Как найти модуль чего либо

Модуль числа — теория и решение задач

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Вот смотри…

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что  «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Модуль числа — коротко о главном

Определение модуля:

Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):

( displaystyle left| x right|=left{ begin{array}{l}x, xge 0\-x, x<0end{array} right.)

Свойства модуля:

  • Модуль числа есть число неотрицательное: ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0);
  • Модули противоположных чисел равны: ( left| -x right|=left| x right|);
  • Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
  • Модуль частного двух чисел равен частному их модулей: ( displaystyle left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0});
  • Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
  • Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
  • Квадрат модуля числа равен квадрату этого числа: ( {{left| x right|}^{2}}={{x}^{2}}).

Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.

И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).

Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).

Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).

То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).

Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).

Какое расстояние было пройдено в первом и во втором случае?

Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).

Таким образом, мы приблизились к понятию модуля.

Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).

Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.

Обозначается модуль просто:

( |mathbf{a}|,) (( a) — любое число).

Итак, найдём модуль числа ( 3) и ( -3):

( left| mathbf{3} right|=mathbf{3})

( left| -mathbf{3} right|=mathbf{3}.)

Основные свойства модуля

Первое свойство модуля

Модуль не может быть выражен отрицательным числом ( |mathbf{a}|text{ }ge text{ }mathbf{0})

То есть, если ( mathbf{a}) – число положительное, то его модуль будет равен этому же числу.

Если ( mathbf{a}text{ }>text{ }mathbf{0},) то ( displaystyle left| a right|=a).

Если ( a) – отрицательное число, то его модуль равен противоположному числу.

Если ( atext{ }<text{ }mathbf{0},) то ( |mathbf{a}|text{ }=text{ }-mathbf{a})

А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):

Если ( a=0), то ( |mathbf{a}|=mathbf{a}), или ( displaystyle left| 0 right|=0).

Из этого следует, что модули противоположных чисел равны, то есть:

( left| -4 right|text{ }=text{ }left| 4 right|text{ }=text{ }4;)

( left| -7 right|text{ }=text{ }left| 7 right|text{ }=text{ }7.)

А теперь потренируйся:

  • ( left| 9 right|text{ }=text{ }?;)
  • ( left| -3 right|text{ }=text{ }?;)
  • ( left| 16 right|text{ }=text{ }?;)
  •  ( left| 8 right|text{ }=text{ }?;)
  • ( left| -17 right|text{ }=text{ }?.)

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt{5} right|=?)

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим ( 2-sqrt{5}):

( 2<sqrt{5}) (Забыл, что такое корень? Бегом повторять!)

Если ( 2<sqrt{5}), то какой знак имеет ( 2-sqrt{5})? Ну конечно, ( 2-sqrt{5}<0)!

А, значит, знак модуля раскрываем, меняя знак у выражения:

( left| 2-sqrt{5} right|=-left( 2-sqrt{5} right)=-2+sqrt{5}=sqrt{5}-2)

Разобрался? Тогда попробуй сам:

  • ( left| sqrt{3}-1 right|=?)
  • ( left| 3-sqrt{7} right|=?)
  • ( left| 2-sqrt{7} right|=?)
  • ( left| sqrt{13}-4 right|=?)

Ответы:

( sqrt{3}-1; 3-sqrt{7}; sqrt{7}-2; 4-sqrt{13.})

Какими же ещё свойствами обладает модуль?

Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

То есть: ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|)

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

( left| mathbf{5}cdot mathbf{7} right|text{ }=text{ }left| mathbf{5} right|cdot left| mathbf{7} right|text{ }=text{ }mathbf{5}cdot mathbf{7}text{ }=text{ }mathbf{35};)

( left| mathbf{3}cdot left( -mathbf{2} right) right|text{ }=text{ }left| mathbf{3} right|cdot left| -mathbf{2} right|text{ }=text{ }mathbf{3}cdot mathbf{2}text{ }=text{ }mathbf{6}.)

А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

( displaystyle |frac{a}{b}|=frac{|a|}{|b|}) при условии, что ( mathbf{b}ne mathbf{0}) (так как на ноль делить нельзя).

Еще одно свойство модуля…

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.

( |a+bleft| text{ }le text{ } right|aleft| + right|b|)

Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.

Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:

( left| mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{10} right|text{ }=text{ }mathbf{10}) ( left| mathbf{3} right|+left| mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Выражения также равны, если оба числа отрицательны:

( displaystyle |-3+(-7)|~=~|-3-7|~)( displaystyle=|-10|=10) ( |-mathbf{3}left| + right|-mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

( left| -mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{4} right|text{ }=text{ }mathbf{4}) ( |-mathbf{3}left| + right|mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

или

( left| mathbf{3}+left( -mathbf{7} right) right|text{ }=text{ }left| -mathbf{4} right|text{ }=text{ }mathbf{4}) ( left| mathbf{3} right|+left| -mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

( mathbf{4}<mathbf{10})

Рассмотрим еще парочку полезных свойств модуля

Что если перед нами такое выражение:

( left| 7x right|)

Что мы можем сделать с этим выражением?

Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:

( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

( left| cx right|=ccdot left| x right|,) при ( c>0)

А чему равно такое выражение:

( {{left| x right|}^{2}}=?)

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.

И что же получается? А вот что:

( {{left| x right|}^{2}}={{x}^{2}})

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

( {{left| 5 right|}^{2}}={{5}^{2}}=25)

( {{left| -5 right|}^{2}}=?)

Ну, и почему сомнения? Действуем смело!

( {{left| -5 right|}^{2}}={{5}^{2}}=25)

Во всем разобрался? Тогда вперед тренироваться на примерах!

Тренировка на примерах

1. Найдите значение выражения ( |xleft| text{ }+text{ } right|y|), если ( x=text{ }-7,5text{ },y=text{ }12.)

2. У каких чисел модуль равен ( 5)?

3. Найдите значение выражений:

а) ( |3|text{ }+text{ }|-9|;)

б) ( |-5|text{ }-text{ }|6|;)

в) ( |15left| cdot right|-3|;)

г) ( displaystyle frac{|8|}{|-2|}).

