Как найти модуль импульса велосипедиста

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Импульс тела. Закон сохранения импульса

1. Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит от времени её действия. Так, если к штативу на нити подвесить
тяжёлую гирю, к которой привязана ещё одна нить снизу, и резко дернуть нижнюю нить, то она оборвётся, а верхняя нить останется целой. Если же теперь медленно потянуть
нижнюю нить, то оборвётся верхняя нить. Поэтому для характеристики действия силы вводят величину, называемую импульсом силы.

Импульсом силы называют векторную величину, равную произведению силы и времени её действия ​( (vec{F}t) )​. Импульс силы является мерой действия силы за некоторый промежуток времени.

Единица импульса силы ​( [,Fcdot t,] )​ = 1 Н · с.

2. С другой стороны, результат действия силы зависит и от характеристик тела, на которое эта сила действует.

Зависимость результата действия силы от массы тела можно проиллюстрировать с помощью следующего простого примера. Летящий с некоторой скоростью футбольный мяч, ударяясь о пустую картонную коробку, сдвинет её с места, а, ударяясь о такую же коробку, заполненную металлическими предметами, скорее всего, отскочит от неё, а коробка при этом останется неподвижной.

Пуля, летящая со скоростью 2 м/с, при попадании в деревянную стенку в лучшем случае оставит на ней вмятину, а пуля, летящая со скоростью 200 м/с, стенку пробьёт. Таким образом, результат действия силы зависит от массы и скорости взаимодействующих тел.

3. Величину, равную произведению массы тела и его скорости, называют импульсом тела, ​( vec{p}=mvec{v} )​ — импульс тела (или просто импульс). Единица импульса ​( [,p,] )​ = 1 кг · м/с2.

Импульс — величина векторная, поскольку масса — величина скалярная, а скорость — векторная.

Импульс — величина относительная, его значение зависит от выбора системы отсчёта, поскольку относительной величиной является скорость.

4. Импульс силы и изменение импульса тела связаны между собой.

Запишем второй закон Ньютона: ​( vec{F}=mvec{a} )​.

Подставим в формулу выражение для ускорения ​( vec{a}=frac{vec{v}-vec{v}_0}{t} )​, ( vec{F}=frac{m(vec{v}-vec{v}_0)}{t} )​ или ( vec{F}t=mvec{v}-mvec{v}_0 )​.

В левой части равенства стоит импульс силы; в правой части — разность конечного и начального импульсов тела, т.е. изменение импульса тела. ​( vec{F}t=Delta(mvec{v}) )​.

Таким образом, импульс силы равен изменению импульса тела.

Это иная формулировка второго закона Ньютона. Именно в таком виде сформулировал свой закон Ньютон.

5. Взаимодействующие между собой тела образуют систему тел. Между телами системы действуют силы взаимодействия: на одно тело — сила ​( vec{F}_1 )​, на другое тело — сила ( vec{F}_2 ). При этом сила равна силе и направлена противоположно ей: ​( vec{F}_1=-vec{F}_2 )​ (рис. 41).

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так взаимодействующие тела притягиваются к Земле. Сила тяготения является в данном случае внешней силой. Если тела движутся, то на них действует сила сопротивления воздуха, сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух тел. Ни Земля, ни воздух в эту систему тел не входят.

Внешними силами называются силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой тел называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами. В замкнутой системе действуют только внутренние силы, внешние силы на неё не действуют.

6. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела ​( m_1 ),​ его скорость до взаимодействия ​( vec{v}_{01} )​, после взаимодействия ( vec{v}_{1} ). Масса второго тела ( m_1 ), его скорость до взаимодействия ( vec{v}_{02} ), после взаимодействия ( vec{v}_{2} ). Для этих тел справедливо равенство:

[ m_1vec{v}_{01}+m_1vec{v}_{02}=m_1vec{v}_{1}+m_1vec{v}_{2} ]

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой части — сумма импульсов тел после взаимодействия. Как видно, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, входящих в замкнутую систему, остаётся постоянной при любых взаимодействиях тел этой системы между собой.

В этом состоит закон сохранения импульса.

7. Замкнутая система — это идеализация. В реальном мире нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев реальные системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно, когда внутренние силы много больше внешних сил, или когда время взаимодействия мало, или когда внешние силы уравновешивают друг друга. Кроме того, в ряде случаев равна нулю проекция внешних сил на какое-либо направление. В этом случае закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

Содержание

  • ПРИМЕРЫ ЗАДАНИЙ
    • Часть 1
    • Часть 2
  • Ответы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Тело двигалось под действием силы 10 Н в течение 5 с. Чему равно изменение импульса тела?

