Как найти модуль силы магнитного поля

Содержание:

Сила и закон Ампера:

Действие магнитного поля на проводник с током в 1820 г. исследовал экспериментально Андре Мари Ампер. Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь ее назвали силой Ампера.

Исследуем с помощью динамометра модуль силы Ампера, действующей на участок прямолинейного проводника длиной I с током силой l со стороны магнитного поля индукцией В (рис. 150).

Сила и закон Ампера - формулы и определение с примерами

Согласно экспериментальным данным и результатам вычислений модуль силы:

  • пропорционален длине проводника, находящегося в магнитном поле (F ~ l)
  • пропорционален модулю индукции магнитного поля (F ~ В); пропорционален силе тока в проводнике (F ~ l);
  • зависит от ориентации проводника в магнитном поле, т. е. от угла Сила и закон Ампера - формулы и определение с примерами

Обобщая полученные результаты, запишем выражение для силы Ампера Сила и закон Ампера - формулы и определение с примерами
в виде
Сила и закон Ампера - формулы и определение с примерами
где В — индукция магнитного поля, l — длина участка проводника, находящегося в магнитном поле, I — сила тока в проводнике, Сила и закон Ампера - формулы и определение с примерами — угол, образованный направлением тока и Сила и закон Ампера - формулы и определение с примерами

Закон Ампера

Это выражение называют законом Ампера:

  • модуль силы, с которой магнитное поле действует на находящийся в нем прямолинейный проводник с током, равен произведению индукции В этого поля, силы тока I, длины участка проводника l и синуса угла между направлениями тока и индукции магнитного поля.

Сила Ампера Сила и закон Ампера - формулы и определение с примерами всегда перпендикулярна направлению тока в проводнике и вектору индукции Сила и закон Ампера - формулы и определение с примерами магнитного поля. Для определения направления силы

Правило левой руки

Ампера используют правило левой руки (рис. 151):

Сила и закон Ампера - формулы и определение с примерами
 

если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитное взаимодействие проводников с током используется для определения в СИ одной из основных единиц — единицы силы тока — ампера.

Один ампер есть сила постоянного тока, поддерживаемого в каждом из двух прямолинейных параллельных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, который вызывает между этими проводниками силу взаимодействия, равную Сила и закон Ампера - формулы и определение с примерамиН на каждый метр длины проводников.

Магнитное поле

Обобщение учеными результатов теоретических и экспериментальных исследований различных взаимодействий в природе привело к выводу, что материя может существовать не только в форме вещества, по и в форме поля. Изучая физику в предыдущих классах, вы узнали о существовании электрического и магнитного полей, благодаря которым взаимодействуют наэлектризованные тела. Работы Дж. Максвелла, М. Фарадея и других ученых показали, что эти поля взаимосвязаны и фактически являются проявлениями более универсального электромагнитного поля. И только выбор системы отсчета определяет, что мы наблюдаем — электрическое или магнитное поле. Изучить все свойства электромагнитного поля довольно сложно. Поэтому в физике изучают постепенно отдельные проявления этого ноля. Одним из этапов изучения электромагнитного поля является изучение магнитного поля, которое проявляется в случае, когда заряженные частицы или тела в определенной системе отсчета движутся равномерно. В этом разделе рассматриваются не только условия, при которых магнитное поле наблюдается, но и физические величины, которые описывают его свойства, законы, по которым взаимодействуют магнитные поля и вещественные объекты. Знание этих законов позволяет производить важные для практики расчеты результатов взаимодействия магнитного поля с различными физическими телами.

Явления, которые мы называем магнитными, известны человечеству очень давно. Необычные свойства магнетита (разновидности железной руды) использовались в Древнем Китае, а потом и в других странах для изготовления компасов. Магнитам приписывали магические свойства, их действием объясняли непонятные явления природы, пробовали лечить болезни.
Систематизированные исследования магнитов провел английский физик У. Гильберт в XVI в. Он не только исследовал взаимодействие постоянных .магнитов, но и установил, что Земля является большим магнитом.

Учение о магнитах развивалось длительное время обособленно, как отдельная отрасль науки, пока ряд открытий и теоретических исследований в XIX в. не доказали его органическую связь с электричеством.

Одним из фундаментальных доказательств единства электрических и магнитных явлений является опыт Г.Х. Эрстеда, датского физика, который в 1820 г. заметил, что магнитная стрелка изменяет ориентацию вблизи проводника с током (рис. 2.1).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.1. Опыт Эрстеде

Было вполне очевидно, что причиной изменения ориентации стрелки является электрический ток -направленное движение заряженных частиц в проводнике. C подробным описанием этого опыта вы встречались в 9-м классе.

Магнитное действие движущихся заряженных тел исследовал также американский физик Г. Роуланд в 1878 г. Основная часть его установки представляла собой эбонитовый диск 1, покрытый тонким слоем золота (рис. 2.2). Диск был насажен на вал и мог свободно вместе с ним вращаться между двумя стеклянными пластинами 2. Над эбонитовым диском были укреплены на тонкой нити две намагниченные стальные иголки 3, чувствительные к магнитному полю. Когда диску сообщили некоторый заряд и начали вращать, иголки повернулись на некоторый угол, что свидетельствовало о наличии магнитного поля. При увеличении скорости вращения иголки поворачивались на больший угол.

Сила и закон Ампера - формулы и определение с примерами
Рис. 22. Главная часть установки Роуланда по выявлению магнитного поля движущегося электрически заряженного диска

Опытами Г. Роуланда было подтверждено открытие Эрстеда о связи магнитного поля с движущимися электрически заряженными частицами или телами.

Сила и закон Ампера - формулы и определение с примерами Генри Роуланд (184β-1901) — американский физик; научные работы в области
электродинамики, оптики, спектроскопии и теплоты. Он доказал, что заряженные
тела, если они движутся, вызывают магнитное взаимодействие.

Магнитные явления хотя и связаны с электрическими, но не идентичны им. Это подтверждают опыты.

Если взять два длинных параллельных проводника и присоединить к источнику тока, то заметим, что они взаимодействуют между собой (рис. 2.3) в зависимости от направления тока в них. При токах противоположных направлений проводники отталкиваются (рис. 2.3-а). Если токи одного направления, то проводники притягиваются друг к другу (рис. 2.3-б).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 23. Магнитное взаимодействие проводников с током

Действие проводника с током на магнитную стрелку или другой проводник с током происходит при отсутствии непосредственного контакта между ними, благодаря наличию вокруг проводника магнитного поля.

Магнитное поле имеет свои особенности, которые выделяют его среди других полей:

  1. магнитное поле наблюдается всегда, когда есть движущиеся заряженные частицы или тела;
  2. магнитное поле действует только на движущиеся заряженные тела или частицы.

Другие свойства будут описаны далее.

Магнитная индукция

Наблюдения за магнитными взаимодействиями в лаборатории или в природе показывают, что действия магнитного поля па физические тела или проводники с током при равных условиях могут быть различными.

Интенсивность магнитного взаимодействия может быть различной.

Если для выявления магнитного поля Земли магнитную стрелку компаса приходится устанавливать на специальных опорах, которые существенно уменьшают силы трения, то действие электромагнита, в обмотках которого проходит электрический ток, будет заметным даже тогда, когда стрелка будет просто лежать на столе.

Различным будет и взаимодействие параллельных проводников с током. Сила взаимодействия этих проводников будет изменяться, если будет изменяться сила тока в них или расстояние между ними, — она будет увеличиваться при увеличении силы тока или при уменьшении расстояния.

