Как найти модуль вектора перемещения за время

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения  (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно Аx и Вx. Длина отрезка АxВx на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

Sx = AxBx

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, Sx). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Sx = x – x0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Sy = y – y0
Sz = z – z0

Здесь x0, y0, z0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х0 и у0, то есть А(х0, у0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

Sx = x – x0
Sy = y – y0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора, с помощью которой можно найти модуль вектора перемещения, так как

АС = sx
CB = sy

По теореме Пифагора

S2 = Sx2 + Sy2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Как найти модуль перемещения тела (формула)?

Общая формула для всех видов движения по которой можно найти модуль перемещения выглядит так. s = x-x0, где х0 — начальная координата, х — координата через промежуток времени, за которое совершено перемещение.

Для более простых видов перемещения есть частные формулы.

Для равномерного прямолинейного движения x = x0 + vt, где м — скорость тела.

Для равноускоренного прямолинейного движения x = x0 + v0t + (a t^2)/2.

система выбрала этот ответ лучшим

Zolot­ynka
[551K]

6 месяцев назад 

Прежде чем писать/запоминать формулу, давайте разберемся, что представляет собой само понятие перемещения тела — это разница между двумя положениями объекта. Далее: это векторная величина, потому что у нее также есть направление — от начальной позиции к финальной.

Формула перемещения выглядит следующим образом: Sx = x — x0.

__

Перемещение не обязательно всегда положительно, оно также может быть нулевым или отрицательным.

Знаете ответ?

На прошлом уроке мы научились находить координаты движущегося тела в определенный момент времени. Для этого мы использовали вектор перемещения, а точнее — его проекцию: $s_x = x_2 space − space x_1$. Итак, зная проекцию вектора перемещения и начальную координату тела, мы находили интересующую нас координату $x_2$, которую тело имеет по прошествии какого-то времени: $x_2 = x_1 space + space s_x$. 

Но что делать, если вектор перемещения изначально не задан? На данном уроке вы узнаете, как его определить в самом простом случае — при прямолинейном и равномерном движении тела. А также вам предстоит знакомство с графиками зависимости модуля скорости и ее проекции от времени (они помогут нам в нахождении модуля и проекции перемещения) и уравнением движения тела.

Формулы скорости и перемещения в векторной форме

Для начала вспомним определение прямолинейного равномерного движения (рисунок 1).

Прямолинейное равномерное движение — это движение, при котором тело движется по прямолинейной траектории и проходит за любые равные промежутки времени одинаковые пути.

Рисунок 1. Равномерное прямолинейное движение

При таком движении перемещение тела с течением времени увеличивается. Быстроту этого увеличения характеризует скорость.

Что называется скоростью равномерного прямолинейного движения?

Скорость равномерного прямолинейного движения — это постоянная векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка:
$vec upsilon = frac{vec s}{t}$.

Скорость — это векторная величина: она имеет как направление, так и численное значение (ее модуль). Обратите внимание, что скорость при равномерном прямолинейном движении постоянна: не изменяется ни ее модуль, ни ее направление.

Теперь давайте выразим из формулы скорости искомое перемещение:

$vec s = vec upsilon t$.

Хорошо, теперь у нас есть формула для перемещения. Но она в векторной форме. С одной стороны, это дает нам возможность судить о том, как скорость и перемещение направлены относительно друг друга. Из наших формул видно, что при прямолинейном равномерном движении эти величины сонаправлены друг другу.

С другой стороны, в таком виде мы не сможем использовать формулу перемещения для расчетов. Теперь нам нужно получить формулу для проекции вектора перемещения.

Формула перемещения для практического использования

Итак, при решении задач нам понадобится формула, в которую будут входить проекции векторов на ось.

Как найти проекцию вектора перемещения тела, движущегося прямолинейно и равномерно, если известны проекция вектора скорости и время движения?

$s_x = upsilon_x t$.

Обратите внимание, что проекции $s_x$ и $upsilon_x$ могут иметь знак «минус». Это будет означать, что соответствующий проекции вектор направлен противоположно выбранной оси.

