Как найти модуль средней скорости по графику

Как найти среднюю скорость по графику

Движение различных тел в окружающей среде характеризуется рядом величин, одна из которых – средняя скорость. Этот обобщенный показатель определяет скорость тела на всем перемещении. Зная зависимость модуля мгновенной скорости от времени, среднюю скорость можно найти с помощью графического метода.

Как найти среднюю скорость по графику

Инструкция

Постройте по данным задачи график зависимости скорости движения тела от времени v(t). Здесь горизонтальная координата представляет собой изменение времени (с), вертикальная – скорости (м/с). Как правило, в задачах рассматривается неравномерное перемещение тел в определенные промежутки времени. Любое изменение скорости на графике будет отображено возрастанием или убыванием. Например, при начале движения тела с постоянным ускорением в течение 20 с его скорость в итоге составила 15 м/с. Отложите на графике прямую, начинающуюся в начале координат (0, 0) и заканчивающуюся в точке (20, 15), где 20 с откладываются вправо по оси времени t, а 15 м/с – вверх по скорости. При наличии равномерного движения тела отобразите его прямой, параллельной горизонтальной оси.

Для нахождения средней скорости перемещения нужно знать путь и время, затраченное на движение. Вычислите площадь S под кривой v(t), которая является графическим представлением пройденного телом пути L. Часто график перемещения ограничивает фигуру трапецию. Ее площадь находится по формуле: S = ½*(t0 + t1)*vn, где t0 и t1 – основания трапеции – части графика скорости, vn – высота фигуры, здесь максимальная скорость в пути. Подставьте в формулу известные значения и вычислите результат. Если график v(t) представляет собой не трапецию, ее площадь вычисляется по иным формулам, в зависимости от полученной фигуры.

Как найти среднюю скорость по графику

Найдите среднюю скорость движения тела по формуле Vср = L/t. Подставив заданное время перемещения и вычисленный путь, посчитайте числовое значение средней скорости.

Среднюю скорость можно вычислить и по графику зависимости пути от времени l(t). Для этого соедините прямой линией начальную и конечную точки рассматриваемого участка перемещения. Средняя скорость тела будет равна тангенсу угла наклона полученной прямой к оси времени.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Неравномерное прямолинейное движение. Средняя скорость

  1. График скорости при неравномерном прямолинейном движении
  2. Как найти путь и перемещение по графику скорости?
  3. Средняя скорость и средняя путевая скорость
  4. Задачи
  5. Лабораторная работа №3. Определение средней скорости движения тела

п.1. График скорости при неравномерном прямолинейном движении

Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.

Движение с переменной скоростью называют неравномерным.

Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.

Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=3 text{км/ч} $$ Построим график скорости для этого случая:
График скорости при неравномерном прямолинейном движении

Графиком скорости (v_x=v_x(t)) при неравномерном прямолинейном движении, которое можно разбить на участки с постоянной скоростью, является ломаная линия.

п.2. Как найти путь и перемещение по графику скорости?

Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком (triangle t) на оси (t) (см. §8 данного справочника).

В таком случае, путь велосипедиста в нашем примере:
Как найти путь и перемещение по графику скорости begin{gather*} s=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.
Как найти путь и перемещение по графику скорости
Если принять город A за начало отсчета с (x_0=0), то координата велосипедиста в конце пути: $$ x_{к}=x_0+s=0+6=6 text{(км)} $$ Перемещение по оси ОХ: (triangle x=x_{к}-x_0=6 text{(км)}).

Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_{x1}=9 text{км/ч}, v_{x2}=-3 text{км/ч} $$ Построим график скорости для этого случая:
Как найти путь и перемещение по графику скорости
Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная (v_x(t)) с осью (t): begin{gather*} x=v_{x1}cdot triangle t_1+|v_{x2}|cdottriangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text{(км)} end{gather*} Как найти путь и перемещение по графику скорости
Если мы учтем знак (v_{x2}) и уберем модуль, то получим величину перемещения по оси ОХ: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2\ triangle x=9cdot 0,5-3cdot 0,5=4,5-1,5=3 text{(км)} end{gather*} Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_{к}=x_0+triangle x=0+3=3 text{(км)} $$ Как найти путь и перемещение по графику скорости
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.

Пусть неравномерное прямолинейное движение разбито на (n) участков с постоянными скоростями. Каждому такому участку соответствует промежуток времени (triangle t_i) и постоянная скорость (v_{xi}, i=overline{1,n}).
Тогда:
Весь пройденный путь равен сумме площадей прямоугольников на графике скорости: $$ s=|v_{x1}|cdottriangle t_1+|v_{x2}|cdottriangle t_2+…+|v_{xn}|cdottriangle t_n $$ Величина перемещения по оси ОХ равна сумме площадей прямоугольников с учетом знака: $$ triangle x=v_{x1}cdottriangle t_1+v_{x2}cdottriangle t_2+…+v_{xn}cdottriangle t_n $$ Конечная координата равна: (x_{к}=x_0+triangle x).