Для всех таких случаев говорят о «сильном» или «слабом» поле. Аналогичные случаи рассматривались при изучении свойств электрического поля, при рассмотрении действия электрического поля на заряженные тела. Для количественной характеристики электрического поля введена напряженность электрического поля. Для магнитного же поля используется также силовая характеристика и соответствующая ей физическая величина магнитная индукция. Магнитная индукция является векторной величиной и обозначается буквой В. Поскольку для исследования магнитного поля длительное время пользовались магнитной стрелкой на острие, то магнитная индукция как характеристика магнитного поля была связана с действием магнитного поля па магнитную стрелку. Так, направление полюсов стрелки послужило базой для установления направления вектора магнитной индукции изучаемого поля. Условились, что за направление магнитной индукции принимается направление северного полюса стрелки.

Магнитная индукция — векторная величина, имеющая направление.

Исследуем с помощью магнитной стрелки магнитное поле проволочного витка с током.

Замкнув цепь, в которую включен виток, начнем обносить магнитную стрелку на острие вокруг витка. Заметим, что ориентация стрелки при этом будет меняться. В разных точках она будет иметь различную ориентацию. Наиболее ощутимым будет действие поля на стрелку в центре витка (рис. 2.4).

Сила и закон Ампера - формулы и определение с примерами
Puc. 2.4. Продольная ось магнитной стрелки, находящаяся в центре витка с током, перпендикулярна его плоскости

Таким образом, мы установили, что магнитная индукция витка или прямоугольной рамки будет иметь максимальное значение в центре.

Продольная ось магнитной стрелки плоскости витка. Аналогичное явление будет наблюдаться и тогда, когда возьмем прямоугольную рамку или моток провода произвольной формы.

В отличие от напряженности электрического поля магнитная индукция как векторная величина не совпадает по направлению с направлением силы, которая действует на проводник с током. Выясним, как направление вектора магнитной индукции зависит от направления тока в витке.

Магнитная индукция — это силовая характеристика поля. Она определяет силу, которая действует на проводник с током или на движущуюся частицу.

Отметив направление магнитной стрелки при определенном направлении тока в витке, изменим направление последнего на противоположное. Магнитная стрелка развернется на 1800, показывая, что направление магнитной индукции также изменилось. Таким образом, направление магнитной индукции витка с током зависит от направления тока и нем.

Чтобы каждый раз, когда нужно знать направление магнитной индукции, не проводить опыты со стрелкой, пользуются правилом правого винта (буравчика).

Это правило позволяет запомнить связь направления тока в витке с направлением магнитной индукции его поля. Для этого необходимо представить, как будет двигаться правый винт, приставленный перпендикулярно к плоскости витка, при вращении его по направлению тока в витке.

Если направление вращения правого винта, расположенного в центре витка с током, совпадает с направлением тока, то его поступательное движение показывает направление магнитной индукции (рис. 2.5).

Магнитное поле существует и вокруг прямого проводника с током. Для подтверждения этого магнитную стрелку будем обносить вокруг проводника, не изменяя расстояния (рис. 2.6).

Сила и закон Ампера - формулы и определение с примерами

Pиc. 2.5. Определение
направления магнитной
индукции витка с током

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.6. Исследование магнитного
поля прямого проводника с током
при помощи магнитной стрелки

В разных точках ее ориентация будет различной, но ось стрелки всегда будет направлена по касательной к траектории движения.

Соответственно и магнитная индукция проводника с током будет иметь такое ясе направление.
При изменении направления тока в проводнике на противоположное стрелка развернется на 180° и покажет направление магнитной индукции, которое также будет противоположным к прежнему.

Таким образом, направление магнитной индукции прямого проводника зависит от направления тока в нем. Для облегчения его определения, как и в предыдущем случае, на основании анализа результатов эксперимента, сформулировано правило правого винта (рис. 2.7): если направление поступательного движения правого винта совпадает с направлением тока в проводнике, то направление его вращения показывает направление магнитной индукции.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.7. Определение направления магнитной индукции поля прямого проводника с током при помощи правою винта (буравчика)

Для измерения магнитной индукции применяется специальная единица тесла (Тл). Эта единица названа в честь сербского ученого и изобретателя Николы Теслы.

Сила и закон Ампера - формулы и определение с примерами Никола Тесла (1856-1943) — родился в Сербии, изобретатель и физик.
Известен благодаря своим изобретениям в области электротехники
и электроники; работал инженером на предприятиях Венгрии, Франции, США.

В практике используются долевые величины:

  • 1 миллитесла = 1 мТл = 10-3 Тл,
  • 1 микротесла 1 мкТл 10-6 Тл.

Значения магнитной индукции измеряют специальными приборами, которые называются магнитометрами или индикаторами магнитной индукции (рис. 2.8).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.8. Лабораторный магнитометр для школьных опытов

Часто вместо прямых измерений пользуются формулами, которые позволяют рассчитать магнитную индукцию на основании параметров проводника. Таким примером может быть расчет модуля магнитной индукции прямого проводника с током. Экспериментально подтверждено, что магнитная индукция поля прямого проводника с током прямо пропорциональна силе тока в проводнике и обратно пропорциональна расстоянию от его оси:

Сила и закон Ампера - формулы и определение с примерами

Магнитная индукция прямого проводника с током пропорциональна силе тока в нем и обратно пропорциональна расстоянию от проводника до точки наблюдения.

Коэффициент пропорциональности в этой формуле зависит от выбора системы единиц измерений. В Международной системе единиц (СИ) он имеет значение Сила и закон Ампера - формулы и определение с примерами

где μ0 — магнитная постоянная, ее числовое значение 1,256 × × 10-6 Н/А2.

Сила и закон Ампера - формулы и определение с примерами

Тогда окончательно для рассчетов модуля магнитной индукции поля прямого проводника с током имеем формулу:

Сила и закон Ампера - формулы и определение с примерами

где μ0 — магнитная постоянная; I — сила тока в проводнике: r — расстояние от проводника до данной точки поля.

Пример №1

Каково значение модуля магнитной индукции в точке поля, удаленной на 3 см от бесконечно длинного проводника, по которому проходит ток 6 А?

Дано:
r = 3 см,
I = 6 А.
Решение
Магнитная индукция прямого проводника
с током рассчитывается по формуле:
Сила и закон Ампера - формулы и определение с примерами
В — ?

Подставив значения физических величин, получим
Сила и закон Ампера - формулы и определение с примерами
Сила и закон Ампера - формулы и определение с примерами

Ответ: магнитная индукция поля прямого проводника с током равна 4 • 10-5 Тл.

Действие магнитного поля на проводник с током и сила Ампера

Поскольку вокруг проводников с током возникает магнитное поле, естественно предположить, что в магнитном поле на них действует сила.

На проводник с током в магнитном поле действует сила.

Проведем исследование с целью определения, от чего зависит модуль и направление этой силы. Для этого используем установку, в которой прямой проводник подвешен в магнитном поле постоянного магнита так, что его можно включать в электрическую цепь, силу тока в которой можно изменять при помощи реостата. Амперметр будет измерять силу тока в цепи.

Замкнув электрическую цепь, заметим, что проводник отклонится от положения равновесия, а динамометр покажет некоторое значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока будут вызывать соответствующие изменения силы. Сопоставление результатов всех измерений позволяет сделать вывод, что сила F, которая действует на проводник с током, пропорциональна силе тока к нем:
F~I.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила Ампера пропорциональна силе тока в проводнике.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.9. Установка для изучения действия магнитного поля на проводник с током

Расположим еще один магнит рядом с первым. Длина проводника, находящегося в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, в этом случае также увеличится в 2 раза. Таким образом, сила FΔ, действующая на проводник с током в магнитном поле, пропорциональна длине проводника Δl, который расположен в магнитном поле:

F~ΔI.

Сила Ампера пропорциональна длине активной части проводника. 