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1:

Итак, подставим значения ( x) и ( y) в выражение ( |mathbf{x}left| text{ }-text{ } right|mathbf{y}|.) Получим:

( |-7,5|text{ }+text{ }|12|text{ }=7,5text{ }+text{ }12text{ }=text{ }19,5.)

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).

Решение 3:

а) ( |3|text{ }+text{ }|-9|=text{ }3+9=text{ }12;)
б) ( |-5|-text{ }left| 6 right|text{ }=text{ }5-6=text{ }-1;)
в) ( |15left| cdot right|-3|text{ }=text{ }15cdot 3=text{ }45;)
г) ( frac{|8|}{|-2|}=frac{8}{2}=4.)

Все уловил? Тогда пора перейти к более сложному!

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):

( left| x right|=left{ begin{array}{l}x,text{ }xge 0\-x,text{ }x<0end{array} right.)

Например: ( left| 4 right|=4;text{ }left| 0 right|=0;text{ }left| -3 right|=-left( -3 right)=3.)

Пример:

Упростите выражение ( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|).

Решение:

( sqrt{5}-3<0Rightarrow left| sqrt{5}-3 right|=-left( sqrt{5}-3 right)=3-sqrt{5};)

( sqrt{5}+1>0Rightarrow left| sqrt{5}+1 right|=sqrt{5}+1;)

( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|=3-sqrt{5}+sqrt{5}+1=4.)

Основные свойства модуля (итог)

Для всех ( x,yin mathbb{R}):

  • ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0;)
  • ( left| -x right|=left| x right|;)
  • ( left| xcdot y right|=left| x right|cdot left| y right|;)
  • ( left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0};)
  • ( left| x+y right|le left| x right|+left| y right|)
  • ( left| cx right|=ccdot left| x right|, при text{ }c>0)
  • ( {{left| x right|}^{2}}={{x}^{2}})

Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})

а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text{ }c>0)

Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text{ }Rightarrow text{ }left| c right|=c), тогда

( left| cx right|=ccdot left| x right|), ч.т.д.

Упростите выражение ( left| frac{31}{8}-sqrt{15} right|+left| frac{15}{4}-sqrt{15} right|)

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Модуль числа

Модуль числа и уравнения с модулем — тема особенная, прямо-таки заколдованная :-) Она совсем не сложная, просто в школе её редко объясняют нормально. В результате без специальной подготовки почти никто из школьников не может дать правильное определение модуля и тем более решить уравнение с модулем. И эту картину мы наблюдаем на протяжении многих лет.

Поэтому осваивайте тему «Уравнения и неравенства с модулем» по нашим статьям и на наших занятиях! Вы сумеете обойти множество конкурентов на ЕГЭ, олимпиадах и вступительных экзаменах.

Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет никакого знака, поэтому модуль положительного числа равен ему самому. Например,  Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному (без знака!).
Например,

Обратите внимание: модуль числа всегда неотрицателен:

Определение модуля

Вот оно:

От большинства известных из школы определений оно отличается лишь одним: в нём есть выбор. Есть условие. И в зависимости от этого условия мы раскрываем модуль либо так, либо иначе.

Так же, как в информатике — в разветвляющихся алгоритмах с применением условных операторов. Как, вообще-то, и в жизни: сдал ЕГЭ на минимальный балл — можешь подавать документы в ВУЗ. Не сдал на минимальный балл — можешь идти в армию :-)

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,


В некоторых случаях модуль раскрывается однозначно. Например,  так как выражение под знаком модуля неотрицательно при любых x и y. Или:  так так как выражение под модулем неположительно при любых z.

Геометрическая интерпретация модуля

Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например, То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.

Рассмотрим простейшее уравнение . Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения  есть два решения: x = 3 и x = −3.

Вообще, если имеются два числа, a и b, то равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение длины отрезка AB, то есть расстояния от точки A
до точки B.)

Ясно, что (расстояние от точки a до точки b равно расстоянию от точки b до точки a).

Решим уравнение . Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.

Перейдём к неравенствам. Решим неравенство: .

Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.

Ответ: (-11; -3).

Другой пример. Решим неравенство: |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно 7. Отметим эти точки на числовой прямой.
Ответ: .

График функции 

Этот график надо знать обязательно. Для имеем y = x. Для имеем y = −x. В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.

Корень из квадрата

Нередко в задачах ЕГЭ требуется вычислить , где a – некоторое число или выражение. Не забывайте, что 

Действительно, по определению арифметического квадратного корня — это такое неотрицательное число, квадрат которого равен . Оно равно a при и -a при , т. е. как раз .

Примеры заданий ЕГЭ

1. Найдите значение выражения:  при .

Заметим, что при . Следовательно, значение нашего выражения равно: .

2. Найдите значение выражения:  при .

Действуем аналогично:

.

В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.

Читайте также: Уравнения с модулем

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Модуль числа» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

На этой странице вы узнаете

  • Как перевернуть график модуля?
  • Одной ногой тут, другой там: к какому промежутку относить граничные точки?
  • Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Модуль числа — это великая математическая мудрость, которая показывает дружбу и соперничество противоположных знаков: минуса и плюса. О том, что держит число в рамках, узнаем в статье.  

Модуль 

Мы легко можем найти расстояние от точки до точки, достаточно просто измерить его линейкой. Но можно ли найти расстояние от 0 до любого числа? 

Представим, что наш дом находится посередине между школой и магазином. И до школы, и до магазина 500 метров, но они стоят по разные стороны от дома. 

Расположим их на координатной прямой. Поскольку и школа, и магазин располагаются на одинаковом расстоянии, то от дома до них мы будем идти 500 метров. Но на координатной прямой до школы мы пройдем −500 метров, поскольку движемся против направления оси, а до магазина 500 метров. 

Будет ли являться полученный результат противоречием? Нет, поскольку когда мы ищем расстояние, нам неважно направление движения и знак. В математике существует специальное определение — это модуль, или абсолютная величина. 

Модуль — расстояние от любой точки на координатной прямой до начала координат. 

Поскольку на координатной прямой мы можем отложить расстояние в две стороны, то такое расстояние можно найти и с отрицательными точками, и с положительными. Расстояние измеряет длину отрезка, то есть оно всегда будет положительно. 