Например, если вектор скорости $vec upsilon_1$ сонаправлен оси OX (рисунок 2), то проекция скорости будет больше нуля: $upsilon_{1x} > 0$. Если же скорость $vec upsilon_2$ направлена против оси OX, то проекция этого вектора будет отрицательной: $upsilon_{2x} < 0$.

Рисунок 2. Знак проекции скорости в зависимости от ее направления

Мы не изображаем на рисунках и схемах проекцию вектора скорости подобно проекции вектора перемещения (мы рассчитываем проекцию вектора скорости по вышеприведенной формуле). Нам достаточно знать, что при равномерном прямолинейном движении вектор скорости всегда сонаправлен с вектором перемещения. Так, если тело двигалось противоположно направлению координатной оси, то проекция вектора перемещения будет отрицательной. Используя формулу $upsilon_x = frac{s_x}{t}$, мы получим отрицательную проекцию вектора скорости.

Модуль вектора перемещения и путь

Иногда мы можем встретить задачи, при решении которых нам будет неважно направление векторов перемещения и скорости. Тогда мы можем использовать уже знакомую вам формулу, в которой фигурируют модули величин:

$s = upsilon t$.

Используя эту формулу ранее, мы называли величину $s$ пройденным путем, а теперь называем ее перемещением. Ошибки здесь нет — это частный случай, когда путь равен модулю перемещения (рисунок 3).

Рисунок 3. Частный случай равенства пути и перемещения

При каком условии модуль вектора перемещения, совершенного телом за некоторый промежуток времени, равен пути, пройденному телом за тот же промежуток времени?

При движении в одном направлении модуль вектора перемещения, совершенного телом за некоторый промежуток времени, равен пути, пройденному этим телом за тот же промежуток времени.

Взгляните на рисунок 4, подтверждающий этот факт.

Рисунок 4. Движение тела по различным траекториям

Если тело (автомобиль на рисунке 4) движется в одном направлении (например, из точки $O$ в точку $A$ или из точки $O$ в точку $C$), модуль вектора перемещения равен пройденному пути. Если же направление движения тела изменяется (например, при движении из точки $O$ в точку $B$ и обратно в точку $O$ или при движении по криволинейной траектории из точки $O$  в точку $D$), то путь, пройденный телом, будет больше модуля его перемещения.

График зависимости модуля вектора скорости от времени

Рассмотрим график зависимости модуля вектора скорости $upsilon$ от времени $t$. Тело при этом движется равномерно и прямолинейно (рисунок 5).

Рисунок 5. График зависимости модуля вектора скорости от времени движения

Модуль вектора перемещения $s$  в данном случае мы можем рассчитать по формуле:
$s = upsilon_1 t_1$.

А теперь взгляните на закрашенный зеленым цветом прямоугольник на рисунке 5. Его площадь $S$ по определению будет равна произведению его смежных сторон — $upsilon_1$ (длины отрезка $O upsilon_1$) и $t_1$ (длины отрезка $O t_1$).

При прямолинейном равномерном движении тела модуль вектора его перемещения численно равен площади прямоугольника (площади под графиком скорости), заключенного между графиком скорости, осью Ot и перпендикулярами к этой оси, восстановленными из точек, соответствующих моментам начала и конца наблюдения (в данном случае из точек $O$ и $t_1$).

График зависимости проекции вектора скорости от времени

И все-таки, чаще мы будем иметь дело с задачами, при решении которых нам понадобится использовать проекции векторов.

Например, обратимся к задаче с катерами из прошлого урока. Два катера двигаются в противоположных направлениях (рисунок 6). Один из них проходит $60 space км$, а другой — $50 space км$. Пусть эти перемещения совершены за время $t_1$, равное $2 space ч$.

Рисунок 6. Иллюстрация к задаче

В этом случае векторы скорости и перемещения первого катера будут сонаправлены друг другу, как и векторы скорости и перемещения второго катера. Их проекции: для первого катера они будут положительными, а для второго — отрицательными.