Сила увеличится также тогда, когда применим другой, более мощный магнит с большей магнитной индукцией поля.

Это позволит сделать вывод, что сила Ампера FА зависит от магнитной индукции поля:

F~B.

Опыт позволяет убедиться и в том, что наибольшее значение силы Ампера будет тогда, когда угол между проводником и вектором магнитной индукции будет равен 90°. Если этот угол будет равен нулю, т. е. вектор магнитной индукции будет параллельным проводнику, то сила Ампера также будет равна нулю. Отсюда легко сделать вывод, что сила Ампера зависит от угла между вектором магнитной индукции и проводником.

Окончательно для расчетов имеем формулу Сила и закон Ампера - формулы и определение с примерами

Направление силы Ампера определяется по правилу левой руки (рис. 2.10): если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре от. ставленных пальца показывали направление тока в проводнике, то отставленный под углом 90″ большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.10. При помощи левой pуκu можно определить направление силы Ампера

Если левую руку разместить так. чтобы линии магнитной индукции входили в ладонь, а четыре отставленных пальца показывали направление тока в проводнике, то отставленный под углом 90° большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Взаимодействие проводников с током

Взаимодействие проводников с током объясняется действием силы Ампера (рис. 2.11).

Каждый из проводников имеет свое магнитное поле, которое действует на соседний проводник с током и способствует появлению силы Ампера. Так, проводник AA‘ по которому проходит ток I1, имеет магнитное поле, модуль индукции B1 которого, как указывалось ранее, равен

Сила и закон Ампера - формулы и определение с примерами

где r — расстояние от проводника до точки наблюдения.

Если проводник CC’ длиной Δl находитсяy на расстоянии r от проводника AA’ и в нем проходит ток I2, то на него действует сила Ампера FА, поскольку он находится в магнитном поле проводника AA’ . Значение этой силы равно Сила и закон Ампера - формулы и определение с примерами

Поскольку проводники параллельны и угол между проводником CC’ и вектором магнитной индукции B равен 90°, то sinα = 1.

Подставим в последнюю формулу значение магнитной индукции поля проводника AA’:

Сила и закон Ампера - формулы и определение с примерами

Силу взаимодействия двух параллельных проводников с током можно определить, зная только расстояние между ними и силу тока в них.

Как и при любом взаимодействии, такая сила, согласно третьему закону Ньютона, действует на каждый из проводников. Только направления их противоположны.

Таким образом, два параллельных проводника нзнимодей-ствуют между собой благодаря магнитным полям, которые образуются вокруг проводников, по которым проходит электрический ток.

Пример №2

Определить модуль силы Ампера, которая действует на проводник с током длиной 25 см в магнитном поле с индукцией 0,04 Тл, если между вектором магнитной индукции и направлением тока угол 30° сила тока в проводнике 0,25 А.

Дано:
∆l = 25 см.
В = 0,04 Тл,

Сила и закон Ампера - формулы и определение с примерами = 30%
I = 0,25 А.

Решение
На проводник с током в магнитном поле действует сила
Сила и закон Ампера - формулы и определение с примерами

Подставим значения всех величин:
Сила и закон Ампера - формулы и определение с примерами

FA— ?

Ответ: модуль силы равен 1,25 • 10-3 Н.

Использование действия силы Ампера

Силу Ампера применяют для преобразования энергии электрического тока в механическую энергию проводника. Такое превращение происходит во многих электротехнических устройствах. Рассмотрим некоторые из них.

Eлектроиэмеритальные приборы магнитоэлектрической системы

Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, расположенной между его полюсами (рис. 2.12). Полюса магнита имеют специальные насадки, создающие однородное магнитное поле, в котором вращение рамки не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол всегда равен 90°.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.12. Устройство электроизмерительного прибора магнитоэлектрической системы

C рамкой соединены две спиральные пружины, которые подводят к рамке электрический ток. Во время прохождения электрического тока по витком рамки возникает сила Ампера, пропорциональная силе тока в рамке. Чем больше сила действует на витки рамки, тем больше закручиваются спиральные пружины, которых возникает сила упругости. Когда сила Ампера и сила упругости станут равными, вращение рамки прекратится.

Стрелка, прикрепленная к рамке, показывает угол поворота рамки. Этот угол пропорционален силе тока в рамке.

Электрический двигатель постоянного тока

Электрический двигатель применяют для преобразования энергии электрического тока в механическую энергию вращения вала двигателя. Принцип его действия подобен принципу действия электроизмерительного прибора магнитоэлектрической системы, описанного выше. Только в его конструкции отсутствует пружина, поэтому рамка может поворачиваться на любой угол. Электрический ток к рамке, размещенной на валу и имеющей стальной сердечник, подается через специальные скользящие контакты-щетки (рис. 2.13).

Сила и закон Ампера - формулы и определение с примерами
Рис. 213. Устройство двигателя постоянного тока

При замыкании цепи питания двигателя ток проходит по рамке и она взаимодействует с магнитным полем постоянного магнита или электромагнита и поворачивается до тех пор, пока ее плоскость не станет параллельной вектору магнит ной индукции. Чтобы она могла нужно сменить направление силы тока в ней, вследствие чего поменяет направлению сила Ампера, действующая на рамку с током в магнитном поле. В двигателе этот процесс осуществляется с помощью двух неподвижных графитометаллических щеток и двух полуколец на валу, к которым подведены концы рамки.

На рисунке 2.14-а показан момент, когда ток в якоре такого направления, что его полюса отталкиваются от одноименных полюсов статора. После поворачивания на некоторый угол якорь окажется в положении, когда разноименные полюса притягиваются (рис 2.14-6). Вследствие инерции якорь проходит это положение равновесия, а благодаря кольцам, которых касаются токоподводящие щетки (рис. 2.14-в), направление тока в якоре изменяется па противоположное и вращение якоря продолжается (см. рис. 2.14-а).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.14 Схемы, которые объясняют действие коллекторного электродвигателя постоянного тока

В промышленных образцах электродвигателей постоянного тока ротор имеет несколько рамок-обмоток. Поэтому и количество пар скользящих контактов в них больше: оно согласуется с количеством обмоток. В целом такое устройство называют коллектором. В новейших моделях двигателей постоянного тока роль коллектора выполняет специальное устройство с электронными приборами.

Таким образом, действие силы Ампера нашло применение в различных технических устройствах: электроизмерительных приборах, электрических двигателях и т. п.

Сила ампера

Вы узнали, что магнитное поле действует на проводник с током с некоторой силой. А из курса физики 8 класса помните, что сила — это векторная физическая величина, поэтому, чтобы полностью определить силу, нужно уметь рассчитывать ее значение и определять направление. От чего зависит значение силы, с которой магнитное поле действует на проводник с током, как направлена эта сила и почему ее называют силой Ампера, вы узнаете из данного параграфа.

Характеристика силы действующей на проводник с током

Между полюсами подковообразного постоянного магнита подвесим на тонких и гибких проводах прямой алюминиевый проводник (рис. 4.1, а). Если через проводник пропустить ток, проводник отклонится от положения равновесия (рис. 4.1, б). Причина такого отклонения — сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, А. Ампер. Именно потому эту силу называют силой Ампера.

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.1. Опыт, демонстрирующий действие магнитного поля на алюминиевый проводник: при отсутствии тока магнитное поле на проводник не действует (а); если в проводнике течет ток, на проводник действует магнитное поле и проводник отклоняется (б)

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, расположенной в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.

Значение силы Ампера Сила и закон Ампера - формулы и определение с примерами вычисляют по формуле:

Сила и закон Ампера - формулы и определение с примерами

где Сила и закон Ампера - формулы и определение с примерами — магнитная индукция магнитного поля; Сила и закон Ампера - формулы и определение с примерами — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике (рис. 4.2).