Можно сказать, что от любого числа модуль берет только цифры, а на знаки не обращает внимания. Например, |−8| = 8 и |8| = 8. 

Может возникнуть вопрос: куда исчезает минус? Чтобы избавиться от минуса, достаточно умножить число на −1: (-8) * (-1) = 8. Значит, модуль просто умножает число на -1. 

Отсюда получается, что модулем числа а называют выражение:

Возьмем два случая: a = 8 и a = -8. Для первого получаем |8| = 8, а для второго |-8| = -(-8) = 8, то есть определение выполняется. 

Можно ли взять модуль функции? Да. Модулем произвольной функции называют выражение:

Свойства модуля

Модуль, как и все понятия в математике, обладает своими свойствами

Свойство 1. |a| >= 0. 

Как мы уже говорили, модуль всегда будет положительным числом, поскольку он не обращает внимания на знак числа. 

Свойство 2. |a| = |-a|. 

Это свойство также подтверждает рассуждения выше. Модули противоположных чисел, то есть чисел с разными знаками, равны. 

Свойство 3. |a| >= a. 

Если число а будет положительным, например, 5, то неравенство |5| >= 5 (rightarrow) 5 >= 5  выполняется, поскольку знак неравенства нестрогий. 

Если число а будет отрицательным, например, -5, то неравенство |-5| >= -5 (rightarrow) 5 >= -5  выполняется, поскольку положительное число всегда больше отрицательного. 

Свойство 4. |a * b| = |a| * |b|. 

Пусть a = 5, b = -2, тогда |5 * (-2) | = |-10| = 10, и |5| * |-2| = 5 * 2 = 10, то есть выражения равны между собой. 

Свойство 5. (|frac{a}{b}| = frac{|a|}{|b|}). 

Рассуждения такие же, как и в предыдущем свойстве. Пусть a = 10, b = -5, тогда (|frac{10}{(-5)}| = |-2| = 2 и frac{|10|}{|-5|} = frac{10}{5} = 2). 

Свойство 6. |a + b| <= |a| + |b|.

Почему появилось неравенство, а не уравнение, как в предыдущих двух свойствах? Разберем два примера. 

Пусть a = 1, b = 2, тогда |1 + 2| = |3| = 3 и |1| + |2| = 1 + 2 = 3 — неравенство выполняется, поскольку знак нестрогий.

Но если a = -1, b = 2, тогда |-1 +2| = |1| = 1 и |-1| + |2| = 1 + 2 = 3, откуда получаем 1 < 3. 

Свойство 7. (sqrt{a^2} = |a|). 

Докажем это свойство. Пусть (sqrt{a^2} = x), тогда x0, поскольку квадратный «Корень» не может быть отрицательным. Возведем полученное уравнение в квадрат: a2 = x2 
a2 — x2 = 0
(a — x)(a + x) = 0

Из уравнения x = a,  из-за ограничений на x получаем a >= 0.

И x = -a,  из-за ограничений на x получаем a < 0. 

То есть получается выражение модуля. 

Свойство 8. |a|2 = a2.

Поскольку и модуль, и квадрат числа дают положительный результат, модуль в квадрате можно заменить просто квадратом числа. 

График модуля

Как изобразить функцию с модулем? Для начала разберемся, что делает модуль с графиком функции. 

Рассмотрим функцию y = x — это прямая. При этом у может быть и положительным, и отрицательным. 

Занесем х под знак модуля: y = |x|. Теперь у может быть только положительным. Что происходит с частью графика, которая лежит ниже оси х? Она зеркально отражается. В итоге мы получаем галочку: 

Модуль отражает любой график относительно оси х

Что будет, если перед х будет стоять коэффициент? Построим графики: 

Галочка будет сужаться и расширяться. Причем чем больше коэффициент перед х, тем ýже будет галочка. 

Попробуем добавить слагаемое к подмодульному выражению. 

График модуля будет двигаться вдоль оси х. Причем:

  • если мы прибавляем число, то график сдвигается влево;
  • если мы вычитаем число, то график сдвигается вправо. 

Добавим число к модулю, а не подмодульному выражению:

График будет двигаться вдоль оси у

Как перевернуть график модуля?

Для этого достаточно добавить перед модулем минус. Важно, чтобы минус стоял именно перед модулем, а не внутри него. Тогда график будет отзеркален относительно оси х и лежать только ниже нее. 

Это легко проследить с помощью уравнений: если y = -|x|, то, при x = 3 получаем:
y = -|3| = -3

Уравнения с модулем

1. Возьмем уравнение вида |f(x)| = a. Поскольку модуль не может быть отрицательным, то и а  не может быть отрицательным. Получаем следующий переход:

Пример 1. Решите уравнение |4x + 5| = 7. 

Решение. В уравнении f(x) = 4x + 5, a = 7. Воспользуемся переходом:

Из первого уравнения x = 0,5, а из второго уравнения x = -3. 

Ответ: 0,5: -3. 

2. В уравнениях и неравенствах можно встретить два разных модуля. Как быть в этом случае? 

Алгоритм решения уравнений с несколькими модулями 

Шаг 1. Находим нули подмодульных выражений. 

Шаг 2. Чертим числовую прямую и ищем знаки на промежутках для каждого модуля. Если подмодульное выражение отрицательно на промежутке, то ставится минус, если положительно — ставится плюс. 

Шаг 3. Для каждого промежутка раскрываем модули. Если подмодульное выражение на промежутке отрицательно, то модуль раскрывается со знаком минус. Если положительно — модуль раскрывается со знаком плюс. Важно: полученные корни должны принадлежать промежуткам, на которых раскрывается модуль, иначе они не будут решениями уравнения. 

Шаг 4. Записать все полученные корни в ответ. 

Пример 2. Решите уравнение |x — 2| — |x + 2| = 4x — 5.