Проекция скорости первого катера:
$s_{1x} = upsilon_{1x} t_1$,
$upsilon_{1x} = frac{s_{1x}}{t_1}$,
$upsilon_{1x} = frac{60 space км}{2 space ч} = 30 frac{км}{ч}$.

Проекция скорости второго катера:
$upsilon_{2x} = frac{s_{2x}}{t_1}$,
$upsilon_{2x} = frac{−50 space км}{2 space ч} = −25 frac{км}{ч}$.

А теперь взгляните на графики зависимости проекций векторов скорости от времени (рисунок 7).

Рисунок 7. Графики зависимости проекций векторов скорости от времени движения

Какую информацию о движении двух тел можно получить по графикам, изображенным на рисунке 7?

Здесь мы видим и числовые значения проекций векторов скорости, и их знаки, а также знаки проекций перемещений, которые совершили катера за время $t_1$. Проекции этих перемещений численно равны площадям под графиками:

  • проекция вектора перемещения $s_{1x}$ больше нуля и численно равна площади оранжевого прямоугольника;
  • проекция вектора перемещения $s_{2x}$ меньше нуля и численно равна площади голубого прямоугольника.

Уравнение движения

Теперь получим формулу для определения координаты тела при неизвестном векторе перемещения.

Рассмотрим автомобиль, который двигается равномерно и прямолинейно по какому-то участку дороги (рисунок 8). За тело отсчета возьмем светофор и направим ось OX в сторону движения автомобиля.

Рисунок 8. Прямолинейное равномерное движение автомобиля

Чему будет равна проекция перемещения автомобиля из точки с координатой $x_0$  в точку с координатой $x$?

По определению проекции:
$s_x = x space − space x_0$.

По определению проекции скорости:
$s_x = upsilon_x t$.

Приравняем правые части этих уравнений друг к другу:
$upsilon_x t =  x space − space x_0$.

Теперь выразим отсюда искомую координату $x$ и получим кинематический закон движения или уравнение движения.

Для определения координаты движущегося тела в любой момент времени достаточно знать его начальную координату и проекцию скорости движения на ось:
$x = x_0 space + space upsilon_x t$.

Упражнения

Упражнение №1

Может ли график зависимости модуля вектора скорости от времени располагаться под осью Ot (то есть в области отрицательных значений оси скорости)?

Посмотреть ответ

Скрыть

Ответ:

График зависимости модуля вектора скорости от времени (рисунок 5) не может располагаться под осью Ot. Причина этому — само определение модуля какой-либо величины. Модуль — это всегда положительная величина.

Упражнение №2

Постройте графики зависимости проекций векторов скорости от времени для трех автомобилей, движущихся прямолинейно и равномерно, если два из них едут в одном направлении, а третий — навстречу им. Скорость первого автомобиля равна $60 frac{км}{ч}$, второго — $80 frac{км}{ч}$, а третьего — $90 frac{км}{ч}$.

Посмотреть ответ

Скрыть

Ответ:

Графики зависимости проекций векторов скорости от времени для трех автомобилей показаны на рисунке 9.

Рисунок 9. Графики зависимости проекций векторов скорости от времени для трех автомобилей

Автомобили движутся равномерно. Значит, скорость не изменяется с течением времени — графики представляют собой прямые, параллельные оси времени Ot.

Первые два автомобиля движутся в одном направлении — мы примем его за направление оси OX. Поэтому проекции векторов скорости $upsilon_{1x}$ и  $upsilon_{2x}$ будут положительными. Третий автомобиль двигается в противоположную сторону. Значит, проекция его вектора скорости  $upsilon_{3x}$ будет отрицательной

Как найти модуль вектора перемещения

В кинематике для нахождения различных величин используются математические методы. В частности, чтобы найти модуль вектора перемещения, нужно применить формулу из векторной алгебры. В ней фигурируют координаты точек начала и конца вектора, т.е. первоначального и итогового положения тела.

