Как найти модуль скорости после столкновения

  • Форум сайта alsak.ru »
  • Задачи и вопросы по физике »
  • Механика »
  • Импульс »
  • Найти модуль скорости тел после неупругого удара

Тема: Найти модуль скорости тел после неупругого удара  (Прочитано 14352 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Fiz

Здравствуйте!
Рисунок и решение помогите пожалуйста.

2 тела массами 5 кг и 8 кг, движущиеся навстречу друг другу со скоростями υ1 = 2 м/с, υ2 = 10 м/с неупруго сталкиваются. Найти модуль скорости тел после удара.

Думаю здесь надо использовать закон сохранения импульса при неупругом ударе: m⋅υ? а дальше как?

« Последнее редактирование: 26 Марта 2011, 07:21 от alsak »


Записан


Так как удар неупругий, то выполняется только закон сохранения импульса. Запишем его (рис. 1):

[ m_{1} cdot vec{upsilon}_{1} + m_{2} cdot vec{upsilon}_{2} = left(m_{1} + m_{2} right) cdot vec{upsilon}, ]

0Х: m1⋅υ1m2⋅υ2 = (m1 + m2)⋅υх.

(куда направлена скорость тел после удара мы не знаем). Тогда

[ upsilon_{x} = frac{m_{1} cdot upsilon_{1} — m_{2} cdot upsilon_{2}}{m_{1} + m_{2}}, ]

υx = –5,4 м/c или υ = 5 м/с.

Примечание. Знак «–» указывает на то, что найденная скорость направлена против выбранной оси.


Записан


  • Форум сайта alsak.ru »
  • Задачи и вопросы по физике »
  • Механика »
  • Импульс »
  • Найти модуль скорости тел после неупругого удара

Удар(илисоударение)—это столкновение двух
или более тел, при котором взаимодействие
длится очень короткое время. Помимо
ударов в прямом смысле этого слова
(столкновения атомов или биллиардных
шаров) сюда можно отнести и такие, как
удар человека о землю при прыжке с
трамвая и т. д. Силы взаимодействия между
сталкивающимися телами(ударныеилимгновенные силы)столь велики,
что внешними силами, действующими на
них, можно пренебречь. Это позволяет
систему тел в процес­се их соударения
приближенно рассматривать как замкнутую
систему и применять к ней законы
сохранения.

Тела во время удара
претерпевают деформацию. Сущность удара
заключается в том, что кинетическая
энергия относительного движения
соударяющихся тел на короткое время
преобразуется в энергию упругой
деформации. Во время удара имеет место
перераспределение энергии между
соударяющимися телами. Наблюдения
пока­зывают, что относительная скорость
тел после удара не достигает своего
прежнего значения. Это объясняется тем,
что нет идеально упругих тел и идеально
гладких поверхностей.

Отношение нормальных
составляющих относительной скорости
тел после и да удара называется
коэффициентом
восстановления

:

Если для сталкивающихся
тел =0,
то такие тела называются абсолютно
неупругими
,
если =1
абсолютно
упругими
. На
практике для всех тел 0 < 
< 1 (например, для стальных шаров 0,56,
для шаров из слоновой кости 0,89,
для свинца 0).
Однако в некоторых случаях тела
можно с большой степенью точности
рассматривать либо как абсолютно
упругие, либо как абсолютно неупругие.

Прямая, проходящая
через точку соприкосновения тел и
нормальная к поверхности их соприкосновения,
называется линией удара.Удар
называется центральным,если тела
до удара движутся вдоль прямой, проходящей
через их центры масс.

Линия удара — общая
нормаль, проведённая к поверхностям
двух соударяющихся тел в месте их
соприкосновения при ударе.

Ударназываетсяпрямым, если скорости центров инерции
сталкивающихся тел перед ударом
направлены параллельно линии удара.

В противном случае,
удар называется косым.

Для абсолютно
упругого удара выполняются закон
сохранения импульса и закон сохранения
кинетической энергии.

Обозначим скорости
шаров массами т1
и m2
до удара через v1
и v2,
после удара—через

и
(рис. 18). В случае прямого центрального
удара векторы скоростей шаров до и после
удара лежат на прямой линии, соединяющей
их центры. Проекции векторов скорости
на эту линию равны модулям скоростей.
Их направления учтем знаками: положительное
значение припишем движению вправо,
отрицатель-нос — движению влево.