Решение. Найдем, в каких точках модули будут равны 0. Для этого подмодульное выражение также должно быть равно 0:

x — 2 = 0 (rightarrow) x = 2
x + 2 = 0 (rightarrow) x = -2

Нарисуем числовую прямую с этими точками: 

У нас получилось три промежутка: 

  • (-(infty);-2)
  • [-2;2)
  • [2;+(infty))

Обратим внимание, какие знаки имеет первый модуль на промежутках: x — 2 > 0 при x > 2. Следовательно, на первых двух промежутках модуль будет отрицательным, а на третьем положительным. Расставим его знаки красным цветом. 

Проанализируем второй модуль: x + 2 > 0 (rightarrow) x>-2. Получается, подмодульное выражение будет положительно на втором и третьем промежутке, и отрицательным на первом промежутке. Расставим его знаки синим цветом. 

Теперь мы можем рассмотреть уравнение на всех трех промежутках. Однако для этого обязательно ввести ограничения: полученные точки должны принадлежать только этому промежутку, поскольку на следующем модули будут раскрываться уже по-другому. 

2. Рассмотрим первый промежуток: x<-2. Оба модуля раскрываются с отрицательным знаком, и мы получаем следующее уравнение:

-(x — 2) — (-(x + 2)) = 4x — 5
-x + 2 + x + 2 = 4x — 5
4 = 4x — 5
4x = 9
x = 2,25

Точка не удовлетворяет ограничению, поскольку не лежит в промежутке (-(infty);-2):

Рассмотрим второй промежуток: [-2;2). Первый модуль раскрывается с минусом, а второй с плюсом:

-(x — 2) — (x + 2) = 4x — 5
-x + 2 — x — 2 = 4x — 5
-2x = 4x — 5
6x = 5
(x = frac{5}{6})

Эта точка лежит в заданном промежутке и является решением уравнения. 

Рассмотрим третий промежуток [2;+(infty)). Оба модуля раскрываются со знаком плюс, мы получаем уравнение:

(x — 2) — (x + 2) = 4x — 5
x — 2 — x — 2 = 4x — 5
-4 = 4x — 5
4x = 1

x = 0,25 — эта точка не лежит в промежутке, то есть не является решением уравнения. 

Решением уравнения будет только (x = frac{5}{6}). 

Ответ: (frac{5}{6})

Одной ногой тут, другой там: к какому промежутку относить граничные точки?

Разбивая прямую на промежутки, может возникнуть вопрос: а что делать с точками, в которых модуль равен 0? Их обязательно нужно проверять. Можно сделать это как отдельно, подставив точки в уравнение, так и сразу включить их в условие раскрытия модуля. 

Если точки включаются в условие раскрытия модуля, то достаточно включить их только в один из двух промежутков. Включать их в два промежутка нецелесообразно: одна и та же точка будет проверяться дважды. 

3. Уравнения вида |f(x)| = g(x)

Поскольку вместо функций могут стоять любые выражения, раскрыть модуль можно двумя способами. Выбор одного из них зависит от того, какая функция проще: f(x) или g(x). 

Как можно раскрыть модуль?

  • Можно раскрыть его в зависимости от знаков подмодульного выражения: если подмодульное выражение отрицательное, то модуль раскрывается с минусом, если положительное, то с плюсом. 
  • Можно возвести уравнение в квадрат. Но здесь необходимо ввести ограничения на g(x) — поскольку функция равна модулю, она не может быть отрицательной. 

Для удобства можно пользоваться следующей схемой: 

Пример 3. Решите уравнение |8 — x| = x2 — 5x + 11.

Решение. Заметим, что подмодульное выражение значительно проще функции справа, в этом случае удобнее будет раскрыть модуль. Получаем совокупность двух систем: 

Рассмотрим первую систему.

8 — x >= 0 (rightarrow) x <= 8

Решим уравнение:

8 — x = x2 — 5x + 11
x2 — 4x + 3 = 0
D = 16 — 12 = 4
(x_1 = frac{4 + 2}{2} = 3)
(x_2 = frac{4 — 2}{2} = 1)

Оба корня уравнения удовлетворяют условию x <= 8, значит, решением системы будут 1 и 3. 

Рассмотрим вторую систему. 

8 — x < 0 (rightarrow) x > 8

Решим уравнение: 

8 — x = -x2 + 5x — 11
x2 — 6x + 19 = 0
D = 36 — 76 = -40 — при отрицательном дискриминанте решения уравнений нет. 

Решением всего уравнения будут x = 1 и x = 3. 

Ответ: 1, 3

4. Разберем еще один тип уравнений, когда модуль равен модулю. Неужели придется рассматривать целых 4 случая раскрытия модуля? Нет, достаточно будет возвести в квадрат обе части уравнения. Таким образом, мы получаем следующий переход: 

Пример 4. Решите уравнение |x — 2| = |2x + 8|.

Решение. Возведем обе части уравнения в квадрат. Для этого воспользуемся свойством 8.

(x — 2)2 = (2x + 8) 2
(x — 2)2 — (2x + 8) 2 = 0

Воспользуемся формулой сокращенного умножения:

((x — 2) — (2x + 8))((x — 2) + (2x + 8) = 0

Если произведение множителей равно 0, то каждый множитель равен 0. Тогда:

x — 2 — (2x + 8) = 0 (rightarrow) x — 2 = 2x + 8
x — 2 + (2x + 8) = 0 (rightarrow) x — 2 = -(2x + 8)

Получаем совокупность: 

Решим первое уравнение совокупности:

x — 2 = 2x + 8
x = -10

Решим второе уравнение совокупности:

x — 2 = -2x — 8
3x = -6
x = -2

Решением уравнения будут x = -10 и x = -2

Ответ: -2, -10

Неравенства с модулем

Разобравшись, как решаются уравнения с модулем, можно приступать к неравенствам. 

Пример 5. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Найдем, при каких значениях х модуль равен 0. Получаем 3x = 7 (rightarrow) (x = frac{7}{3}). 

Определим, с какими знаками модуль будет раскрываться на каждом промежутке. 

Осталось рассмотреть неравенство на двух промежутках. 

1. (x leq frac{7}{3}), тогда
x2 — (-(3x — 7)) + 7 >= 0
x2 + 3x — 7 + 7 >= 0
x2 + 3x >= 0
x(x + 3) >= 0

Решим это неравенство «Методом интервалов». Сразу учтем ограничение (x leq frac{7}{3}). 