1) 2 Н/с
2) 5 Н·с
3) 50 Н·с
4) нельзя дать ответ, т.к. неизвестны масса и скорость тела

2. Чему равен импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчёта, связанной с автомобилем, движущимся в ту же сторону с той же скоростью?

1) 0
2) 15 000 кг·м/с
3) 30 000 кг·м/с
4) 60 000 кг·м/с

3. Чему равен импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчёта, связанной с автомобилем, движущимся с той же скоростью, но в противоположную сторону?

1) 0
2) 15 000 кг·м/с
3) 30 000 кг·м/с
4) 60 000 кг·м/с

4. На графике показаны изменения скорости велосипедиста с течением времени. Чему равно изменение импульса велосипедиста через 4 с после начала движения, если его масса 50 кг?

1) 200 кг·м/с
2) 2500 кг·м/с
3) 2000 кг·м/с
4) 2500 кг·м/с

5. Тело движется в положительном направлении оси ​( Ox )​. На рисунке представлен график зависимости от времени ​( t )​ проекции силы ​( F_x )​, действующей на тело. В интервале времени от 0 до 5 с проекция импульса тела на ось ​( Ox )

1) уменьшается на 5 кг·м/с
2) не изменяется
3) увеличивается на 10 кг·м/с
4) увеличивается на 5 кг·м/с

6. Два шара массой ​( m_1 )​ и ​( m_2 )​ движутся в одном направлении со скоростями соответственно ​( x_1 )​ и ( x_2 ) по гладкому горизонтальному столу (см. рисунок). Полный импульс ​( p )​ системы шаров равен по модулю

1) ​( p=m_2x_2-m_1x_1 )​ и направлен налево ←
2) ( p=m_1x_1-m_2x_2 ) и направлен вправо →
3) ( p=m_1x_1+m_2x_2 ) и направлен налево ←
4) ( p=m_1x_1-m_2x_2 ) и направлен вправо →

7. Два шарика массой 50 г и 100 г движутся со скоростью 0,6 м/с и 0,4 м/с соответственно. Направления движения шариков составляют угол 90°. Модуль суммарного импульса шариков равен

1) 0,15 кг·м/с
2) 0,07 кг·м/с
3) 0,05 кг·м/с
4) 0,01 кг·м/с

8. Снаряд, импульс которого ​( vec{p} )​ был направлен вертикально вверх, разорвался на два осколка. Импульс одного осколка ( vec{p}_1 ) в момент взрыва был направлен горизонтально (рис. 1). Какое направление имел импульс ( vec{p}_2 ) второго осколка (рис. 2)?

1) 1
2) 2
3) 3
4) 4

9. Масса мальчика в 3 раза меньше массы лодки. В момент прыжка с неподвижной лодки скорость мальчика равна 1,5 м/с. При этом лодка приобретает скорость, равную

1) 4,5 м/с
2) 2 м/с
3) 0,5 м/с
4) 0 м/с

10. Закон сохранения импульса справедлив:

А. Для замкнутой системы тел
Б. Для любой системы тел.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Установите соответствие между физическими величинами (в левом столбце таблицы) и их единицами (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами

ВЕЛИЧИНА
A. Импульс
Б. Скорость
B. Ускорение

ЕДИНИЦА
1) метр/секунда (1 м/с)
2) ньютон (1 Н)
3) метр/секунда2 (1 м/с2)
4) джоуль (1 Дж)
5) ньютон·секунда (1 Н·с)

12. Из приведённого перечня выберите 2 правильных утверждения и запишите их номера в таблицу.

1) Закон сохранения импульса справедлив для любой системы тел.
2) Импульс тела — величина скалярная.
3) Закон сохранения импульса справедлив для замкнутой системы тел.
4) Изменение импульса тела равно импульсу силы.
5) Закон сохранения импульса не применим к незамкнутой системе тел ни при каких условиях.

Часть 2

13. Снаряд летит горизонтально и разрывается на два осколка массой 2 кг и 3 кг. С какой скоростью летел снаряд, если первый осколок в результате разрыва приобрёл скорость 50 м/с, второй 40 м/с? Скорости осколков направлены горизонтально в противоположную сторону.

Ответы

Импульс тела. Закон сохранения импульса

3.1 (62%) 50 votes

Велосипедист массой 63 кг, двигаясь прямолинейно и поступательно, увеличил свою скорость с v1= 3,5 м/с до v2= 6,5 м/с. Найди изменение модуля импульса велосипедиста.