При указанных
допущениях законы сохранения имеют вид

(15.1)

(15.2)

Произведя
соответствующие преобразования в
выражениях (15.1) и (15.2), получим

(15.3)

(15.4)

откуда

(15.5)

Решая уравнения
(15.3) и (15.5), находим

(15.6)

13. Центральный удар абсолютно неупругих шаров. Расчет скоростей шаров после соударения. Соударение 2х шаров с резко отличающимися массами.

Предположим, что
шары образуют замкнутую систему.
Рассмотрим теперь абсолютно неупругий
удар.

Удар двух тел
называется абсолютно неупругим,
если после удара оба тела движутся как
одно единое целое.

Абсолютно неупругий
удар характеризуется тем, что потенциальной
энергии деформации не возникает:
кинетическая энергия тел полностью или
частично превращается во внутреннюю
энергию. После такого удара столкнувшиеся
тела соединяются воедино и либо движутся
с одинаковой скоростью, либо покоятся.
При абсолютно неупругом ударе выполня­ется
лишь закон сохранения импульса, закон
же сохранения механиче­ской энергии
не соблюдается: имеет место закон
сохранения суммарной энергии
механической и внутренней.

Начальные скорости
шаров: v1 иv2
, а их массы:m1иm2; конечная скорость шаров v. При соударении выполняется
закон сохранения импульса:.

Откуда
.

Как и следовало
ожидать, соединившиеся шары после
соударения про­должают двигаться со
скоростью центра масс системы до
соударения. Энергия, перешедшая при
этом во внутреннюю энергию шаров, равна
разности кинетических энергий до и
после соударения:
.

Начальная кинетическая
энергия системы:
.Определим долю начальной кинетической
энергии ушедшей во внутреннюю энергию:

.

Если 2-ой шар до
соударения покоился, то.

Абсолютно неупругий
удар используют в технике либо для
изменения формы тела: ковка, штамповка,
клёпка и т.д., либо для перемещения тела
в среде с большим сопротивлением:
забивание гвоздей, свай и т.п. В 1-ом
случае, необходимо, чтобы большая часть
начальной кинетической энергии перешла
во внутреннюю энергию (деформацию),т.е.

,
что означает, что масса отковываемого
изделия и наковальни должны быть много
больше массы молота. Во 2-ом случае,
наоборот, необходимо, чтобы большая
часть начальной кинетической энергии
перешла в кинетическую энергию забиваемого
тела, т.е.

,
что означает, что масса молота должна
быть много больше массы забиваемого
тела.

Абсолютно неупругий
удар — пример того, как происходит
«потеря» механической энергии под
действием диссипативных сил.

 Выведем
уравнение динамики вращательного
движения тела. Из выражений (4.1), (4.2) и
(4.3) следует, что скорость изменения
момента импульса i
материальной точки определяется
следующим
образом:

                                          (4.6)

      Сложим
почленно уравнения (4.6), записанные для
каждой из материальных точек
тела:(4.7)

      Векторная
сумма моментов Mi всех
внешних сил, приложенных к телу,
называетсярезультирующим,
или главным,
моментом M внешних
сил относительно точки О:

      Векторная
сумма моментов импульса Li всех
материальных точек тела называется моментом
импульса
 L тела относительно
точки О:

      Так
как производная от суммы равна сумме
производных от всех слагаемых, то

      Наконец,
векторная сумма моментов относительно
точки О всех внутренних сил Fikвзаимодействия
между точками тела равна нулю, т.е.