Получаем, что решением неравенства на заданном промежутке будет (x in (-infty; -3] U[0; frac{7}{3}]). 

2. (x > frac{7}{3}), тогда 
x2 — 3x + 7 + 7 >= 0
x2 — 3x + 14 >= 0
x2 — 3x + 14 = 0
D = 9 — 56 = -47 — корней на заданном отрезке не будет. 

Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Вспомним, что корни квадратного уравнения — это точки пересечения параболы и оси х. Если парабола не пересекает ось х, то неизбежно лежит выше или ниже ее. Поскольку в нашем случае ветви параболы направлены вверх, мы можем нарисовать ее примерный график. 

Так как парабола задается функцией y = x2 — 3x + 14, то неравенство будет выполняться при всех y >= 0. Парабола целиком попадает в эту область, а решением неравенства будет любое х

Однако не стоит забывать про ограничение (x > frac{7}{3}). Накладывая его, получаем решение ((frac{7}{3}; + infty)). 

Осталось только объединить полученные на промежутках решения: 

Получаем, что (x in (-infty;- 3] U [0; +infty)).

Ответ: (x in (-infty;- 3] U [0; +infty))

Рассмотрим неравенства вида |f(x)| > a и |f(x)| < a, где а — некоторое число и a >= 0. Модуль можно раскрыть двумя способами и получить два неравенства. Но будет это совокупность или система?

Это зависит от знака. Разберем случай |f(x)| > a. Заметим, что строгость знака может быть любой. Тогда модуль раскрывается как: 

f(x) > a и -f(x) > a (rightarrow) f(x) < -a. 

Отметим эти промежутки на числовой прямой:

В ответе должны оказаться оба промежутка — их нужно объединить. В этом случае модуль раскрывается в совокупности. 

Рассмотрим случай |f(x)| < a, здесь строгость знака также может быть любой. Раскроем модуль: f(x) < 0 и -f(x) < a (rightarrow) f(x) > -a. На числовой прямой это будет выглядеть следующим образом: 

В в ответе должен оказаться промежуток от —а до а. Следовательно, необходимо воспользоваться системой, чтобы “отсечь” лишние промежутки. 

Можно ли обойтись в этом случае без раскрытия модуля? Да, но необходимо возвести неравенство в квадрат. 

|f(x)| ⋁ a | (uparrow) 2 — вместо ⋁ может стоять любой знак неравенства. 
f2(x) ⋁ a2
f2(x) — a2 ⋁ 0

Воспользуемся формулой сокращенного умножения:

(f(x) — a)(f(x) + a) ⋁ 0

Однако стоит помнить, что обе части неравенства можно возвести в квадрат только в том случае, если они неотрицательны. То есть обязательно должно выполняться условие a0. 

Мы получили равносильный переход. Но существуют ли равносильные переходы, если вместо числа а стоит другая функция или даже модуль? Да. Они выводятся таким же способом, как и переход для неравенства с числом. Получаем еще два равносильных перехода:

  • |f(x)| ⋁ g(x) (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0  

g(x) обязательно должно быть неотрицательным, чтобы можно было возвести неравенства в квадрат. 

  • |f(x)| ⋁ |g(x)| (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0

Разберем на примере, как можно использовать равносильный переход. Для этого возьмем то же неравенство, что и в примере 5, но решим его по-другому. 

Пример 6. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Перенесем модуль в другую часть неравенства:

|3x — 7| <= x2 + 7. Модуль всегда неотрицателен. Правая часть неравенства неотрицательна, поскольку число в квадрате всегда положительно. 

Повторим действия, чтобы прийти к равносильному переходу:

(3x — 7)2 <= (x2+7)2
(3x-7)2 — (x2 + 7)2 <= 0
(3x — 7 — (x2 + 7))(3x — 7 + x2 + 7) <= 0
(3x — 7 — x2 — 7)(3x + x2) <= 0
(-x2 + 3x — 14) * x(3 + x) <= 0
-(x2 — 3x + 14) * x(3 + x) <= 0
(x2 — 3x + 14) * x(3 + x) <= 0

Рассмотрим первую скобку:

x2 — 3x + 14 = 0

D = 9 — 56 = -47 — корней нет. Выражение всегда будет положительно, то есть на него можно разделить все неравенство. Получаем:

x(3 + x) <= 0

Тогда (x in (-infty;- 3] U [0; +infty))

Ответ: (x in (-infty;- 3] U [0; +infty))

При решении можно сразу использовать равносильный переход, не расписывая его. 

Итак, неравенства с модулем можно решить двумя способами: раскрывать модуль и воспользоваться равносильным переходом. Выбор способа зависит от личных предпочтений и удобства решения.

Фактчек

  • Модуль расстояние от любой точки на координатной прямой до начала координат. Модуль обозначается двумя вертикальными черточками: |a| = a и |-a| = a. 
  • Модулем числа называют выражение: 
  • График модуля представляет собой “галочку”, которая лежит выше оси х. Модуль отражает график любой функции зеркально оси х так, что значения у всегда больше 0. 
  • Модуль можно раскрыть двумя способами. Этим свойством можно пользоваться при решении уравнений с модулем. 
  • При решении неравенств с модулем можно раскрывать его, либо воспользоваться равносильным переходом, если в неравенстве выполняются все условия для него. 

Проверь себя

Задание 1. 
Чему равно выражение |-16 * 2|?

  1. 32
  2. −32
  3. −16
  4. 16

Задание 2. 
Какой график имеет функция y = |x|?

  1. Парабола
  2. Гипербола
  3. Прямая
  4. Галочка

Задание 3. 
Решите уравнение |x| = -3. 

  1. 3
  2. −3
  3. Решений нет
  4. 3 и −3 

Задание 4. 
Решите уравнение |x + 2| = 15. 

  1. −13
  2. 17
  3. 13 и -17
  4. Решений нет 

Задание 5.
Какой равносильный переход можно использовать для неравенства вида |f(x) |⋁ |g(x)|?