Обратите внимание! Магнитное поле не будет действовать на проводник с током Сила и закон Ампера - формулы и определение с примерами если проводник расположен параллельно магнитным линиям поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.2. Угол Сила и закон Ампера - формулы и определение с примерами — это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Чтобы определить направление силы Ампера, используют правило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера (рис. 4.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.3. Определение направления силы Ампера по правилу левой руки

Формула для определения модуля магнитной индукции

Если проводник расположен перпендикулярно линиям магнитной индукции Сила и закон Ампера - формулы и определение с примерами поле действует на проводник с максимальной силой:

Сила и закон Ампера - формулы и определение с примерами

Отсюда получаем формулу для определения модуля магнитной индукции:

Сила и закон Ампера - формулы и определение с примерами

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то уменьшится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

Сила и закон Ампера - формулы и определение с примерами

1 Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

  • Заказать решение задач по физике

Пример №3

Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ физической проблемы. Около любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как будут вести себя проводники.

Решение

Решая задачу, выполним пояснительные рисунки: изобразим проводники А и В, покажем направления тока в них и т. д.

Выясним направление силы Ампера, которая действует на проводник А, находящийся в магнитном поле проводника В.

  1. С помощью правила буравчика найдем направление линий магнитной индукции магнитного поля, созданного проводником В (рис. 1, а). Выясняется, что вблизи проводника А магнитные линии направлены к нам (обозначено «•»).
  2. Воспользовавшись правилом левой руки, определим направление силы Ампера, действующей на проводник А со стороны магнитного поля проводника В (рис. 1, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 1

3. Приходим к выводу: проводник А притягивается к проводнику В.

Теперь выясним направление силы Ампера, которая действует на проводник В, находящийся в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рис. 2, а). Выясняется, что вблизи проводника В магнитные линии направлены от нас (обозначено Сила и закон Ампера - формулы и определение с примерами

2) Определим направление силы Ампера, действующей на проводник В (рис. 2, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 2

3) Приходим к выводу: проводник В притягивается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, притягиваются.

Пример №4

Прямой проводник (стержень) длиной 0,1 м и массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитным линиям поля (рис. 3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 3

Ток какой силы и в каком направлении следует пропустить по стержню, чтобы стержень не давил на опору (завис в магнитном поле)?

Анализ физической проблемы. Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при условиях: 1) сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх); 2) значение силы Ампера будет равно значению силы тяжести: Сила и закон Ампера - формулы и определение с примерами

Дано:

Сила и закон Ампера - формулы и определение с примерами

Найти:

Сила и закон Ампера - формулы и определение с примерами

Поиск математической модели, решение

1. Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90° большой палец был направлен вертикально вверх. Четыре вытянутых пальца укажут направление от нас. Следовательно, ток в проводнике нужно направить от нас.

2. Учитываем, что Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами где Сила и закон Ампера - формулы и определение с примерами

Следовательно, Сила и закон Ампера - формулы и определение с примерами

Из последнего выражения найдем силу тока: Сила и закон Ампера - формулы и определение с примерами

Проверим единицу, найдем значение искомой величины.

Вспомним: Сила и закон Ампера - формулы и определение с примерами

Ответ: Сила и закон Ампера - формулы и определение с примерами от нас.

Подводим итоги:

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера находят по формуле: Сила и закон Ампера - формулы и определение с примерами где В — индукция магнитного поля; I — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитные свойства веществ и гипотеза Ампера

Наверное, каждый из вас видел магниты и даже исследовал их свойства. Если поднести магнит к кучке мелких предметов, некоторые из них (гвоздики, кнопки, скрепки) притянутся к магниту, а некоторые (кусочки мела, медные и алюминиевые монетки, комочки земли) никак не отреагируют. Почему так? Действительно ли магнитное поле не оказывает никакого влияния на некоторые вещества? Именно об этом пойдет речь в параграфе.

Действия электрического и магнитного полей на вещество

Изучая в 8 классе электрические явления, вы узнали, что под влиянием внешнего электрического поля происходит перераспределение электрических зарядов внутри незаряженного тела (рис. 5.1). В результате в теле образуется собственное электрическое поле, направленное противоположно внешнему, и именно поэтому электрическое поле в веществе всегда ослабляется.

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.1. В результате действия электрического поля отрицательно заряженной палочки ближняя к ней часть проводящей сферы приобретает положительный заряд

Вещество изменяет и магнитное поле. Есть вещества, которые (как в случае с электрическим полем) ослабляют магнитное поле внутри себя. Такие вещества называют диамагнетиками. Многие вещества, наоборот, усиливают магнитное поле — это парамагнетики и ферромагнетики.

Дело в том, что любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле, магнитная индукция которого разная для разных веществ.

Слабомагнитные вещества

Вещества, которые намагничиваются, создавая слабое магнитное поле, магнитная индукция которого намного меньше магнитной индукции внешнего магнитного поля (то есть поля, вызвавшего намагничивание), называют слабомагнитными веществами. К таким веществам относятся диамагнетики и парамагнетики.

Диамагнетики (от греч. dia — расхождение) намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю (рис. 5.2, а). Именно поэтому диамагнетики незначительно ослабляют внешнее магнитное поле: магнитная индукция магнитного поля внутри диамагнетика Сила и закон Ампера - формулы и определение с примерами немного меньше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.2. Образцы из диамагнетика (а) и парамагнетика (б) во внешнем магнитном поле: красные линии — линии магнитного поля, созданного образцом; синие — магнитные линии внешнего магнитного поля; зеленые — линии результирующего магнитного поля

Если диамагнетик поместить в магнитное поле, он будет выталкиваться из него (рис. 5.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.3. Пламя свечи выталкивается из магнитного поля, так как продукты сгорания — диамагнитные частицы

К диамагнетикам относятся инертные газы (гелий, неон и др.), многие металлы (золото, медь, ртуть, серебро и др.), молекулярный азот, вода и т. д. Тело человека — диамагнетик, так как оно в среднем на 78 % состоит из воды.

Парамагнетики (от греч. para — рядом) намагничиваются, создавая слабое магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.2, б). Парамагнетики незначительно усиливают внешнее поле: магнитная индукция магнитного поля внутри парамагнетика Сила и закон Ампера - формулы и определение с примерами немного больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

К парамагнетикам относятся кислород, платина, алюминий, щелочные и щелочноземельные металлы и другие вещества. Если парамагнитное вещество поместить в магнитное поле, то оно будет втягиваться в это поле.

Ферромагнетики

Если слабомагнитные вещества извлечь из магнитного поля, их намагниченность сразу исчезнет. Иначе происходит с сильномагнитными веществами — ферромагнетиками.

Ферромагнетики (от лат. ferrum — железо) — вещества или материалы, которые остаются намагниченными и при отсутствии внешнего магнитного поля.

Ферромагнетики намагничиваются, создавая сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.4, 5.5, а). Если изготовленное из ферромагнетика тело поместить в магнитное поле, оно будет втягиваться в него (рис. 5.5, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.4. Железный гвоздь намагничивается в магнитном поле так, что конец гвоздя, расположенный вблизи северного полюса магнита, становится южным полюсом, поэтому гвоздь притягивается к магниту

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.5. Ферромагнетики создают сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (а); линии магнитной индукции как будто втягиваются в ферромагнитный образец (б)

К ферромагнетикам относится небольшая группа веществ: железо, никель, кобальт, редкоземельные вещества и ряд сплавов. Ферромагнетики значительно усиливают внешнее магнитное поле: магнитная индукция магнитного поля внутри ферромагнетиков Сила и закон Ампера - формулы и определение с примерами в сотни и тысячи раз больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Так, кобальт усиливает магнитное поле в 175 раз, никель — в 1120 раз, а трансформаторная сталь (на 96-98 % состоит из железа) — в 8000 раз.