так
как по третьему закону Ньютона
силы Fik и Fki численно
равны, имеют общую линию действия, но
направлены в противоположные стороны
(рис. 4.4). Поэтому их моменты Mik =
[ri,
F
ik]
и Mki =
[rk,
F
ki]
относительно точки О численно равны и
противоположны по направлению (на рис.
4.4 точки mimk и
О лежат в горизонтальной плоскости, а
векторы Mik и Mkiперпендикулярны
этой плоскости). Действительно, rk =
r
i +
r
ki,
где rki —
вектор, проведенный из точки mi в
точку mk.
Поэтому Mki =
[rk,
F
ki]
+ [rki,
F
ki]
= -[ri,
F
ik]
= —Mik,
так как векторное произведение
векторов rki и Fki,
направленных вдоль одной прямой, равно
нулю.       На основании
изложенного уравнение (4.7) можно записать
в следующем
виде:

                                               (4.8)

      Таким
образом, скорость изменения момента
импульса тела, вращающегося вокруг
неподвижной точки, равна результирующему
моменту относительно этой точки всех
внешних сил, приложенных к
телу.
      Полученный
результат называется основным
законом динамики вращательного движения
тела, закрепленного в одной неподвижной
точке
.
Момент импульса является основной
динамической характеристикой твердого
тела, вращающегося вокруг неподвижной
точки.

Пусть твердое тело
вращается относительно оси под действием
нескольких сил с суммарным моментом М
относительно той же оси. Тогда работа
этих сил приводит к изменению кинетической
энергии этого тела.

,
,,

,
,

,,

,

,

,


основное уравнение динамики вращательного
движения.

Момент силы
относительно оси —
проекция
на эту ось вектора момента силы
относительно любой точки, выбранной на
данной оси.

Элементарная
работа, совершаемая моментом силы, при
вращательном движении относительно
неподвижной оси вычисляется по формуле:

(*).

Полная работа

Если
,
то

Подробности
Обновлено 30.05.2018 23:14
Просмотров: 1423

Задачи по физике — это просто!

Вспомним

Расчетная формула закона сохранения импульса в проекциях векторов для решения задач:

При столкновении двух тел:
упругий удар — после соударения тела движутся с разными скоростями;
неупругий удар — после соударения оба тела движутся, как одно целое («в сцепке»), в одном направлении и с одинаковой скоростью.

Для успешного решения задачи на закон сохранения импульса удобнее сделать два чертежа ( до и после взаимодействия).
Иногда при решении задачи невозможно заранее определить направление движения какого-либо тела после взаимодействия. Тогда это направление вектора скорости тела выбирается произвольно.
Если в результате решения задачи проекция выбранного вектора окажется положительной, то его направление выбрано правильно, если отрицательна, то истинное направление вектора противоположно. Несмотря на это, в обоих случаях задача решена правильно.

Не забываем
Решать задачи надо всегда в системе СИ!

А теперь к задачам!

Типовые задачи из курса школьной физики на закон сохранения импульса.

Задача 1

Шар массой 2 кг движется со скоростью 4 м/с и сталкивается с неподвижным шаром массой 6 кг. Какова будет скорость и направление движения первого шара после упругого удара, если скорость неподвижного шара после удара окажется равной 1 м/с?

Задача 2

2 шара с массами 10 кг и 20 кг движутся по горизонтальному желобу навстречу друг другу со скоростями 4 м/с и 6 м/с соответственно.

Определить модуль скорости и направление движения каждого шара после неупругого столкновения.

Задача 3

C тележки массой 10 кг, которая движется по горизонтальной прямой со скоростью 1 м/с, спрыгивает мальчик массой 40 кг со скоростью 3 м/с в направлении противоположном направлению движения тележки. Определить скорость тележки сразу после прыжка мальчика.

Задача 4

На тележку массой 6 кг, движущуюся со скоростьью 2 м/с, сверху вертикально вниз падает кирпич массой 2 кг. Какова будет скорость тележки сразу после падения кирпича?

5 / 5 / 0

Регистрация: 13.08.2013

Сообщений: 20

1

Как считать скорости после столкновения

17.01.2014, 21:07. Показов 1101. Ответов 6


Студворк — интернет-сервис помощи студентам

в википедии есть объяснение упругого удара.
Я всё понял кроме одного. Там есть анимация когда шар массой 2mи скоростью V сталкивается с шаром массой m и скоростью V. Как они посчитали что они должны разлететься со скоростями 1/3 и 5/1. Ведь если по закону сохранения импульса их сложить то не получится исходного импульса. И ещё: подскажите формулу как считать скорости после столкновения если известны начальные массы и начальные скорости. Спасибо! ! !

Вот ссылка
http://ru.wikipedia.org/wiki/%… 0%B0%D1%80



0



4444 / 2448 / 227

Регистрация: 20.08.2011

Сообщений: 3,108

17.01.2014, 22:01

2

Цитата
Сообщение от alexei444
Посмотреть сообщение

они должны разлететься со скоростями 1/3 и 5/3.