Как найти модуль вектора перемещения

Инструкция

Во время движения материальное тело меняет свое положение в пространстве. Его траектория может быть прямой линией или произвольной, ее длина составляет путь тела, но не расстояние, на которое оно переместилось. Эти две величины совпадают только в случае прямолинейного движения.

Итак, пусть тело совершило некоторое перемещение из точки А (х0, у0) в точку В (х, у). Чтобы найти модуль вектора перемещения, нужно вычислить длину вектора АВ. Начертите координатные оси и нанесите на них известные точки начального и конечного положения тела А и В.

Проведите отрезок из точки А в точку В, укажите направление. Опустите проекции его концов на оси и нанесите на графике параллельные и равные им отрезки, проходящие через рассматриваемые точки. Вы увидите, что на рисунке обозначился прямоугольный треугольник с катетами-проекциями и гипотенузой-перемещением.

По теореме Пифагора найдите длину гипотенузы. Этот метод широко применяется в векторной алгебре и носит название правила треугольника. Для начала запишите длины катетов, они равны разностям между соответствующими абсциссами и ординатами точек А и В:
ABx = x – x0 – проекция вектора на ось Ох;
ABy = y – y0 – его проекция на ось Оу.

Определите перемещение |AB|:
|AB| = √(ABx² + ABy²) = ((x – x0)² + (y – y0)²).

Для трехмерного пространства добавьте в формулу третью координату – аппликату z:
|AB| = √(ABx² + ABy² + ABz²) = ((x – x0)² + (y – y0)² + (z – z0)²).

Полученную формулу можно применять для любой траектории и типа движения. При этом величина перемещения обладает важным свойством. Она всегда меньше либо равна длине пути, в общем случае ее линия не совпадает с кривой траектории. Проекции – величины математические, могут быть как больше, так и меньше нуля. Однако это не имеет значения, поскольку в расчете они участвуют в четной степени.

Источники:

  • модуль перемещения

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Скорость равномерного прямолинейного движения прямо пропорциональна перемещению тела и обратно пропорциональна значению времени этого перемещения.

                                                                            v→=s→t.

Можно выразить перемещение из этой формулы, умножив обе части на значение времени: s→=v→⋅t.

О направлении векторов этих величин относительно друг друга можно судить, в частности, по уравнениям, записанным в векторной форме.

Проекция перемещения на ось (OX) рассчитывается по формуле

sx=vxt

, где (upsilon_x) — проекция скорости на ось (OX) принимает положительное значение, если направление перемещения совпадает с направлением оси (OX); принимает отрицательное значение, если перемещение противоположно направлено относительно оси (OX).

Если при решении задач направление движения не влияет на смысл условия и ход решения задачи, то направление векторных величин можно не учитывать. Тогда говорят о модулях величин, то есть их размере без учёта направления: (|vec{s}|=|vec{upsilon}|cdot t) можно заменить на s=vt.

При прямолинейном равномерном движении модуль перемещения равен пройденному пути: (|vec{s}|=s), если направление скорости совпадает с направлением вектора перемещения.

На рисунке представлена зависимость (v(t)) для равномерного движения.

v_t.png

Формула для расчета модуля перемещения: s=v1⋅t1.

Однако произведение v1⋅t1, т.е. скорости на промежуток времени, численно равно площади (S) закрашенной фигуры (в данном случае прямоугольника).

Это наблюдение позволяет сделать вывод; что при прямолинейном равномерном движении модуль перемещения численно равен площади прямоугольника, которые образуется между графиком скорости и осью времени. При этом необходимо учитывать моменты времени: начало наблюдения за объектом и конец наблюдения. В данном случае начало наблюдения соответствует точке  (O,) а конец наблюдения — точке t1.

Можно говорить о равенстве пройденного пути и площади под графиком скорости.

Понравилась статья? Поделить с друзьями:
  • Как найти ветку гит
  • Алгоритм как составить текст повествование
  • Как найти мужчину в 50 лет советы
  • Как составить маршрут обработки детали
  • Тело лежит не в положительном октанте xyz автокад как исправить