Остались вопросы?

Новые вопросы по предмету Математика

Велосипедист массой 74 кг, двигаясь прямолинейно и поступательно, увеличил свою скорость от v1= 1,2 м/с до v2= 6,6 м/с. Найди изменение модуля импульса велосипедиста.

Остались вопросы?

Новые вопросы по предмету Математика

Основные теоретические сведения

[custom_ads_shortcode1]

Импульс тела

К оглавлению…

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

u+upsilon

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

m_2

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

[custom_ads_shortcode2]

Закон сохранения импульса

К оглавлению. . .

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

[custom_ads_shortcode3]

Сохранение проекции импульса

К оглавлению…

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю.

Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

[custom_ads_shortcode1]

Многомерный случай ЗСИ. Векторный метод

К оглавлению…

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

upsilon_2

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

ОГЭ 2018 по физике ›

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит от времени её действия. Так, если к штативу на нити подвесить тяжёлую гирю, к которой привязана ещё одна нить снизу, и резко дернуть нижнюю нить, то она оборвётся, а верхняя нить останется целой. Если же теперь медленно потянуть нижнюю нить, то оборвётся верхняя нить. Поэтому для характеристики действия силы вводят величину, называемую импульсом силы.

Импульсом силы называют векторную величину, равную произведению силы и времени её действия ​( (vec{F}t) )​. Импульс силы является мерой действия силы за некоторый промежуток времени. Единица импульса силы ​( [,Fcdot t,] )​ = 1 Н · с.

С другой стороны, результат действия силы зависит и от характеристик тела, на которое эта сила действует.

Зависимость результата действия силы от массы тела можно проиллюстрировать с помощью следующего простого примера. Летящий с некоторой скоростью футбольный мяч, ударяясь о пустую картонную коробку, сдвинет её с места, а, ударяясь о такую же коробку, заполненную металлическими предметами, скорее всего, отскочит от неё, а коробка при этом останется неподвижной.

Пуля, летящая со скоростью 2 м/с, при попадании в деревянную стенку в лучшем случае оставит на ней вмятину, а пуля, летящая со скоростью 200 м/с, стенку пробьёт. Таким образом, результат действия силы зависит от массы и скорости взаимодействующих тел.

Величину, равную произведению массы тела и его скорости, называют импульсом тела, ​( vec{p}=mvec{v} )​ — импульс тела (или просто импульс). Единица импульса ​( [,p,] )​ = 1 кг · м/с.

Импульс — величина векторная, поскольку масса — величина скалярная, а скорость — векторная. Импульс — величина относительная, его значение зависит от выбора системы отсчёта, поскольку относительной величиной является скорость.

upsilon_1

Импульс силы и изменение импульса тела связаны между собой.

None Подставим в формулу выражение для ускорения ​( vec{a}=frac{vec{v}-vec{v}_0}{t} )​, ( vec{F}=frac{m(vec{v}-vec{v}_0)}{t} )​ или ( vec{F}t=mvec{v}-mvec{v}_0 )​.

None Таким образом, импульс силы равен изменению импульса тела.

Это иная формулировка второго закона Ньютона. Именно в таком виде сформулировал свой закон Ньютон.

Взаимодействующие между собой тела образуют систему тел. Между телами системы действуют силы взаимодействия: на одно тело — сила ​( vec{F}_1 )​, на другое тело — сила ( vec{F}_2 ). При этом сила равна силе и направлена противоположно ей: ​( vec{F}_1=-vec{F}_2 )​ (рис. 41).

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

p=5 cdot10^6

Помимо внутренних сил, на тела системы действуют внешние силы. Так взаимодействующие тела притягиваются к Земле. Сила тяготения является в данном случае внешней силой.

Если тела движутся, то на них действует сила сопротивления воздуха, сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух тел. Ни Земля, ни воздух в эту систему тел не входят.

Внешними силами называются силы, которые действуют на тела системы со стороны других тел. Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой тел называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами. В замкнутой системе действуют только внутренние силы, внешние силы на неё не действуют.

Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела ​( m_1 ),​ его скорость до взаимодействия ​( vec{v}_{01} )​, после взаимодействия ( vec{v}_{1} ). Масса второго тела ( m_1 ), его скорость до взаимодействия ( vec{v}_{02} ), после взаимодействия ( vec{v}_{2} ). Для этих тел справедливо равенство:

[ m_1vec{v}_{01}+m_1vec{v}_{02}=m_1vec{v}_{1}+m_1vec{v}_{2} ]В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой части — сумма импульсов тел после взаимодействия. Как видно, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, входящих в замкнутую систему, остаётся постоянной при любых взаимодействиях тел этой системы между собой. В этом состоит закон сохранения импульса.