  1. f(x) ⋁ g(x)
  2. f(x) ⋀ g(x)
  3. f2(x) — 2 * f(x) * g(x) + g2(x) ⋁ 0
  4. (f(x) — g(x))(f(x) + g(x)) ⋁ 0 

Ответы: 1. — 1 2. — 4 3. — 3 4. — 3 5. — 4

From Wikipedia, the free encyclopedia

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.

Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology.

Introduction and definition[edit]

Motivation[edit]

In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module concept represents a significant generalization. In commutative algebra, both ideals and quotient rings are modules, so that many arguments about ideals or quotient rings can be combined into a single argument about modules. In non-commutative algebra, the distinction between left ideals, ideals, and modules becomes more pronounced, though some ring-theoretic conditions can be expressed either about left ideals or left modules.

Much of the theory of modules consists of extending as many of the desirable properties of vector spaces as possible to the realm of modules over a «well-behaved» ring, such as a principal ideal domain. However, modules can be quite a bit more complicated than vector spaces; for instance, not all modules have a basis, and even those that do, free modules, need not have a unique rank if the underlying ring does not satisfy the invariant basis number condition, unlike vector spaces, which always have a (possibly infinite) basis whose cardinality is then unique. (These last two assertions require the axiom of choice in general, but not in the case of finite-dimensional spaces, or certain well-behaved infinite-dimensional spaces such as Lp spaces.)

Formal definition[edit]

Suppose that R is a ring, and 1 is its multiplicative identity.
A left R-module M consists of an abelian group (M, +) and an operation · : R × MM such that for all r, s in R and x, y in M, we have

  1. rcdot (x+y)=rcdot x+rcdot y
  2. (r+s)cdot x=rcdot x+scdot x
  3. (rs)cdot x=rcdot (scdot x)
  4. {displaystyle 1cdot x=x.}

The operation · is called scalar multiplication. Often the symbol · is omitted, but in this article we use it and reserve juxtaposition for multiplication in R. One may write RM to emphasize that M is a left R-module. A right R-module MR is defined similarly in terms of an operation · : M × RM.

Authors who do not require rings to be unital omit condition 4 in the definition above; they would call the structures defined above «unital left R-modules». In this article, consistent with the glossary of ring theory, all rings and modules are assumed to be unital.[1]

An (R,S)-bimodule is an abelian group together with both a left scalar multiplication · by elements of R and a right scalar multiplication ∗ by elements of S, making it simultaneously a left R-module and a right S-module, satisfying the additional condition (r · x) ∗ s = r ⋅ (xs) for all r in R, x in M, and s in S.

If R is commutative, then left R-modules are the same as right R-modules and are simply called R-modules.

Examples[edit]

  • If K is a field, then K-vector spaces (vector spaces over K) and K-modules are identical.
  • If K is a field, and K[x] a univariate polynomial ring, then a K[x]-module M is a K-module with an additional action of x on M that commutes with the action of K on M. In other words, a K[x]-module is a K-vector space M combined with a linear map from M to M. Applying the structure theorem for finitely generated modules over a principal ideal domain to this example shows the existence of the rational and Jordan canonical forms.
  • The concept of a Z-module agrees with the notion of an abelian group. That is, every abelian group is a module over the ring of integers Z in a unique way. For n > 0, let nx = x + x + … + x (n summands), 0 ⋅ x = 0, and (−n) ⋅ x = −(nx). Such a module need not have a basis—groups containing torsion elements do not. (For example, in the group of integers modulo 3, one cannot find even one element which satisfies the definition of a linearly independent set since when an integer such as 3 or 6 multiplies an element, the result is 0. However, if a finite field is considered as a module over the same finite field taken as a ring, it is a vector space and does have a basis.)
  • The decimal fractions (including negative ones) form a module over the integers. Only singletons are linearly independent sets, but there is no singleton that can serve as a basis, so the module has no basis and no rank.
  • If R is any ring and n a natural number, then the cartesian product Rn is both a left and right R-module over R if we use the component-wise operations. Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.
  • If Mn(R) is the ring of n × n matrices over a ring R, M is an Mn(R)-module, and ei is the n × n matrix with 1 in the (i, i)-entry (and zeros elsewhere), then eiM is an R-module, since reim = eirmeiM. So M breaks up as the direct sum of R-modules, M = e1M ⊕ … ⊕ enM. Conversely, given an R-module M0, then M0n is an Mn(R)-module. In fact, the category of R-modules and the category of Mn(R)-modules are equivalent. The special case is that the module M is just R as a module over itself, then Rn is an Mn(R)-module.
  • If S is a nonempty set, M is a left R-module, and MS is the collection of all functions f : SM, then with addition and scalar multiplication in MS defined pointwise by (f + g)(s) = f(s) + g(s) and (rf)(s) = rf(s), MS is a left R-module. The right R-module case is analogous. In particular, if R is commutative then the collection of R-module homomorphisms h : MN (see below) is an R-module (and in fact a submodule of NM).
  • If X is a smooth manifold, then the smooth functions from X to the real numbers form a ring C(X). The set of all smooth vector fields defined on X form a module over C(X), and so do the tensor fields and the differential forms on X. More generally, the sections of any vector bundle form a projective module over C(X), and by Swan’s theorem, every projective module is isomorphic to the module of sections of some bundle; the category of C(X)-modules and the category of vector bundles over X are equivalent.
  • If R is any ring and I is any left ideal in R, then I is a left R-module, and analogously right ideals in R are right R-modules.
  • If R is a ring, we can define the opposite ring Rop which has the same underlying set and the same addition operation, but the opposite multiplication: if ab = c in R, then ba = c in Rop. Any left R-module M can then be seen to be a right module over Rop, and any right module over R can be considered a left module over Rop.
  • Modules over a Lie algebra are (associative algebra) modules over its universal enveloping algebra.
  • If R and S are rings with a ring homomorphism φ : RS, then every S-module M is an R-module by defining rm = φ(r)m. In particular, S itself is such an R-module.

Submodules and homomorphisms[edit]

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule (or more explicitly an R-submodule) if for any n in N and any r in R, the product rn (or nr for a right R-module) is in N.