Да, правильно. https://www.cyberforum.ru/cgi-bin/latex.cgi?2 cdot ( - frac{1}{3}) + 1 cdot frac{5}{3} = 1
Пишешь ЗСИ + ЗСЭ и решаешь систему



2



5 / 5 / 0

Регистрация: 13.08.2013

Сообщений: 20

17.01.2014, 22:14

 [ТС]

3

А как они изначально коэффициенты 1/3 и 5 /3 подсчитали???

Добавлено через 7 минут

Цитата
Сообщение от 240Volt
Посмотреть сообщение

Пишешь ЗСИ + ЗСЭ и решаешь систему

.

А это как??? В смысле что значит 3СИ и 3СЭ



0



4444 / 2448 / 227

Регистрация: 20.08.2011

Сообщений: 3,108

17.01.2014, 22:31

4

Цитата
Сообщение от alexei444
Посмотреть сообщение

В смысле что значит 3СИ и 3СЭ

Законы сохранения. Импульса и энергии.



1



5 / 5 / 0

Регистрация: 13.08.2013

Сообщений: 20

17.01.2014, 22:40

 [ТС]

5

А вот вы написали решить систему, а какая система должна примерно получится??? Я никак не пойму



0



2356 / 1463 / 125

Регистрация: 20.12.2011

Сообщений: 2,223

18.01.2014, 00:56

6

Цитата
Сообщение от alexei444
Посмотреть сообщение

А вот вы написали решить систему, а какая система должна примерно получится??? Я никак не пойму.. подскажите формулу как считать скорости после столкновения ..

https://www.cyberforum.ru/cgi-bin/latex.cgi?v^'_1 = frac{(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}
https://www.cyberforum.ru/cgi-bin/latex.cgi?v^'_2 = frac{(m_2 - m_1) + 2m_1v_1}{m_1 + m_2}
Вам же намекнули — решать систему из 2х уравнений.. В ссылке есть эти уравнения.



2



539 / 399 / 99

Регистрация: 18.08.2012

Сообщений: 1,024

18.01.2014, 23:04

7



1



Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц).

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массой M, подвешенный на веревках (рис. 1.21.1). Пуля массой m, летящая горизонтально со скоростью  попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.

Обозначим скорость ящика с застрявшей в нем пулей через  Тогда по закону сохранения импульса

При застревании пули в песке произошла потеря механической энергии:

Отношение M / (M + m) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:

Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.

При m << M

почти вся кинетическая энергия пули переходит во внутреннюю энергию. При m = M

во внутреннюю энергию переходит половина первоначальной кинетической энергии. Наконец, при неупругом соударении движущегося тела большой массы с неподвижным телом малой массы (m >> М) отношение

Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:

где h – максимальная высота подъема маятника. Из этих соотношений следует:

Измеряя на опыте высоту h подъема маятника, можно определить скорость пули υ.

Рисунок 1.21.1.

Баллистический маятник

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2).

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.

Рисунок 1.21.2.

Абсолютно упругий центральный удар шаров

В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии

Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:

Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения:

В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростью u2 = υ1, т. е. шары обмениваются скоростями (и, следовательно, импульсами).

Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1 = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе.

Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения.

Модель. Упругие и неупругие соударения.

Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.

Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров (рис. 1.21.3).

Рисунок 1.21.3.

Нецентральное упругое соударение шаров одинаковой массы. d – прицельное расстояние

После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей  и  после удара нужно знать положение линии центров в момент удара или прицельное расстояние d (рис. 1.21.3), т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости  налетающего шара. Если массы шаров одинаковы, то векторы скоростей  и  шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m1 = m2 = m эти законы принимают вид:

Первое из этих равенств означает, что векторы скоростей ,  и  образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами  и  равен 90°.

Модель. Соударения упругих шаров.

Понравилась статья? Поделить с друзьями:
  • Как найти программу для диагностики
  • Как найти человека проживающего в мариуполе
  • Как найти камни воспоминаний
  • Исправьте ошибки в постановке знаков препинания по мере того как
  • Как найти файлы telegram