п.3. Средняя скорость и средняя путевая скорость

Средняя скорость на нескольких участках движения равна отношению общего перемещения к общему времени, затраченному на это перемещение: $$ overrightarrow{v_{cp}}=frac{overrightarrow{r_1}+overrightarrow{r_2}+…+overrightarrow{r_n}}{t_1+t_2+…+t_n}=frac{overrightarrow{r}}{t} $$

Средняя путевая скорость на нескольких участках движения равна отношению общего пути к общему времени, затраченному на этот путь: $$ v_{cp.п}=frac{s_1+s_2+…+s_n}{t_1+t_2+…+t_n}=frac{s}{t} $$

Если тело все время движется в одном направлении, величина средней скорости равна средней путевой скорости, т.к. на каждом участке путь совпадает с модулем перемещения.
Если тело меняет направление движения, величина средней скорости меньше средней путевой скорости.

В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 61=6 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости равна средней путевой скорости.

А вот для случая, когда велосипедист развернулся и пошел обратно: begin{gather*} |overrightarrow{v_{cp}}|=frac{|overrightarrow{r}|}{t}=frac{triangle x}{t}=frac 31=3 text{(км/ч)}\ v_{cp.п}=frac st=frac 61=6 text{(км/ч)} end{gather*} Величина средней скорости меньше средней путевой скорости.

п.4. Задачи

Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.

a)
Задача 1
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=1 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=2 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+1cdot 2+2cdot 2=21 text{(м)} end{gather*} Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: (triangle x=s=21) (м)
Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (с)
Величина средней скорости равна средней путевой скорости: $$ |overrightarrow{v_{cp}}|=v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|=v_{cp.п}=3 text{(м/с)})

б)
Задача 1
Все движение можно разделить на три участка с постоянной скоростью:
begin{gather*} triangle t_1=3-0=3 c, v_{x1}=5 text{м/с}\ triangle t_2=5-3=2 c, v_{x2}=-2 text{м/с}\ triangle t_3=7-5=2 c, v_{x3}=1 text{м/с}\ end{gather*} Общий путь: begin{gather*} s=|v_{x1}|cdot triangle t_1+|v_{x2}|cdot triangle t_2+|v_{x3}|cdot triangle t_3\ s=5cdot 3+2cdot 2+1cdot 2=21 text{(м)} end{gather*} Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: begin{gather*} triangle x=v_{x1}cdot triangle t_1+v_{x2}cdot triangle t_2+v_{x3}cdot triangle t_3\ triangle x=5cdot 3-2cdot 2+1cdot 2=13 text{(м)} end{gather*} Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (c)
Величина средней скорости: $$ |overrightarrow{v_{cp}}|=frac{triangle x}{t}=frac{13}{7}approx 1,86 text{(м/с)} $$ Средняя путевая скорость: $$ v_{cp.п}=frac st=frac{21}{7}=3 text{(м/с)} $$ Ответ: (|overrightarrow{v_{cp}}|approx 1,86 text{(м/с)}; v_{cp.п}=3 text{(м/с)})

Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.

Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: (v_{cp}=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 40 (frac{2d}{40}=frac{d}{20}) (2d)
2й участок 80 (frac{d}{80}) (d)
Сумма (t=frac{d}{20}+frac{d}{80}) (s=2d+d=3d)

Упростим сумму дробей: $$ t=frac{d}{20}+frac{d}{80}=frac{4d+d}{80}=frac{5d}{80}=frac{d}{16} $$ Получаем: $$ v_{cp}=frac st=frac{3d}{d/16}=3cdot 16=48 text{(км/ч)} $$
Ответ: 48 км/ч

Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.

Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 90 (frac{s}{2cdot 90}=frac{s}{180}) (frac s2)
2й участок 30 (frac{s}{2cdot 30}=frac{s}{60}) (frac s2)
Сумма (t=frac{s}{180}+frac{s}{60}) (s)

Упростим сумму дробей: $$ t=frac{s}{180}+frac{s}{60}=frac{s+3s}{180}=frac{4s}{180}=frac{s}{45} $$ Получаем: $$ v_{cp}=frac st=frac{s}{s/45}=45 text{(км/ч)} $$
Ответ: 45 км/ч

Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.

Величина средней скорости равна средней путевой скорости:
(v_{cp}=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (frac{d}{4t}) (4t) (d)
2й участок (frac{4d}{t}) (t) (4d)
3й участок (frac{45d}{20t}) (20t) (45d)
Сумма (25t) (50d)

По условию средняя скорость: $$ v_{cp}=frac st=frac{50d}{25t}=2cdot frac dt=32Rightarrow frac dt=16 $$ Получаем: begin{gather*} v_1=frac{d}{4t}=frac{16}{4}=4 text{(км/ч)}\ v_2=frac{4d}{t}=4cdot 16=64 text{(км/ч)}\ v_3=frac{9d}{4t}=frac{9}{4}cdot 16=36 text{(км/ч)} end{gather*}
Ответ: 4 км/ч, 64 км/ч и 36 км/ч

Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?

Пусть (v) — скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость (v_{cp}) и сравним ее со скоростью (v).
Если (v_{cp}gt v), то турист выиграл время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (10v) (frac{s}{2cdot 10v}=frac{s}{20v}) (frac s2)
2й участок (frac{v}{2}) (frac{s}{2cdot v/2}=frac sv) (frac s2)
Сумма (t=frac{s}{20v}+frac sv) (s)

Упростим сумму дробей: $$ t=frac{s}{20v}+frac sv=frac svleft(frac{1}{20}+1right)=frac{21}{20}cdot frac sv $$ Средняя скорость: $$ v_{cp}=frac{s}{frac{21}{20}cdotfrac sv}=frac{20}{21}vgt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет

п.5. Лабораторная работа №3. Определение средней скорости движения тела

Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.

Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.

Величина средней скорости при движении на двух участках определяется как средняя путевая скорость: $$ v_{cp}=frac{s_1+s_2}{t_1+t_2} $$ где (s_1) и (s_2) – длина первого и второго участка; (t_1) и (t_2) — время движения по каждому из участков.

Длина участков измеряется с помощью мерной ленты с ценой деления (triangle=1) см,
инструментальная погрешность равна: (d=frac{triangle}{2}=0,5) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: (triangle s_1=triangle s_2=d=0,5) см
Погрешность суммы двух длин: (triangle(s_1+s_2)= triangle s_1+triangle s_2=2d=1) см

Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: (triangle(t_1+t_2)=triangle t_1+triangle t_2)

Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2} $$ Абсолютная погрешность определения средней скорости: $$ triangle v_{cp}=v_{cp}cdot delta_{v_{cp}} $$

Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.

Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.
Определение средней скорости движения тела
3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин (delta_{s_1+s_2}=frac{triangle(s_1+s_2)}{s_1+s_2})
5. Проведите серии по 5 экспериментов для определения (t_1) и (t_2) с помощью секундомера.
6. Найдите (triangle t_1, triangle t_2, triangle(t_1+t_2), delta_{t_1+t_2})
7. По результатам измерений и вычислений найдите (v_{cp}, delta_{v_{cp}}) и (triangle v_{cp}).
8. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

1) Измерение длин
Цена деления мерной ленты (triangle =1) см
Инструментальная погрешность мерной ленты (d=frac{triangle}{2}=0,5) см
Результаты измерений:
(s_1=112) cм
(s_2=208) cм
Сумма длин участков: (s_1+s_2=112+208=320) (см)
Абсолютная погрешность суммы: (triangle (s_1+s_2)=triangle s_1+triangle s_2=2d=1) см
Относительная погрешность суммы: $$ delta_{s_1+s_2}=frac{triangle (s_1+s_2)}{s_1+s_2}=frac{1}{320}=0,3125% $$

2) Измерение времени
Цена деления секундомера (triangle =0,2) с
Инструментальная погрешность секундомера (d=frac{triangle}{2}=0,1) с

Время движения по наклонному желобу

№ опыта 1 2 3 4 5 Сумма
(t_1) c 1,5 1,6 1,5 1,4 1,4 7,4
(triangle) c 0,02 0,12 0,02 0,08 0,08 0,32

Найдем среднее время спуска с наклонного желоба: $$ t_1=frac{1,5+1,6+1,5+1,4+1,4}{5}=frac{7,4}{5}=1,48 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_1): $$ triangle_1=|1,5-1,48|=0,02; triangle_2=|1,6-1,48|=1,02 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0,02+0,12+0,02+0,08+0,08}{5}=frac{0,32}{5}=0,064 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_1=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,064right}=0,1 text{c} $$ Округляем полученное значение времени до десятых. begin{gather*} t_1=(1,5pm 0,1) text{c}\ delta_{t_1}=frac{0,1}{1,5}=frac{1}{15}approx 6,7text{%} end{gather*} Время движения по горизонтальному желобу

№ опыта 1 2 3 4 5 Сумма
(t_2) c 2,3 2,4 2,2 2,2 2,4 11,5
(triangle) c 0 0,1 0,1 0,1 0,1 0,4

Найдем среднее время движения по горизонтали: $$ t_2=frac{2,3+2,4+2,2+2,2+2,4}{5}=frac{11,5}{5}=2,3 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_2): $$ triangle_1=|2,3-2,3|=0; triangle_2=|2,4-2,3|=0,1 text{и т.д.} $$ Среднее абсолютное отклонение: $$ triangle_{cp}=frac{0+0,1+0,1+0,1+0,1}{5}=frac{0,4}{5}=0,08 text{c} $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_2=maxleft{d;triangle_{cp}right}=maxleft{0,1;0,08right}=0,1 text{c} $$ Получаем: begin{gather*} t_2=(2,3pm 0,1) text{c}\ delta_{t_2}=frac{0,1}{2,3}=frac{1}{23}approx 4,4text{%} end{gather*}

3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8 text{(c)} $$ Абсолютная погрешность суммы: $$ triangle(t_1+t_2)=triangle t_1+triangle t_2=0,1+0,1=0,2 text{(c)} $$ Относительная погрешность суммы: $$ delta_{t_1+t_2}=frac{triangle (t_1+t_2)}{t_1+t_2}=frac{0,2}{3,8}=frac{1}{19}approx 5,3text{%} $$

4) Расчет средней скорости $$ v_{cp}=frac{s_1+s_2}{t_1+t_2}=frac{320}{3,8}approx 84,2 left(frac{text{см}}{text{c}}right) $$ Относительная ошибка частного: $$ delta_{v_{cp}}=delta_{s_1+s_2}+delta_{t_1+t_2}=frac{1}{320}+frac{1}{19}approx 0,003125+0,0526approx 0,0557approx 0,056=5,6text{%} $$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_{cp}=v_{cp}cdotdelta_{v_{cp}}=84,2cdot 0,056approx 4,7 left(frac{text{см}}{text{c}}right) $$ Получаем: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}

Выводы
На основании проделанной работы можно сделать следующие выводы.

Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: begin{gather*} v_{cp}=(84,2pm 4,7) text{см/с}\ delta_{v_{cp}}=5,6text{%} end{gather*}

5. Используя график зависимости vx(t), найдите среднюю скорость движения
тела на всем пути.


Для нахождения средней скорости
движения необходимо найти пройденный путь и время движения. По графику видно,
что время движения равно 11 с. Пройденный путь можно найти как площадь фигуры,
ограниченной графиком —  трапеции.


6. Через 20 с после начала движения по прямолинейному участку шоссе с
постоянным ускорением  велосипедист
набрал скорость 10 м/с и далее двигался в течение 1 мин. Затем велосипедист
начал торможение и в течение 10 с остановился. Какова средняя скорость
велосипедиста?

Для решения данной задачи подходит
графический метод. Для этого построим график зависимости скорости от времени.


 По построению получилось, что общее время
движения велосипедиста равно 90 с. Пройденный путь найдем как площадь фигуры
под графиком (в данном случае – трапеции).


7. Мотоциклист начал движение из состояния покоя и в течение 5 с двигался
с ускорением 2 м/с2, затем в течение 5 мин он двигался равномерно и
снова увеличил свою скорость до 15 м/с за 10 с. Найдите среднюю скорость
движения мотоциклиста на всем пути.

Общее время движения мотоциклиста
равно
t = 5 + 300 + 10 = 315 c.  Для построения графика зависимости скорости от
времени необходимо найти скорость в конце первого участка пути:

v = v0 + at1;  v = 2 5 = 10 м/с.

По данным задачи построим график
зависимости скорости от времени и по нему найдем пройденный путь как площадь
фигуры.


Средняя скорость — одна из основных функций, определяемых в движении. В этой статье мы узнаем, как найти среднюю скорость.

Основной метод определения средней скорости — это отношение суммы изменения положения объекта к общему времени, затраченному этим объектом на завершение своего движения. Поскольку это векторная физическая величина, направление объекта также имеет важное значение при вычислении средней скорости.

Далее мы изучим больше методов, как найти среднюю скорость, так как это основная цель поста.

Какая формула для средней скорости

Основная формула, используемая для расчета Vсредний включает как смещение во времени.

Общая используемая формула имеет следующий вид:

Он используется при решении основных задач, связанных со средней скоростью.

В = Сf — Si / т2 — т1

V = Δs / Δt

Где,

Δs = смещение

Δt = затраченное время

Теперь давайте посмотрим, как найти среднюю скорость с помощью расстояния и времени.

Как найти среднюю скорость в зависимости от расстояния и времени

Расстояние и время — основные термины, без которых невозможно определить среднюю скорость.

Прежде всего, мы должны рассчитать общую длину пути, по которому прошел объект, а затем мы должны проверить продолжительность времени, необходимого для достижения пункта назначения. Позже, чтобы найти среднюю скорость этого движения, нам нужно использовать ранее рассчитанные расстояние и время с помощью формулы.

Теперь давайте продолжим изучение, чтобы узнать больше подходов к нахождению средней скорости.

Как найти среднюю скорость за интервал

Увидев важность расстояния и времени при вычислении средней скорости. Теперь давайте, как рассчитать это за интервал.

  • Если вы вычисляете среднюю скорость на графике, вам следует рассмотреть любые два интервала времени и расстояния, а затем найти значения расстояния и времени и подставить их в формулу средней скорости.

                                                                     В = Сf — Si / т2 — т1

  • В другом методе, если вы собираетесь напрямую использовать формулу, вы должны знать начальную и конечную точки, чтобы вам было легко вычислить Vсредний, вы даже можете рассмотреть некоторую часть интервала, чтобы найти Vсредний Это происходит путем деления общего расстояния на общее время.

                                    V = общее расстояние / общее время или

В = (Вf + Vi) / 2

Теперь давайте посмотрим, как рассчитать Vсредний между двумя точками.

Средняя скорость между двумя точками

Среднюю скорость между двумя точками можно найти по простой формуле.

В общем, мы знаем, что Vavg тела равно среднему арифметическому начальных и конечных точек, приведенному ниже.

Vavg = [Начальная скорость (i) + Конечная скорость (v)] / 2

Пора узнать, как найти Vсредний на графике.

Как найти среднюю скорость на графике

Мы можем найти среднюю скорость с помощью графика смещения-времени.

  • Здесь смещение будет по оси y, а время по оси x.
  • Постройте точки в соответствии с осью и соедините их, чтобы создать область на графике.
  • Затем найдите общую площадь на графике, взяв два интервала времени и расстояния.
  • Измерьте его по линии графика и рассчитайте по формуле

                                                   Vсредний = (Vi+Vf) / 2.

Переменные, взятые на графике, имеют характерную природу, все факторы, такие как изменение положения (между начальной и конечной точками), характер графика, т. Е. Является ли он линейным или нет, имеет значение.

При таком подходе мы можем рассчитать среднюю скорость по графику.