If X is any subset of an R-module M, then the submodule spanned by X is defined to be {textstyle langle Xrangle =,bigcap _{Nsupseteq X}N} where N runs over the submodules of M which contain X, or explicitly {textstyle left{sum _{i=1}^{k}r_{i}x_{i}mid r_{i}in R,x_{i}in Xright}}, which is important in the definition of tensor products.[2]

The set of submodules of a given module M, together with the two binary operations + and ∩, forms a lattice which satisfies the modular law:
Given submodules U, N1, N2 of M such that N1N2, then the following two submodules are equal: (N1 + U) ∩ N2 = N1 + (UN2).

If M and N are left R-modules, then a map f : MN is a homomorphism of R-modules if for any m, n in M and r, s in R,

f(rcdot m+scdot n)=rcdot f(m)+scdot f(n).

This, like any homomorphism of mathematical objects, is just a mapping which preserves the structure of the objects. Another name for a homomorphism of R-modules is an R-linear map.

A bijective module homomorphism f : MN is called a module isomorphism, and the two modules M and N are called isomorphic. Two isomorphic modules are identical for all practical purposes, differing solely in the notation for their elements.

The kernel of a module homomorphism f : MN is the submodule of M consisting of all elements that are sent to zero by f, and the image of f is the submodule of N consisting of values f(m) for all elements m of M.[3] The isomorphism theorems familiar from groups and vector spaces are also valid for R-modules.

Given a ring R, the set of all left R-modules together with their module homomorphisms forms an abelian category, denoted by RMod (see category of modules).

Types of modules[edit]

Finitely generated
An R-module M is finitely generated if there exist finitely many elements x1, …, xn in M such that every element of M is a linear combination of those elements with coefficients from the ring R.
Cyclic
A module is called a cyclic module if it is generated by one element.
Free
A free R-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring R. These are the modules that behave very much like vector spaces.
Projective
Projective modules are direct summands of free modules and share many of their desirable properties.
Injective
Injective modules are defined dually to projective modules.
Flat
A module is called flat if taking the tensor product of it with any exact sequence of R-modules preserves exactness.
Torsionless
A module is called torsionless if it embeds into its algebraic dual.
Simple
A simple module S is a module that is not {0} and whose only submodules are {0} and S. Simple modules are sometimes called irreducible.[4]
Semisimple
A semisimple module is a direct sum (finite or not) of simple modules. Historically these modules are also called completely reducible.
Indecomposable
An indecomposable module is a non-zero module that cannot be written as a direct sum of two non-zero submodules. Every simple module is indecomposable, but there are indecomposable modules which are not simple (e.g. uniform modules).
Faithful
A faithful module M is one where the action of each r ≠ 0 in R on M is nontrivial (i.e. rx ≠ 0 for some x in M). Equivalently, the annihilator of M is the zero ideal.
Torsion-free
A torsion-free module is a module over a ring such that 0 is the only element annihilated by a regular element (non zero-divisor) of the ring, equivalently rm = 0 implies r = 0 or m = 0.
Noetherian
A Noetherian module is a module which satisfies the ascending chain condition on submodules, that is, every increasing chain of submodules becomes stationary after finitely many steps. Equivalently, every submodule is finitely generated.
Artinian
An Artinian module is a module which satisfies the descending chain condition on submodules, that is, every decreasing chain of submodules becomes stationary after finitely many steps.
Graded
A graded module is a module with a decomposition as a direct sum M = x Mx over a graded ring R = x Rx such that RxMyMx+y for all x and y.
Uniform
A uniform module is a module in which all pairs of nonzero submodules have nonzero intersection.

Further notions[edit]

Relation to representation theory[edit]

A representation of a group G over a field k is a module over the group ring k[G].

If M is a left R-module, then the action of an element r in R is defined to be the map MM that sends each x to rx (or xr in the case of a right module), and is necessarily a group endomorphism of the abelian group (M, +). The set of all group endomorphisms of M is denoted EndZ(M) and forms a ring under addition and composition, and sending a ring element r of R to its action actually defines a ring homomorphism from R to EndZ(M).

Such a ring homomorphism R → EndZ(M) is called a representation of R over the abelian group M; an alternative and equivalent way of defining left R-modules is to say that a left R-module is an abelian group M together with a representation of R over it. Such a representation R → EndZ(M) may also be called a ring action of R on M.

A representation is called faithful if and only if the map R → EndZ(M) is injective. In terms of modules, this means that if r is an element of R such that rx = 0 for all x in M, then r = 0. Every abelian group is a faithful module over the integers or over some ring of integers modulo n, Z/nZ.

Generalizations[edit]

A ring R corresponds to a preadditive category R with a single object. With this understanding, a left R-module is just a covariant additive functor from R to the category Ab of abelian groups, and right R-modules are contravariant additive functors. This suggests that, if C is any preadditive category, a covariant additive functor from C to Ab should be considered a generalized left module over C. These functors form a functor category CMod which is the natural generalization of the module category RMod.

Modules over commutative rings can be generalized in a different direction: take a ringed space (X, OX) and consider the sheaves of OX-modules (see sheaf of modules). These form a category OXMod, and play an important role in modern algebraic geometry. If X has only a single point, then this is a module category in the old sense over the commutative ring OX(X).

One can also consider modules over a semiring. Modules over rings are abelian groups, but modules over semirings are only commutative monoids. Most applications of modules are still possible. In particular, for any semiring S, the matrices over S form a semiring over which the tuples of elements from S are a module (in this generalized sense only). This allows a further generalization of the concept of vector space incorporating the semirings from theoretical computer science.

Over near-rings, one can consider near-ring modules, a nonabelian generalization of modules.[citation needed]

See also[edit]

  • Group ring
  • Algebra (ring theory)
  • Module (model theory)
  • Module spectrum
  • Annihilator

Notes[edit]

  1. ^ Dummit, David S. & Foote, Richard M. (2004). Abstract Algebra. Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-0-471-43334-7.
  2. ^ Mcgerty, Kevin (2016). «ALGEBRA II: RINGS AND MODULES» (PDF).
  3. ^ Ash, Robert. «Module Fundamentals» (PDF). Abstract Algebra: The Basic Graduate Year.
  4. ^ Jacobson (1964), p. 4, Def. 1

References[edit]

  • F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, 2nd Ed., Springer-Verlag, New York, 1992, ISBN 0-387-97845-3, ISBN 3-540-97845-3
  • Nathan Jacobson. Structure of rings. Colloquium publications, Vol. 37, 2nd Ed., AMS Bookstore, 1964, ISBN 978-0-8218-1037-8

External links[edit]

  • «Module», Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • module at the nLab

Модуль с точки зрения геометрии

Забегая вперед, попробуем сразу понять, что же представляет собой модуль на практике — так будет легче уловить его смысл. Нарисуем на листе бумаги прямую координат, возьмем нуль за точку отсчета, а по правую и по левую стороны на одинаковом расстоянии поставим некие две точки — например, 5 и -5.