Ферромагнитные материалы условно делят на два типа. Материалы, которые после прекращения действия внешнего магнитного поля остаются намагниченными длительное время, называют магнитожесткими ферромагнетиками. Их применяют для изготовления постоянных магнитов. Ферромагнитные материалы, которые легко намагничиваются и быстро размагничиваются, называют магнитомягкими ферромагнетиками. Их применяют для изготовления сердечников электромагнитов, двигателей, трансформаторов, то есть устройств, которые во время работы постоянно перемагничиваются (о строении и принципе действия таких устройств вы узнаете позже).

Обратите внимание! При достижении температуры Кюри (см. таблицу) ферромагнитные свойства магнитомягких и магнитожестких материалов исчезают — материалы становятся парамагнетиками.

Температура Кюри для некоторых ферромагнетиков

Вещество (или материал) Температура,°С
Гадолиний +19
Железо +770
Кобальт +1127
Неодимовый магнит NdFeB +320
Никель +354

Гипотеза Ампера

Наблюдая действие проводника с током на магнитную стрелку (см. рис. 1.1) и выяснив, что катушки с током ведут себя как постоянные магниты (см. рис. 1.3), А. Ампер выдвинул гипотезу о магнитных свойствах веществ. Ампер предположил, что внутри веществ существует огромное количество незатухающих малых круговых токов и каждый из них, как маленькая катушка, является магнитиком. Постоянный магнит состоит из множества таких элементарных магнитиков, ориентированных в определенном направлении.

Механизм намагничивания веществ Ампер объяснял так. Если тело не намагничено, круговые токи ориентированы беспорядочно (рис. 5.7, а). Внешнее магнитное поле пытается сориентировать эти токи так, чтобы направление магнитного поля каждого тока совпадало с направлением внешнего

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.7. Механизм намагничивания тел согласно гипотезе Ампера: а — круговые токи ориентированы беспорядочно, тело не намагничено; б — круговые токи ориентированы в определенном направлении, тело намагничено

магнитного поля (рис. 5.7, б). У некоторых веществ такая ориентация токов (намагничивание) остается и после прекращения действия внешнего магнитного поля. Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц.

Гипотеза Ампера послужила толчком к созданию теории магнетизма. На основе этой гипотезы были объяснены известные свойства ферромагнетиков, однако она не могла объяснить природу диа- и парамагнетизма, а также то, почему только небольшое количество веществ имеет ферромагнитные свойства. Современная теория магнетизма основана на законах квантовой механики и теории относительности А. Эйнштейна.

Подводим итоги:

Любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле.

Диамагнетики Парамагнетики Ферромагнетики
Намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю Намагничиваются, создавая слабое магнитное поле, направленное в сторону внешнего магнитного поля Намагничиваются, создавая сильное магнитное поле, направленное в сторону внешнего магнитного поля; остаются намагниченными после прекращения действия внешнего магнитного поля
Незначительно ослабляют внешнее магнитное поле, выталкиваются из него Незначительно усиливают внешнее магнитное поле, втягиваются в него Усиливают внешнее магнитное поле в сотни и тысячи раз, втягиваются в него
Инертные газы, медь, золото, ртуть, серебро, азот, вода и др. Кислород, платина, алюминий, щелочные металлы и др. Кислород, платина, алюминий, щелочные металлы и др. Железо, никель, кобальт, редкоземельные вещества (например, неодим), ряд сплавов
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Работа по перемещению заряда в электростатическом поле
  • Закон Ома для однородного участка электрической цепи
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
Определение

Сила Ампера — сила, которая действует на проводник с током, помещенный в магнитное поле.

Модуль силы Ампера обозначается как FA. Единица измерения — Ньютон (Н).

Математически модуль силы Ампера определяется как произведение модуля вектора магнитной индукции B, силы тока I, длины проводника l и синуса угла α между условным направлением тока и вектором магнитной индукции:

FA=BIlsinα

Максимальное значение сила Ампера принимает, когда ток в проводнике направлен перпендикулярно вектору магнитной индукции, так как sin90°=1. И сила Ампера отсутствует совсем, если ток в проводнике направлен относительно вектора магнитной индукции вдоль одной линии. В этом случае угол между ними равен 0, а sin0°=1.

Пример №1. Максимальная сила, действующая в однородном магнитном поле на проводник с током длиной 10 см, равна 0,02 Н. Сила тока в проводнике равна 8 А. Найдите модуль вектора магнитной индукции этого поля.

10 см = 0,1 м

Так как речь идет о максимальной силе, действующей на проводник с током, тоsinα при этом равен 1 (проводник с током расположен перпендикулярно вектору магнитной индукции).

Определение направления силы Ампера

Направление вектора силы Ампера определяется правилом левой руки.

Правило левой руки

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции B входила в ладонь, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на отрезок проводника (направление силы Ампера).

Пример №2. В однородном магнитном поле находится рамка, по которой начинает течь ток (см. рисунок). Какое направление (вверх, вниз, влево, вправо, от наблюдателя, наблюдателю) имеет сила, действующая на нижнюю сторону рамки?

Так как в нижней стороне рамки ток направлен вправо, то четыре пальца левой руки нужно направить вправо. Саму левую руку при этом нужно расположить перпендикулярно плоскости рисунка ладонью вверх, чтобы в нее входили линии вектора магнитной индукции. Если отогнуть большой палец на прямой угол, то он покажет направление силы Ампера, действующей на нижнюю часть рамки. В данном случае она направлена в сторону от наблюдателя.

Работа силы Ампера

Проводники, на которые действует сила Ампера, могут перемещаться под действием этой силы. В этом случае говорят, что сила Ампера совершает работу. Из курса механики вспомним, что работа равна:

A=Fscosα

F — сила, совершающая работу, s — перемещение, совершенное телом под действием этой силы, α — угол между вектором силы и вектором перемещения.

Отсюда работа, совершаемая силой Ампера, равна:

A=FAscosα=BIlsinβscosα

α — угол между вектором силы и вектором перемещения, β — угол между условным направлением тока и вектором магнитной индукции.

Пример №3. Проводник длиной l = 0,15 м перпендикулярен вектору магнитной индукции однородного магнитного поля, модуль которого B = 0,4 Тл. Сила тока в проводнике I = 8 А. Найдите работу, которая была совершена при перемещении проводника на 0,025 м по направлению действия силы Ампера.

Так как проводник расположен перпендикулярно вектору магнитной индукции, и поле однородно, то синус угла между ними равен «1». Так как направление перемещение проводника совпадает с направлением действия силы Ампера, то косинус угла между ними тоже равен «1». Поэтому формула для вычисления работы силы Ампера принимает вид:

A=BIls

Подставим известные данные:

A=0,4·8·0,15·0,025=0,012 (Дж)=12 (мДж)

Задание EF17704

Как направлена сила Ампера, действующая на проводник № 3 со стороны двух других (см. рисунок), если все проводники тонкие, лежат в одной плоскости и параллельны друг другу? По проводникам идёт одинаковый ток силой I.

а) вверх

б) вниз

в) к нам

г) от нас


Алгоритм решения

1.Определить направление вектора результирующей магнитной индукции первого и второго проводников в любой точке третьего проводника.

2.Используя правило левой руки, определить направление силы Ампера, действующей на третий проводник со стороны первых двух проводников.

