, что (см. пример 1.8):
Используя условие равенства комплексных чисел, получаем:
Извлечение корня из комплексного числа в тригонометрической форме
Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме , или . Искомое число также запишем в показательной форме: . Используя определение операции извлечения корня и условия (1.8), получаем соотношения
или
(1.15)
Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент разделить на показатель корня:
(1.16)
Теперь можно записать число в показательной форме:
Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение принимает только различных значений. Для их записи достаточно в формуле (1.15) взять последовательных значений , например . В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где :
(1.17)
Замечания 1.1
1. Рассмотренная задача извлечения корня степени из комплексного числа равносильна решению уравнения вида , где, очевидно, .
Для решения уравнения нужно найти значений , а для этого необходимо найти и использовать формулу извлечения корня.
2. Исследование формулы (1.17) показывает, что все комплексные числа (значения ) имеют равные модули, т.е. геометрически расположены на окружности радиуса . Аргументы двух последовательных чисел отличаются на , так как , т.е. каждое последующее значение может быть получено из предыдущего поворотом радиуса-вектора точки на .В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.
Точки, соответствующие значениям , расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой , причем аргумент одного из значений равен (рис. 1.7).
Алгоритм решения комплексных уравнений вида z^n-a=0
1. Найти модуль и аргумент числа .
2. Записать формулу (1.17) при заданном значении .
3. Выписать значения корней уравнения , придавая значения .
Пример 1.24. Решить уравнения: a) ; б) .
Решение
Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.
а) Найдем .
1. Определим модуль и аргумент числа .
2. При полученных значениях и записываем формулу (1.17):
Заметим, что справа стоит — арифметический корень, его единственное значение равно 1.
3. Придавая последовательно значения от 0 до 5, выписываем решения уравнения:
Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса , одна из точек (соответствует ) . Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: и — действительные числа.
б) Найдем .
1. Определим модуль и аргумент числа .
2. По формуле (1.17) имеем
3. Выписываем корни .
Для геометрического представления решения уравнения достаточно изобразить одно значение, например (при ) — это точка окружности , лежащая на луче . После этого строим правильный треугольник, вписанный в окружность (рис. 1.8,б).
Пример 1.25. Найти корень уравнения , для которого .
Решение
Задача равносильна задаче нахождения при условие .
1. Находим модуль и аргумент числа .
2. По формуле (1.17) имеем: .
3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение , при котором выполняется условие (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).
Условию поставленной задачи удовлетворяет корень (при ): .
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.