Как найти среднюю скорость на линейном графике

Линейный график иногда называют прямолинейным графиком.

Если мы хотим узнать среднюю скорость на линейном графике, тогда мы должны взять как начальную, так и конечную скорости и разделить ее на число 2. Это похоже на среднее значение, которое мы используем в математике для решения определенных задач.

Теперь давайте узнаем условие вычисления средней скорости на нелинейном графике.

Как найти среднюю скорость на нелинейном графике

Нелинейный граф также можно рассматривать как искривленный граф.

В нелинейном графике, что мы можем сделать, чтобы вычислить Vсредний мы можем рассмотреть область под графиком, которая состоит из смещения (интегрировать его), а затем разделить на время.

Таким образом мы можем вычислить Vсредний в нелинейном графике.

Пример задачи средней скорости

Приведенное ниже — одна из основных проблем, которую можно решить, используя подходы к вычислению средней скорости.

Пример 1

Представьте, что человек едет на своей машине в какой-то пункт назначения, но в течение первых 15 секунд положение машины меняется с x1 = 80 м до x2= 100 м. Какова средняя скорость автомобиля?

Решение: учитывая исходное положение x1= 80m

                 Точно так же конечная позиция x2 = 100m

Изменение водоизмещения автомобиля рассчитывается следующим образом:

Δx = х2 — Икс1 = 100 м — 80 м = 20 м

Δt = 15 с

По формуле мы имеем

v = Δx / Δt

v = 20/15

v = 1.33 м / с

Таким образом, средняя скорость автомобиля составляет 1.33 м / с.

Из поставленной выше задачи мы узнали еще об одном подходе к нахождению средней скорости

Часто задаваемые вопросы | FAQs

Что такое средняя скорость?

Средняя скорость — заметное явление в физике.

Это векторная величина, определяемая как деление ∆x на ∆t. Где ∆x обозначает смещение, а ∆t обозначает общее время, затрачиваемое телом на завершение движения. Иногда может быть положительным или отрицательным, все зависит от направления смещения. Обозначается с помощью единицы СИ м / с.

Чем средняя скорость отличается от других скоростей?

Есть два основных типа скоростей, с которыми мы обычно сталкиваемся в физике.

Два основных типа скоростей — средние и мгновенные скорости. Как следует из их названия, среднее означает сумму скоростей каждого интервала, рассчитанную за общее время. Напротив, мгновенная скорость будет вычислением скорости в конкретный период движения.

Чем средняя скорость отличается от мгновенной скорости в конкретный интервал времени?

Если мы возьмем конкретный временной интервал, тогда будет разница в измерении средней и мгновенной скорости.

Основное различие заключается в том, что для определенного периода интервала мгновенная скорость измеряется смещением и временем в определенной точке (s, t), а средняя скорость считается общим изменением положения во времени в определенном временном интервале.

Сохраняется ли средняя скорость в движении?

Скорость не остается неизменной в конкретном движении, она продолжает изменяться.

Мы выяснили, что скорость является переменной, зависящей от многих факторов. Он не остается постоянным, но продолжает изменять свое значение с помощью перемещения и времени этого объекта. Исходя из этого, мы можем сказать, что средняя скорость движения не остается неизменной.

Каковы два основных способа вычисления средней скорости?

Есть много приложений, с помощью которых мы можем легко измерить среднюю скорость.

Первый метод — найти среднюю скорость, взяв первую и конечную точки движения, вычтя ее, а затем разделив весь член на 2.

Второй метод основан на использовании формулы, известной как уравнение средней скорости.

Уравнение средней скорости = В = (Вf + Vi) / 2

  • V = средняя скорость.
  • Vf = конечная скорость.
  • Vi = начальная скорость

Это простое уравнение для измерения средней скорости.

Как найти смещение со средней скоростью?

Есть много способов найти смещение в кинематике.

Один из них — найти смещение с помощью формулы средней скорости, которая состоит из изменения положения / смещения. Меняя местами члены формулы, мы можем использовать ее для расчета смещения.

Почему различаются средняя скорость и средняя скорость?

Оба термина означают совершенно разные друг от друга, когда мы изучаем их в физике.

Здесь мы знаем, что скорость — это скаляр, а скорость — вектор, тогда основное различие заключается в физических величинах, которые измеряют важность того, как их можно измерить.

Разница между средней скоростью и средней скоростью

Основные различия между этими двумя величинами приведены ниже:

  • Средняя скорость говорит только о положении движущегося тела, здесь мы должны заметить, что величина будет разной для каждого положения, и определение скорости на любом временном интервале на длине курса осуществляется с помощью средней скорости.
  • Средняя скорость говорит о сохранении скорости на всем пути движения. Это общая скорость, рассчитанная с учетом общей длины пути и времени, и, поскольку это скаляр, мы не можем определить направление пути.

Средняя скорость неравномерного движения уравнение

Неравномерное движение — это движение, при котором за равные промежутки времени тело проходит разные пути.

Средняя путевая скорость — это физическая величина, равная отношению пути, пройденного телом за рассматриваемый промежуток времени, к длительности этого промежутка.

Средняя путевая скорость — скалярная неотрицательная величина.

Средняя скорость тела за промежуток времени t — это физическая величина, равная отношению перемещения , совершённого телом, к длительности этого промежутка времени.