Решение

На третьем проводнике выберем произвольную точку и определим, в какую сторону в ней направлен результирующий вектор B, равный геометрической сумме векторов магнитной индукции первого и второго проводников (B1и B2). Применим правило буравчика. Мысленно сопоставим острие буравчика с направлением тока в первом проводнике. Тогда направление вращения его ручки покажем, что силовые линии вокруг проводника 1 направляются относительно плоскости рисунка против хода часовой стрелки. Ток во втором проводнике направлен противоположно току в первом. Следовательно, его силовые линии направлены относительно плоскости рисунка по часовой стрелке.

В точке А вектор B1 направлен в сторону от наблюдателя, а вектор B2— к наблюдателю. Так как второй проводник расположен ближе к третьему, создаваемое им магнитное поле в точке А более сильное (силы тока во всех проводниках равны по условию задачи). Следовательно, результирующий вектор B направлен к наблюдателю.

Теперь применим правило левой руки. Расположим ее так, чтобы четыре пальца были направлены в сторону течения тока в третьем проводнике. Ладонь расположим так, чтобы результирующий вектор B входил в ладонь. Теперь отставим большой палец на 90 градусов. Относительно рисунка он покажет «вверх». Следовательно, сила Ампера FА, действующая на третий проводник, направлена вверх.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18417

Чему равна сила Ампера, действующая на стальной прямой проводник с током длиной 10 см и площадью поперечного сечения 2⋅10–2 мм2 , если напряжение на нём 2,4 В, а модуль вектора магнитной индукции 1 Тл? Вектор магнитной индукции перпендикулярен проводнику. Удельное сопротивление стали 0,12 Ом⋅мм2/м.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Ампера.

3.Выполнить решение в общем виде.

4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Длина проводника: l = 10 см.

 Площадь поперечного сечения проводника: S = 2⋅10–2 мм2.

 Напряжение в проводнике: U = 2,4 В.

 Модуль вектора магнитной индукции: B = 1 Тл.

 Удельное сопротивление стали: r = 0,12 Ом⋅мм2/м.

 Угол между проводником с током и вектором магнитной индукции: α = 90о.

10 см = 0,1 м

Сила Ампера определяется формулой:

FA=BIlsinα

Так как α = 90о, синус равен 1. Тогда сила Ампера равна:

FA=BIl

Силу тока можно выразить из закона Ома:

I=UR

Сопротивление проводника вычисляется по формуле:

R=rlS

Тогда сила тока равна:

I=USrl

Конечная формула для силы Ампера принимает вид:

FA=BlUSrl=BUSr=1·2,4·2·1020,12=0,4 (Н)

Ответ: 0,4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17725

На непроводящей горизонтальной поверхности стола лежит жёсткая рамка массой m из однородной тонкой проволоки, согнутая в виде квадрата AСDЕ со стороной a(см. рисунок). Рамка находится в однородном горизонтальном магнитном поле, вектор индукции B которого перпендикулярен сторонам AE и CD и равен по модулю В. По рамке течёт ток в направлении, указанном стрелками (см. рисунок). При какой минимальной силе тока рамка начнет поворачиваться вокруг стороны CD?


Алгоритм решения

1.Сделать список известных данных.

2.Определить, при каком условии рамка с током будет вращаться вокруг стороны CD.

3.Выполнить решение в общем виде.

Решение

По условию задачи известными данными являются:

 Сторона квадратной рамки с током: a.

 Вектор магнитной индукции однородного горизонтального магнитного поля, в котором лежит рамка: B.

Пусть по рамке течёт ток I. На стороны АЕ и CD будут действовать силы Ампера:

FA1=FA2=IaB

Для того чтобы рамка начала поворачиваться вокруг оси CD, вращательный момент сил, действующих на рамку и направленных вверх, должен быть не меньше суммарного момента сил, направленных вниз. Момент силы Ампера относительно оси, проходящей через сторону CD:

MA=Ia2B

Момент силы тяжести относительно оси CD:

Mmg=12mga

Чтобы рамка с током оторвалась от горизонтальной поверхности, нужно чтобы суммарный момент сил был больше нуля:

MA+Mmg>0

Так как момент силы тяжести относительно оси CD отрицательный, это неравенство можно записать в виде:

Ia2B>12mga

Отсюда выразим силу тока:

I>mga2a2B

I>mg2aB

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10.8k

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением

 (1)

где В — индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q<0 — противоположны), то отогнутый большой палец покажет направление силы, которая действует на положительный заряд. На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении. Модуль силы Лоренца, как уже известно, равен

где α — угол между v и В.

Подчеркнем еще раз, что магнитное поле не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.

Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.

Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает. Другими словами, постоянное магнитное поле не совершает работы над движущейся в этом поле заряженной частицей и, следовательно, кинетическая энергия этой частицы при движении в магнитном поле не изменяется.

В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца:

Это выражение носит название формулы Лоренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамикедействует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью  заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического  и магнитного  полей. В Международной системе единиц (СИ)выражается как:F=q(E+(v умножыть В))

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено О. Хевисайдом.

Макроскопическим проявлением силы Лоренца является сила Ампера.

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца

Сила Ампера


Сила Ампера

4.2

Средняя оценка: 4.2

Всего получено оценок: 333.

4.2

Средняя оценка: 4.2

Всего получено оценок: 333.

Взаимодействие магнитного поля и проводника с током состоит в появлении некоторой силы со стороны поля, приложенной к проводнику. Изучением этой силы занимался А. Ампер, и в настоящее время она носит его имя. Кратко познакомимся с силой Ампера.

Вектор магнитной индукции

В качестве силовой характеристики любого поля обычно выступает сила, действующая на пробный заряд в этом поле. Для магнитного поля ситуация осложняется тем, что магнитных зарядов не найдено (хотя теория не запрещает их существование). Но, поскольку магнитное поле взаимодействует с электрическим током, пробный заряд в силовой характеристике поля можно заменить небольшим отрезком проводника с током (иногда используется обозначение «элемент тока»).

Рис. 1. Влияние магнитного поля на проводник.

Опыты показывают, что сила, действующая на проводник с током, зависит от силы магнитного поля, от силы тока в проводнике, от длины и ориентации проводника. Поэтому в качестве силовой характеристики магнитного поля принята векторная величина — магнитная индукция, модуль которой равен:

$$|B|={F_{max} over I Δl}$$

где:

  • $F_{max}$ — максимальное значение силы, которая может действовать на проводник;
  • $I$ — сила тока в проводнике;
  • $Δl$ — длина проводника.

За направление вектора магнитной индукции принято направление на северный полюс, которое покажет стрелка компаса, помещенного в это поле. Также для нахождения этого направления существуют специальные мнемонические правила (буравчика и охвата правой рукой).

Из данной формулы можно также получить единицу магнитной индукции — тесла (обозначается Тл).

Магнитное поле с индукцией 1 тесла взаимодействует с проводником длиной 1 метр, по которому течет ток 1 ампер с силой в 1 ньютон.

1 Тл — это очень сильное магнитное поле. Магнитное поле, появляющееся в нескольких сантиметрах вокруг проводов в электрических схемах, имеет индукцию порядка единиц и десятков микротесла. Магнитное поле Земли в среднем имеет индукцию около 0,05 мТл. Индукция магнитного поля бытовых магнитов имеет величину порядка 1–10 мТл. Наибольшая индукция магнитного поля, с которым может иметь дело обычный человек, — это индукция в МРТ-сканере. Она может достигать значения 3 Тл.

Рис. 2. Магнитно-резонансный томограф.