Модулем будет считаться именно фактическое расстояние до нуля от -5 и от 5. Очевидно, что это расстояние будет совершенно одинаковым. Поэтому в обоих случаях модуль будет равняться числу «5» — и неважно, какой знак стоит перед исходным числом, которое мы рассматриваем.

Видео

Видео

Расстояние между точками

Представим числовую ось. Отметим на ней две точки, например 5 и 3. Какое между ними расстояние? Ничего сложного, скажете вы, расстояние равно 53=2. И это правильный ответ. Сразу заметим, что 35=(1)(53)=2, то есть при вычитании из меньшей точки большей получаем то же расстояние, но со знаком минус.

Расстояние между точками 2 и 4 равно 2(4)=2. И опять, если мы поменяем местами числа в разности, то получим отрицательное расстояние 4(2)=(1)(2(4))=2

Общий посыл вы уловили. Для нахождения расстояния

Общий посыл вы уловили. Для нахождения расстояния между двумя точками, надо из большей точки вычесть меньшую. Если сделать наоборот, то получим противоположное, отрицательное расстояние.

Вроде все ясно. Ну и причем здесь модуль? А вот представим, что у вас нет точных значений. Вам просто дали точки a и b, и попросили найти расстояние между ними. Какая-то из двух разностей ниже будет расстоянием:

abba

Но какая именно? Тут к нам и приходит на помощь модуль. Расстояние между a и b обозначим так:

ab

Если a>b, то мы угадали с разностью и получим положительный результат. Взятие модуля никак на него не повлияет. Если a<b, то мы не угадали и получаем отрицательное расстояние. Но, по определению модуля, в результате все-равно получим положительное расстояние.

О

Расстоянием между двумя точками a и b на числовой оси называется модуль их разности: ∣ a − b ∣ .

Наконец, поговорим о модулях одного числа, например 5 или 2. Их можно представить вот так:

5=52=2

В этом смысле модуль одного числа можно понимать как расстояние от до этого числа (до 5 и до 2) на числовой оси.

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение: из рисунка видно, что график симметрич

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины п

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Докажитесвойствомодуля: ( left

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $left| fleft( x right) right|=gleft( x right)$ или даже более простому $left| fleft( x right) right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

[left| fleft( x right) right|=left| gleft( x right) right|]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

[left| fleft( x right) right|=left| gleft( x right) right|Rightarrow fleft( x right)=pm gleft( x right)]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

[left| 2x+3 right|=left| 2x-7 right|]

Элементарно, Ватсон! Раскрываем модули:

[left| 2x+3 right|=left| 2x-7 right|Rightarrow 2x+3=pm left( 2x-7 right)]

Рассмотрим отдельно каждый случай:

[begin{align}& 2x+3=2x-7Rightarrow 3=-7Rightarrow emptyset ; \& 2x+3=-left( 2x-7 right)Rightarrow 2x+3=-2x+7. \end{align}]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

[2x+3=-2x+7Rightarrow 4x=4Rightarrow x=1]

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|]

Опять у нас уравнение вида $left| fleft( x right) right|=left| gleft( x right) right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

[{{x}^{2}}-3x+2=pm left( x-1 right)]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

[x-1=pm left( {{x}^{2}}-3x+2 right)]

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|Rightarrow left| {{x}^{2}}-3x+2 right|=left| x-1 right|]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

[begin{align}& {{x}^{2}}-3x+2=x-1Rightarrow {{x}^{2}}-4x+3=0; \& {{x}^{2}}-3x+2=-left( x-1 right)Rightarrow {{x}^{2}}-2x+1=0. \end{align}]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

[{{x}^{2}}-2x+1={{left( x-1 right)}^{2}}]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

[{{x}_{1}}=3;quad {{x}_{2}}=1.]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

[begin{align}& left| x-1 right|=left| {{x}^{2}}-3x+2 right|; \& left| x-1 right|=left| left( x-1 right)left( x-2 right) right|. \end{align}]

Одно из свойств модуля: $left| acdot b right|=left| a right|cdot left| b right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

[left| x-1 right|=left| x-1 right|cdot left| x-2 right|]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

[begin{align}& left| x-1 right|=left| x-1 right|cdot left| x-2 right|; \& left| x-1 right|-left| x-1 right|cdot left| x-2 right|=0; \& left| x-1 right|cdot left( 1-left| x-2 right| right)=0. \end{align}]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

[left[ begin{align}& left| x-1 right|=0, \& left| x-2 right|=1. \end{align} right.]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

[begin{align}& 5+7=12 gt 0; \& 0,004+0,0001=0,0041 gt 0; \& 5+0=5 gt 0. \end{align}]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0Rightarrow left{ begin{align}& left| x-{{x}^{3}} right|=0, \& left| {{x}^{2}}+x-2 right|=0. \end{align} right.]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

[x-{{x}^{3}}=0Rightarrow xleft( 1-{{x}^{2}} right)=0Rightarrow left[ begin{align}& x=0 \& x=pm 1 \end{align} right.]

[{{x}^{2}}+x-2=0Rightarrow left( x+2 right)left( x-1 right)=0Rightarrow left[ begin{align}& x=-2 \& x=1 \end{align} right.]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Теги

Понравилась статья? Поделить с друзьями:
  • Как найти кусачки детройт
  • Как составить таблицу роста ребенка
  • Я не знаю свой аккаунт как найти
  • Формула того как найти периметр треугольника
  • Как найти однокоренные слова примеры