Средняя скорость — вектор. Она направлена туда, куда направлено перемещение тела за рассматриваемый промежуток времени.

Если тело всё время движется в одном направлении, то модуль средней скорости равен средней путевой скорости. Если же в процессе своего движения тело меняет направление движения, то модуль средней скорости меньше средней путевой скорости.

Пример решения задач на среднюю скорость при неравномерном движении

Автомобиль проехал за первый час 50 км, а за следующие два часа он проехал 160 км. Какова его средняя скорость за все время движения?

Еще больше задач на движение (с решениями и ответами) в конспекте «Задачи на движение»

Это конспект по физике за 7 класс по теме «Неравномерное движение. Средняя скорость». Выберите дальнейшие действия:

Неравномерное прямолинейное движение. Средняя скорость

п.1. График скорости при неравномерном прямолинейном движении

Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.

Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.

Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_=9 text<км/ч>, v_=3 text <км/ч>$$ Построим график скорости для этого случая:

п.2. Как найти путь и перемещение по графику скорости?

Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком (triangle t) на оси (t) (см. §8 данного справочника).

В таком случае, путь велосипедиста в нашем примере:
begin s=v_cdot triangle t_1+v_cdot triangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text <(км)>end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.

Если принять город A за начало отсчета с (x_0=0), то координата велосипедиста в конце пути: $$ x_<к>=x_0+s=0+6=6 text <(км)>$$ Перемещение по оси ОХ: (triangle x=x_<к>-x_0=6 text<(км)>).

Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_=9 text<км/ч>, v_=-3 text <км/ч>$$ Построим график скорости для этого случая:

Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная (v_x(t)) с осью (t): begin x=v_cdot triangle t_1+|v_|cdottriangle t_2\ s=9cdot 0,5+3cdot 0,5=4,5+1,5=6 text <(км)>end
Если мы учтем знак (v_) и уберем модуль, то получим величину перемещения по оси ОХ: begin triangle x=v_cdot triangle t_1+v_cdot triangle t_2\ triangle x=9cdot 0,5-3cdot 0,5=4,5-1,5=3 text <(км)>end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_<к>=x_0+triangle x=0+3=3 text <(км)>$$
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.

п.3. Средняя скорость и средняя путевая скорость

В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: begin |overrightarrow>|=frac<|overrightarrow|>=frac<triangle x>=frac 61=6 text<(км/ч)>\ v_=frac st=frac 61=6 text <(км/ч)>end Величина средней скорости равна средней путевой скорости.

А вот для случая, когда велосипедист развернулся и пошел обратно: begin |overrightarrow>|=frac<|overrightarrow|>=frac<triangle x>=frac 31=3 text<(км/ч)>\ v_=frac st=frac 61=6 text <(км/ч)>end Величина средней скорости меньше средней путевой скорости.

п.4. Задачи

Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.

a)

Все движение можно разделить на три участка с постоянной скоростью:
begin triangle t_1=3-0=3 c, v_=5 text<м/с>\ triangle t_2=5-3=2 c, v_=1 text<м/с>\ triangle t_3=7-5=2 c, v_=2 text<м/с>\ end Общий путь: begin s=|v_|cdot triangle t_1+|v_|cdot triangle t_2+|v_|cdot triangle t_3\ s=5cdot 3+1cdot 2+2cdot 2=21 text <(м)>end Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: (triangle x=s=21) (м)
Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (с)
Величина средней скорости равна средней путевой скорости: $$ |overrightarrow>|=v_=frac st=frac<21><7>=3 text <(м/с)>$$ Ответ: (|overrightarrow>|=v_=3 text<(м/с)>)

б)

Все движение можно разделить на три участка с постоянной скоростью:
begin triangle t_1=3-0=3 c, v_=5 text<м/с>\ triangle t_2=5-3=2 c, v_=-2 text<м/с>\ triangle t_3=7-5=2 c, v_=1 text<м/с>\ end Общий путь: begin s=|v_|cdot triangle t_1+|v_|cdot triangle t_2+|v_|cdot triangle t_3\ s=5cdot 3+2cdot 2+1cdot 2=21 text <(м)>end Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: begin triangle x=v_cdot triangle t_1+v_cdot triangle t_2+v_cdot triangle t_3\ triangle x=5cdot 3-2cdot 2+1cdot 2=13 text <(м)>end Общее время: (t=triangle t_1+triangle t_2+triangle t_3=3+2+2=7) (c)
Величина средней скорости: $$ |overrightarrow>|=frac<triangle x>=frac<13><7>approx 1,86 text <(м/с)>$$ Средняя путевая скорость: $$ v_=frac st=frac<21><7>=3 text <(м/с)>$$ Ответ: (|overrightarrow>|approx 1,86 text<(м/с)>; v_=3 text<(м/с)>)

Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.

Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: (v_=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 40 (frac<2d><40>=frac<20>) (2d)
2й участок 80 (frac<80>) (d)
Сумма (t=frac<20>+frac<80>) (s=2d+d=3d)

Упростим сумму дробей: $$ t=frac<20>+frac<80>=frac<4d+d><80>=frac<5d><80>=frac <16>$$ Получаем: $$ v_=frac st=frac<3d>=3cdot 16=48 text <(км/ч)>$$
Ответ: 48 км/ч

Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.