Сила Ампера

Зная индукцию магнитного поля, можно получить формулу силы Ампера, действующей на проводник с током. Из приведенного выше выражения следует, что модуль максимальной силы, действующей на элемент тока, равен:

$$F_{max}= I B Δl$$

Сила этой величины действует на элемент тока в случае, когда угол $alpha$ между линиями магнитного поля и направлением тока в проводнике составляет 90⁰. Если линии магнитного поля будут параллельны элементу тока, то сила будет равна нулю. То есть на элемент тока действует только перпендикулярная составляющая магнитной индукции, расчет которой производится по формуле:

$$B_{perp}= B sin alpha$$

Следовательно, модуль силы Ампера, действующей со стороны магнитного поля индукцией $B$ на проводник длиной $Δl$, по которому течет ток силой $I$, равен:

$$F= I |overrightarrow B| Δl sin alpha$$

Полученное выражение называется законом Ампера. Направление силы Ампера всегда перпендикулярно направлению тока и определяется с помощью мнемонического правила левой руки: если расположить левую руку так, чтобы четыре пальца были направлены по направлению электрического тока, а перпендикулярная составляющая индукции $B_{perp}$ входила в ладонь, то большой палец покажет направление силы Ампера.

Рис. 3. Правило левой руки.

Заключение

Что мы узнали?

Сила Ампера — это сила, действующая на проводник с током со стороны магнитного поля. Она зависит от индукции магнитного поля, от направления этой индукции, от тока в проводнике и длины проводника. Для ее определения используется закон Ампера, а направление находится с помощью правила левой руки.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Наталья Блохина

    10/10

Оценка доклада

4.2

Средняя оценка: 4.2

Всего получено оценок: 333.


А какая ваша оценка?

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 29. Сила Ампера. Принцип суперпозиции магнитных полей
Напечатано:: Гость
Дата: Понедельник, 29 Май 2023, 23:46

Оглавление

  • Модуль индукции магнитного поля
  • Закон Ампера
  • Принцип суперпозиции магнитных полей
  • Пример решения задачи
  • Упражнение 21

Для количественного описания магнитного поля необходимо знать не только направление индукции магнитного поля, но и её модуль. Характеристики электростатического поля определяют с помощью пробного заряда. Для определения характеристик магнитного поля используют «пробный» ток, который представляет собой малый участок проводника (элемент тока).

Модуль индукции магнитного поля. Действие магнитного поля на находящийся в нём малый участок проводника с током экспериментально исследовал Ампер, осуществив опыты с различными проводниками, входящими в замкнутые электрические цепи. В 1820 г. Ампер установил, что модуль силы, которой однородное магнитное поле действует на прямолинейный участок проводника с током.

Материал повышенного уровня

Постоянный подковообразный магнит закрепим в вертикальной плоскости так, чтобы линии индукции создаваемого им магнитного поля в пространстве между полюсами располагались вертикально (рис. 163.1). Магнитное поле магнита, в основном сосредоточенное между его полюсами, можно считать однородным. Именно в этой области поля находится малый (определяемый размерами области пространства, где магнитное поле практически однородно) участок Δl прямолинейного проводника длиной l > Δl. Этот проводник подвешен и соединён с источником тока с помощью тонких проводов так, чтобы он располагался перпендикулярно плоскости, в которой находится магнит. Действием слабого магнитного поля на остальные части электрической цепи можно пренебречь.

Рис.

Рис. 163.1

При замыкании цепи в зависимости от направления электрического тока и расположения полюсов магнита проводник под действием горизонтальной силы F with rightwards arrow on top начнёт двигаться вправо или влево. При этом подвес отклоняется от вертикального положения на некоторый угол α. Увеличивая силу тока в электрической цепи в 2, 3, 4… раза, можно заметить, что во столько же раз увеличивается и модуль силы F действующей на проводник (его можно измерить динамометром, отклоняя обесточенный подвес на такой же угол α, или рассчитать по формуле F = mgtgα). Добавляя ещё один такой же и так же расположенный магнит для увеличения размеров области, где магнитное поле достаточно велико и практически однородно, можно добиться увеличения длины Δl‘ прямолинейного участка проводника, находящегося в однородном магнитном поле, Δl‘ = 2Δl < l. Модуль силы, действующей на проводник, при этом увеличивается в 2 раза. Располагая магнит не в вертикальной плоскости, а под углом к поверхности стола, на котором находится установка, можно изменять угол между направлением линий индукции и проводником. Как свидетельствует опыт, модуль силы, которой магнитное поле действует на проводник с током, прямо пропорционален синусу угла между направлениями тока в проводнике и магнитной индукции. Причём модуль силы достигает максимального значения FmaxtildeIΔl, когда участок проводника с током образует угол 90° с направлением индукции магнитного поля (sin 90° = 1), и минимального (Fmin = 0), если проводник параллелен линиям индукции (sin 0 = 0).

Итак, модуль силы, действующей со стороны однородного магнитного поля на прямолинейный участок проводника с током, пропорционален силе тока I, длине этого участка Δl и синусу угла α между направлениями тока в проводнике и индукции магнитного поля:

F tilde I increment l space sinα.

Эта сила названа в честь А.-М. Ампера силой Ампера.

Так как F subscript max tilde I increment l, то отношение fraction numerator F subscript max over denominator I increment l end fraction для данной области магнитного поля не зависит ни от силы тока I в проводнике, ни от длины Δl прямолинейного участка проводника, полностью находящегося в однородном магнитном поле. Поэтому данное отношение может служить характеристикой той области магнитного поля, в которой находится участок проводника. Это позволяет дать следующее определение индукции магнитного поля.

Индукция магнитного поля — физическая векторная величина, модуль которой равен отношению максимального значения силы, действующей со стороны магнитного поля на прямолинейный участок проводника с током, к произведению силы тока в нём и длины этого участка:

B equals fraction numerator F subscript m a x end subscript over denominator I increment l end fraction. 

(29.1)

Таким образом, в каждой точке магнитного поля могут быть определены как направление индукции магнитного поля, так и её модуль.

В СИ индукцию магнитного поля измеряют в теслах (Тл) в честь сербского инженера и изобретателя Николы Теслы (1856–1943), с 1884 г. работавшего в США.

1 Тл — индукция однородного магнитного поля, в котором на прямолинейный участок проводника длиной 1 м при силе тока в нём 1 А действует со стороны поля максимальная сила, модуль которой 1 Н.

1 space Тл equals fraction numerator 1 space straight Н over denominator 1 space straight А times 1 space straight м end fraction equals 1 fraction numerator straight Н over denominator straight А times straight м end fraction equals 1 fraction numerator кг over denominator straight А times straight с squared end fraction.

От теории к практике

Прямолинейный проводник длиной Δl = 40 см находится в однородном магнитном поле. Сила тока, проходящего по проводнику, I = 4,0 А. Чему равен модуль магнитной индукции, если модуль максимальной силы, действующей на проводник со стороны магнитного поля, Fmax = 48 мН?

Закон Ампера. Пусть магнитная индукция B with rightwards arrow on top составляет угол α с направлением тока в прямолинейном участке проводника длиной Δl (рис. 163.2). Если весь прямолинейный проводник длиной l находится в однородном магнитном поле, то Δl = l. Как уже отмечалось, на проводник с током, расположенный параллельно линиям индукции, магнитное поле не оказывает никакого воздействия. Поэтому модуль силы Ампера зависит только от модуля составляющей магнитной индукции B subscript perpendicular equals B sinα, перпендикулярной проводнику, и не зависит от модуля составляющей B subscript parallel to equals B cosα, параллельной проводнику.

Рис.

Рис. 163.2

Из выражения (29.1) следует, что максимальное значение силы Ампера:

Fmax = BIΔl.

Экспериментально доказано, что в общем случае модуль силы Ампера можно рассчитать по формуле

Выражение (29.2) называют законом Ампера.

Рис.
Рис. 164

Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная к проводнику составляющая индукции магнитного поля B with rightwards arrow on top subscript perpendicular входила в ладонь, четыре вытянутых пальца были направлены по току, то отогнутый на 90° в плоскости ладони большой палец укажет направление силы Ампера, действующей на прямолинейный участок проводника с током (рис. 164).