Замкнутая система — это идеализация. В реальном мире нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев реальные системы взаимодействующих тел можно рассматривать как замкнутые.

Это возможно, когда внутренние силы много больше внешних сил, или когда время взаимодействия мало, или когда внешние силы уравновешивают друг друга. Кроме того, в ряде случаев равна нулю проекция внешних сил на какое-либо направление. В этом случае закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

[-2gS=-upsilon_1^2]

Содержание.

  • ПРИМЕРЫ ЗАДАНИЙ
  • Ответы

[custom_ads_shortcode2]

ПРИМЕРЫ ЗАДАНИЙ

[custom_ads_shortcode3]

Часть 1

Тело двигалось под действием силы 10 Н в течение 5 с. Чему равно изменение импульса тела?

1) 2 Н/с 2) 5 Н·с 3) 50 Н·с 4) нельзя дать ответ, т.к. неизвестны масса и скорость тела2. Чему равен импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчёта, связанной с автомобилем, движущимся в ту же сторону с той же скоростью?

[upsilon_2=frac{5cdot frac{300}{sqrt{2gH}}}{200}]

None 1) 0 2) 15 000 кг·м/с 3) 30 000 кг·м/с 4) 60 000 кг·м/с4. На графике показаны изменения скорости велосипедиста с течением времени. Чему равно изменение импульса велосипедиста через 4 с после начала движения, если его масса 50 кг?

1) 200 кг·м/с 2) 2500 кг·м/с 3) 2000 кг·м/с 4) 2500 кг·м/с5. Тело движется в положительном направлении оси ​( Ox )​. На рисунке представлен график зависимости от времени ​( t )​ проекции силы ​( F_x )​, действующей на тело. В интервале времени от 0 до 5 с проекция импульса тела на ось ​( Ox )​1) уменьшается на 5 кг·м/с 2) не изменяется 3) увеличивается на 10 кг·м/с 4) увеличивается на 5 кг·м/с6. Два шара массой ​( m_1 )​ и ​( m_2 )​ движутся в одном направлении со скоростями соответственно ​( x_1 )​ и ( x_2 ) по гладкому горизонтальному столу (см. рисунок). Полный импульс ​( p )​ системы шаров равен по модулю1) ​( p=m_2x_2-m_1x_1 )​ и направлен налево ← 2) ( p=m_1x_1-m_2x_2 ) и направлен вправо → 3) ( p=m_1x_1+m_2x_2 ) и направлен налево ← 4) ( p=m_1x_1-m_2x_2 ) и направлен вправо →7. Два шарика массой 50 г и 100 г движутся со скоростью 0,6 м/с и 0,4 м/с соответственно. Направления движения шариков составляют угол 90°. Модуль суммарного импульса шариков равен1) 0,15 кг·м/с 2) 0,07 кг·м/с 3) 0,05 кг·м/с 4) 0,01 кг·м/с8. Снаряд, импульс которого ​( vec{p} )​ был направлен вертикально вверх, разорвался на два осколка. Импульс одного осколка ( vec{p}_1 ) в момент взрыва был направлен горизонтально (рис. 1). Какое направление имел импульс ( vec{p}_2 ) второго осколка (рис. 2)?

1) 1 2) 2 3) 3 4) 49. Масса мальчика в 3 раза меньше массы лодки. В момент прыжка с неподвижной лодки скорость мальчика равна 1,5 м/с. При этом лодка приобретает скорость, равную1) 4,5 м/с 2) 2 м/с 3) 0,5 м/с 4) 0 м/с10. Закон сохранения импульса справедлив:

А. Для замкнутой системы тел
Б. Для любой системы тел.

Правильный ответ1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б11. Установите соответствие между физическими величинами (в левом столбце таблицы) и их единицами (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквамиВЕЛИЧИНА A. Импульс Б. Скорость B. УскорениеЕДИНИЦА 1) метр/секунда (1 м/с) 2) ньютон (1 Н) 3) метр/секунда2 (1 м/с2) 4) джоуль (1 Дж) 5) ньютон·секунда (1 Н·с)12. Из приведённого перечня выберите 2 правильных утверждения и запишите их номера в таблицу.

1) Закон сохранения импульса справедлив для любой системы тел. 2) Импульс тела — величина скалярная. 3) Закон сохранения импульса справедлив для замкнутой системы тел.