Величина средней скорости равна средней путевой скорости:
(v_=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 90 (frac<2cdot 90>=frac<180>) (frac s2)
2й участок 30 (frac<2cdot 30>=frac<60>) (frac s2)
Сумма (t=frac<180>+frac<60>) (s)

Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.

Величина средней скорости равна средней путевой скорости:
(v_=frac st), где (s) — весь путь, (t) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (frac<4t>) (4t) (d)
2й участок (frac<4d>) (t) (4d)
3й участок (frac<45d><20t>) (20t) (45d)
Сумма (25t) (50d)

По условию средняя скорость: $$ v_=frac st=frac<50d><25t>=2cdot frac dt=32Rightarrow frac dt=16 $$ Получаем: begin v_1=frac<4t>=frac<16><4>=4 text<(км/ч)>\ v_2=frac<4d>=4cdot 16=64 text<(км/ч)>\ v_3=frac<9d><4t>=frac<9><4>cdot 16=36 text <(км/ч)>end
Ответ: 4 км/ч, 64 км/ч и 36 км/ч

Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?

Пусть (v) — скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость (v_) и сравним ее со скоростью (v).
Если (v_gt v), то турист выиграл время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок (10v) (frac<2cdot 10v>=frac<20v>) (frac s2)
2й участок (frac<2>) (frac<2cdot v/2>=frac sv) (frac s2)
Сумма (t=frac<20v>+frac sv) (s)

Упростим сумму дробей: $$ t=frac<20v>+frac sv=frac svleft(frac<1><20>+1right)=frac<21><20>cdot frac sv $$ Средняя скорость: $$ v_=frac<frac<21><20>cdotfrac sv>=frac<20><21>vgt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет

п.5. Лабораторная работа №3. Определение средней скорости движения тела

Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.

Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.

Длина участков измеряется с помощью мерной ленты с ценой деления (triangle=1) см,
инструментальная погрешность равна: (d=frac<triangle><2>=0,5) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: (triangle s_1=triangle s_2=d=0,5) см
Погрешность суммы двух длин: (triangle(s_1+s_2)= triangle s_1+triangle s_2=2d=1) см

Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: (triangle(t_1+t_2)=triangle t_1+triangle t_2)

Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ delta_>=delta_+delta_ $$ Абсолютная погрешность определения средней скорости: $$ triangle v_=v_cdot delta_> $$

Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.

Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.

3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин (delta_=frac<triangle(s_1+s_2)>)
5. Проведите серии по 5 экспериментов для определения (t_1) и (t_2) с помощью секундомера.
6. Найдите (triangle t_1, triangle t_2, triangle(t_1+t_2), delta_)
7. По результатам измерений и вычислений найдите (v_, delta_>) и (triangle v_).
8. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

1) Измерение длин
Цена деления мерной ленты (triangle =1) см
Инструментальная погрешность мерной ленты (d=frac<triangle><2>=0,5) см
Результаты измерений:
(s_1=112) cм
(s_2=208) cм
Сумма длин участков: (s_1+s_2=112+208=320) (см)
Абсолютная погрешность суммы: (triangle (s_1+s_2)=triangle s_1+triangle s_2=2d=1) см
Относительная погрешность суммы: $$ delta_=frac<triangle (s_1+s_2)>=frac<1><320>=0,3125% $$

2) Измерение времени
Цена деления секундомера (triangle =0,2) с
Инструментальная погрешность секундомера (d=frac<triangle><2>=0,1) с

Время движения по наклонному желобу

№ опыта 1 2 3 4 5 Сумма
(t_1) c 1,5 1,6 1,5 1,4 1,4 7,4
(triangle) c 0,02 0,12 0,02 0,08 0,08 0,32

Найдем среднее время спуска с наклонного желоба: $$ t_1=frac<1,5+1,6+1,5+1,4+1,4><5>=frac<7,4><5>=1,48 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_1): $$ triangle_1=|1,5-1,48|=0,02; triangle_2=|1,6-1,48|=1,02 text <и т.д.>$$ Среднее абсолютное отклонение: $$ triangle_=frac<0,02+0,12+0,02+0,08+0,08><5>=frac<0,32><5>=0,064 text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_1=maxleft\right>=maxleft<0,1;0,064right>=0,1 text $$ Округляем полученное значение времени до десятых. begin t_1=(1,5pm 0,1) text\ delta_=frac<0,1><1,5>=frac<1><15>approx 6,7text <%>end Время движения по горизонтальному желобу

№ опыта 1 2 3 4 5 Сумма
(t_2) c 2,3 2,4 2,2 2,2 2,4 11,5
(triangle) c 0 0,1 0,1 0,1 0,1 0,4

Найдем среднее время движения по горизонтали: $$ t_2=frac<2,3+2,4+2,2+2,2+2,4><5>=frac<11,5><5>=2,3 (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от (t_2): $$ triangle_1=|2,3-2,3|=0; triangle_2=|2,4-2,3|=0,1 text <и т.д.>$$ Среднее абсолютное отклонение: $$ triangle_=frac<0+0,1+0,1+0,1+0,1><5>=frac<0,4><5>=0,08 text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ triangle t_2=maxleft\right>=maxleft<0,1;0,08right>=0,1 text $$ Получаем: begin t_2=(2,3pm 0,1) text\ delta_=frac<0,1><2,3>=frac<1><23>approx 4,4text <%>end