От теории к практике

1. На прямолинейный проводник с током, расположенный перпендикулярно линиям магнитной индукции однородного магнитного поля с индукцией B with rightwards arrow on top, действует магнитная сила F with rightwards arrow on top.

а) Как изменятся модули индукции однородного магнитного поля В и силы Ампера FА, если силу тока в проводнике увеличить в 2,5 раза?

б) Как изменится модуль силы FА, если проводник расположить параллельно линиям магнитной индукции?

2. В однородном магнитном поле перпендикулярно линиям индукции расположен проводник с током, согнутый под прямым углом. Под каким углом друг к другу направлены силы Ампера, действующие на стороны этого угла?

Материал повышенного уровня

Закон Ампера позволяет объяснить взаимодействие параллельных проводников с током (рис. 164.1). Ток I1 создаёт магнитное поле с индукцией B with rightwards arrow on top subscript 1, действующее на проводник с током I2 силой, модуль которой F12 = B1I2Δl. Ток I2 создаёт магнитное поле, индукция которого B with rightwards arrow on top subscript 2. Это поле действует на проводник с током I1 силой, модуль которой F21 = B2I1Δl. Силы F with rightwards arrow on top subscript 12 и F with rightwards arrow on top subscript 21 находятся в той же плоскости, что и проводники с током, и являются силами притяжения, если токи направлены в одну сторону (рис. 164.1, а), и силами отталкивания, если токи направлены в противоположные стороны (рис. 164.1, б) (проверьте это самостоятельно, используя правило буравчика (или правило правой руки) для определения направлений индукций магнитных полей B with rightwards arrow on top subscript 1 и B with rightwards arrow on top subscript 2 и правило левой руки для определения направлений сил Ампера).

Рис.

Рис. 164.1

Принцип суперпозиции магнитных полей. В случае, когда магнитное поле создаётся несколькими источниками, индукцию результирующего магнитного поля можно определить по принципу суперпозиции: если магнитное поле в некоторой точке пространства создаётся не одним, а несколькими электрическими токами (или движущимися зарядами), то индукция результирующего магнитного поля в этой точке равна векторной сумме индукций магнитных полей, созданных каждым током (движущимся зарядом):

B with rightwards arrow on top equals B with rightwards arrow on top subscript 1 plus B with rightwards arrow on top subscript 2 plus horizontal ellipsis space plus B with rightwards arrow on top subscript straight n.

img

img

1. Какая физическая величина характеризует магнитное поле в каждой его точке?

2. Как определяют модуль индукции магнитного поля? В каких единицах измеряют индукцию магнитного поля?

3. Как определяют модуль силы Ампера? При каком значении угла между направлениями тока в проводнике и индукции магнитного поля модуль силы, действующей на проводник с током со стороны поля, максимален? Равен нулю?

4. Как определить направление силы Ампера?

5. Сформулируйте принцип суперпозиции магнитных полей.

Материал повышенного уровня

6. Прямолинейный проводник длиной l, по которому проходит ток силой I, расположен вдоль оси Ох в однородном магнитном поле, индукция B with rightwards arrow on top которого направлена вдоль оси Оу. Чему равна проекция силы Ампера на ось Ох?

Пример решения задачи

В однородном магнитном поле, индукция которого направлена вертикально и её модуль B = 0,50 Тл, на лёгких проводах горизонтально подвешен прямолинейный металлический стержень длиной l = 0,20 м и массой m = 50 г. Сила тока, проходящего по стержню, I = 5,0 А. Определите, на какой угол от вертикали отклонились провода, поддерживающие стержень. Воздействием магнитного поля на ток в подводящих проводах пренебречь.

Дано:
В = 0,50 Тл
l = 0,20 м
m = 50 г = 0,050 кг
I = 5,0 А

α — ?

Решение: На стержень действуют силы упругости проводов F with rightwards arrow on top subscript упр equals F with rightwards arrow on top subscript упр subscript 1 end subscript plus F with rightwards arrow on top subscript упр subscript 2 end subscript, сила тяжести m g with rightwards arrow on top и сила Ампера F with rightwards arrow on top subscript straight A (рис. 165). Модуль этой силы определяют по закону Ампера: F subscript straight A equals B I l. При равновесии стержня векторная сумма сил равна нулю: F with rightwards arrow on top subscript упр plus m g with rightwards arrow on top plus F with rightwards arrow on top subscript straight A equals 0 with rightwards arrow on top. Из рисунка 165 следует:

tgα equals fraction numerator F subscript straight A over denominator m g end fraction equals fraction numerator B I l over denominator m g end fraction.

tgα equals fraction numerator 0 comma 50 space Тл times 5 comma 0 space straight А times 0 comma 20 space straight м over denominator 0 comma 050 space кг times 9 comma 8 space begin display style straight м over straight с squared end style end fraction equals 1 comma 0 comma

следовательно, α = 45°.

Ответ: α = 45°.

Упражнение 21

1. Прямолинейный проводник длиной l = 40 см находится в однородном магнитном поле, модуль индукции которого B = 0,50 Тл. Сила тока в проводнике I = 8,0 А. Определите наибольшее и наименьшее значения силы, действующей на проводник со стороны магнитного поля.

2. Прямолинейный проводник длиной l = 1,5 м находится в однородном магнитном поле, модуль индукции которого B = 0,20 Тл. Сила тока в проводнике I = 3,0 А. Определите угол между направлениями тока и индукции магнитного поля, если на проводник действует сила Ампера, модуль которой F = 0,64 Н.

Рис.
Рис. 166

3. Прямолинейный проводник длиной l = 50 см расположен перпендикулярно линиям индукции однородного магнитного поля (рис. 166). Сила тока в проводнике I = 2,0 А. На проводник со стороны магнитного поля действует сила, модуль которой F = 0,40 Н. Определите модуль и направление индукции магнитного поля.

4. Сила тока в прямолинейном проводнике, площадь поперечного сечения которого S = 0,10 см2, составляет I = 3,9 А. В однородном магнитном поле, модуль индукции которого B = 0,20 Тл, на проводник действует максимально возможная для данного магнитного поля сила Ампера. Определите плотность вещества проводника, если модуль силы Ампера равен модулю силы тяжести, действующей на проводник.

5. Магнитное поле образовано наложением двух однородных магнитных полей, модули индукций которых B1 = 0,03 Тл и B2 = 0,04 Тл. Определите модуль индукции результирующего поля, если линии индукций суперпозирующих полей взаимно перпендикулярны.

6. Магнитное поле, модуль индукции которого B = 0,03 Тл, образовано наложением двух однородных магнитных полей. Определите максимально возможное значение индукции первого поля, если модуль индукции второго поля B2 = 0,02 Тл.

7. Магнитное поле, модуль индукции которого B = 0,02 Тл, образовано наложением двух однородных магнитных полей. Определите минимально возможное значение модуля индукции второго поля, если модуль индукции первого поля B1 = 0,05 Тл.

Материал повышенного уровня

8. Прямолинейный проводник длиной l = 40 см и массой m = 20 г расположен горизонтально и перпендикулярно горизонтальным линиям индукции однородного магнитного поля, модуль индукции которого B = 40 мТл. Определите силу тока, проходящего по проводнику, если он заскользит по проводящим шинам без трения с направленным вертикально вниз ускорением, модуль которого а = 1,0straight м over straight с squared.

Переход на повышенный уровень

Понравилась статья? Поделить с друзьями:
  • Как исправить ступню взрослого
  • Как составить пояснительную записку к штатному расписанию
  • Ошибка 404 bad request как исправить
  • Как найти имя человека в инстаграме
  • Как найти всплывающие окна на самсунге