Импульс

4) Изменение импульса тела равно импульсу силы. 5) Закон сохранения импульса не применим к незамкнутой системе тел ни при каких условиях.

[custom_ads_shortcode1]

Часть 2

Снаряд летит горизонтально и разрывается на два осколка массой 2 кг и 3 кг. С какой скоростью летел снаряд, если первый осколок в результате разрыва приобрёл скорость 50 м/с, второй 40 м/с? Скорости осколков направлены горизонтально в противоположную сторону.

[custom_ads_shortcode2]

Ответы

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.

Импульс это векторная величина, которая определяется по формуле

Импульс служит мерой того, насколько велика должна быть сила, действующая в течение определенного времени, чтобы остановить или разогнать его с места до данной скорости. Направление вектора импульса всегда совпадает с направлением вектора скорости.

Если тело покоится, импульс равен нулю. Ненулевым импульсом обладает любое, движущееся тело. Например, когда мяч покоится, его импульс равен нулю.

После удара он приобретает импульс. Импульс тела изменяется, так как изменяется скорость.

[custom_ads_shortcode3]

Импульс силы

Это векторная величина, которая определяется по формуле.

Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона

m Delta upsilon =2 cdot 2=4

Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела. Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара – 30 м/с.

Сила, с которой нога действовала на мяч – 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.

[custom_ads_shortcode1]

Изменение импульса тела

Как определить изменение импульса тела? Необходимо найти численное значение импульса в один момент времени, затем импульс через промежуток времени. От второй найденной величины отнять первую. Внимание! Вычитать надо вектора, а не числа. То есть из второго вектора импульса отнять первый вектор. Смотрите вычитание векторов. Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара. 1) Во время удара на мяч действуют две силы: сила реакции опоры, сила тяжести.

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола. 2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона.

[custom_ads_shortcode2]

Главное запомнить

1) Формулы импульса тела, импульса силы; 2) Направление вектора импульса; 3) Находить изменение импульса тела

[custom_ads_shortcode3]

Вывод второго закона Ньютона в общем виде

[custom_ads_shortcode1]

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).

Если же сила непостоянная во времени, например линейно увеличивается F=kt, то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

^2=0,1

Средняя равнодействующая сила.

Вам понадобитсяИнструкцияНайдите массу движущегося тела и измерьте скорость его движения. После его взаимодействия с другим телом, у исследуемого тела изменится скорость. В этом случае от конечной скорости (после взаимодействия) отнимите начальную скорость и умножьте разность на массу тела Δp=m∙(v2-v1). Мгновенную скорость измерьте радаром, массу тела – весами. Если после взаимодействия тело начало двигаться в сторону, противоположную той, кода двигалось до взаимодействия, то конечная скорость будет отрицательной. Если изменениеимпульса положительное – он вырос, если отрицательное – уменьшился.

Поскольку причиной изменения скорости любого тела является сила, то она же и является причиной изменения импульса. Чтобы рассчитать изменение импульса любого тела, достаточно найти импульс силы, действовавшей на данное тело в течение некоторого времени. С помощью динамометра измерьте силу, которая заставляет тело изменять скорость, придавая ему ускорение. Одновременно с помощью секундомера измерьте время, которое эта сила действовала на тело. Если сила заставляет тело двигаться быстрее, то считайте ее положительной, если же тормозит его движение – считайте ее отрицательной. Импульс силы, равный изменению импульса будет равен произведению силы на время ее действия Δp=F∙Δt.

Если при взаимодействии тел на них не действуют никакие внешние силы, то по закону сохранения импульса, сумма импульсов тел до и после взаимодействия остается одинаковой, не смотря на то, что импульсы отдельных тел могут изменяться. Например, если в результате выстрела из ружья пуля массой 10 г получила скорость 500 м/с, то ее изменение импульса составит Δp=0,01 кг∙(500 м/с-0 м/с)=5 кг∙ м/с.

Согласно закону сохранения импульса, изменение импульса ружья будет таким же, как и у пули, но противоположным по направлению, поскольку оно после выстрела будет двигаться в сторону противоположную той, куда вылетит пуля. Источники:

  • как изменяется масса движущегося тела

Источники:

H

  • educon.by
  • fizi4ka.ru
  • fizmat.by
  • www.kakprosto.ru

Понравилась статья? Поделить с друзьями:
  • Как найти назарет в аду
  • Как правильно составить вопросительную форму глагола
  • Как найти грузовое судно
  • Как найти свою маску для волос
  • Гугл таблицы как найти чужие таблицы