3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8 text <(c)>$$ Абсолютная погрешность суммы: $$ triangle(t_1+t_2)=triangle t_1+triangle t_2=0,1+0,1=0,2 text <(c)>$$ Относительная погрешность суммы: $$ delta_=frac<triangle (t_1+t_2)>=frac<0,2><3,8>=frac<1><19>approx 5,3text <%>$$

4) Расчет средней скорости $$ v_=frac=frac<320><3,8>approx 84,2 left(frac<text<см>><text>right) $$ Относительная ошибка частного: $$ delta_>=delta_+delta_=frac<1><320>+frac<1><19>approx 0,003125+0,0526approx 0,0557approx 0,056=5,6text <%>$$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_=v_cdotdelta_>=84,2cdot 0,056approx 4,7 left(frac<text<см>><text>right) $$ Получаем: begin v_=(84,2pm 4,7) text<см/с>\ delta_>=5,6text <%>end

Выводы
На основании проделанной работы можно сделать следующие выводы.

Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: begin v_=(84,2pm 4,7) text<см/с>\ delta_>=5,6text <%>end

Прямолинейное неравномерное движение в физике — формулы и определения с примерами

Содержание:

Прямолинейное неравномерное движение, ускорение:

На практике прямолинейное равномерное движение наблюдается очень редко. Скорость движущегося автомобиля, поезда, самолета, частей механизма и т.д. может изменяться и по величине, и по направлению.

Прямолинейное движение, при котором за равные промежутки времени материальная точка совершает разные перемещения, называют прямолинейным неравномерным движением.

При таком движении числовое значение скорости не остается неизменным, поэтому для описания неравномерного движения пользуются понятиями средней и мгновенной скорости.

Средняя скорость

Средняя скорость неравномерно движущейся материальной точки на данном участке траектории равна отношению ее перемещения на этом участке ко времени совершения этого перемещения:

Средняя путевая скорость материальной точки при неравномерном движении равна отношению всего пройденного пути ко времени, затраченному на прохождение этого пути:

Средняя скорость материальной точки, движущейся со скоростями на участках пути промежутки времени соответственно, вычисляется так:

Если то из уравнения (1.10) получается

Мгновенная скорость.

Скорость материальной точки в данный момент времени или в данной точке траектории называют мгновенной скоростью.

Мгновенная скорость в некоторой точке является векторной величиной и определяется как предел отношения достаточно малого перемещения на участке траектории, включающей эту точку, к малому промежутку времени затраченному на это перемещение (при условии

Где — мгновенная скорость поступательного движения материальной точки.

С течением времени мгновенная скорость может увеличиваться, уменьшаться и изменять направление. Направление мгновенной скорости в данной точке траектории совпадает с направлением касательной к траектории в этой точке (b). Проекция вектора мгновенной скорости в прямоугольной системе координат равна первой производной координаты по времени:

Ускорение

Быстрота изменения мгновенной скорости при неравномерном движении по величине и направлению характеризуется векторной физической величиной, называемой ускорением:

Ускорение — это физическая величина, равная отношению изменения скорости ко времени, за которое это изменение произошло:

Если измерение времени начинается с нуля то:

Направление ускорения совпадает с направлением вектора

Для простоты здесь и в последующем будет рассматриваться такое неравномерное прямолинейное движение материальной точки, при котором за любые равные промежутки времени происходит одинаковое изменение скорости. Такое движение называется равнопеременным движением.

Равнопеременное движение

Равнопеременное движение — это движение, при котором за любые равные промежутки времени происходит одинаковое изменение скорости. При равнопеременном движении значение и направление ускорения не меняются:

При равнопеременном движении проекция ускорения на любую ось, например ось также постоянная:

Это значит, что при равнопеременном движении график зависимости ускорения от времени представляет собой прямую линию, параллельную оси времени, — проекция ускорения на выбранную ось от времени не зависит (с).

В СИ за единицу ускорения принят — ускорение такого равнопеременного движения, при котором материальная точка за 1 секунду изменяет свою скорость на

Знаете ли вы? Ускорение—одна из наиболее значимых величин, используемых в физике и технике. Известно, что при постепенном торможении автомобиля, автобуса и поезда пассажиры не чувствуют дискомфорта, однако при резком торможении для них возникает серьезная опасность. Значит, важно не просто изменение скорости, а быстрота изменения скорости. Для контроля за изменением скорости машин и механизмов используется прибор, измеряющий ускорение — акселерометр (лат.: accelero — «ускоряю » и греч.: metreo — «измеряю «) (d).

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Скорость при равнопеременном движении
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение
  • Равномерное прямолинейное движение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://reshator.com/sprav/fizika/7-klass/neravnomernoe-pryamolinejnoe-dvizhenie-srednyaya-skorost/

http://www.evkova.org/pryamolinejnoe-neravnomernoe-dvizhenie-v-fizike

Понравилась статья? Поделить с друзьями:
  • Сечение графа как найти
  • Как исправить сколиоз лопатку
  • Как найти в галереи личный альбом
  • Как найти адрес коммутатора в сети
  • Как найти новых друзей парню