Как найти модуль заряда электрического поля

Как определить модуль точечных зарядов

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Как определить модуль точечных зарядов

Вам понадобится

  • — крутильные весы;
  • — линейка;
  • — калькулятор;
  • — измеритель электростатического поля.

Инструкция

Если есть два одинаковых по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые одновременно являются чувствительным динамометром. После того, как заряды придут в равновесие, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. После этого при помощи линейки, штангенциркуля, или по специальной шкале на весах найдите расстояние между этими зарядами. Учитывайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на коэффициент 9•10^9. Из полученного результата извлеките квадратный корень. Результат умножьте на расстояние между зарядами r, q=r•√(F/9•10^9). Заряд получите в Кулонах.

Если заряды неодинаковые, то один из них должен быть заранее известен. Силу взаимодействия известного и неизвестного заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неизвестного заряда. Для этого силу взаимодействия зарядов F, поделите на произведение коэффициента 9•10^9 на модуль известного заряда q0. Из получившегося числа извлеките квадратный корень и умножьте результат на расстояние между зарядами r; q1=r•√(F/(9•10^9•q2)).

Определите модуль неизвестного точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке заранее неизвестна, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с известной напряженностью заряд и с помощью чувствительного динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Модуль напряженности не зависит от значения пробного заряда q0:

E=FKq0=kQq0r2q0=kQr2

Модуль напряженности точечного заряда в вакууме:

E=kQr2

Модуль напряженности точечного заряда в среде:

E=kQεr2

Сила Кулона:

FKулона=qE

Потенциал не зависит от значения пробного заряда q0:

φ=Wpqo=±kQq0rq0=±kQr

Потенциал точечного заряда в вакууме:

φ=±kQr

Потенциал точечного заряда в среде:

φ=±kQεr

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A12=±q(φ1φ2)

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз?

Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

E=kQεr2

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r < R)

E=0

На поверхности проводника (расстояние равно радиусу сферы, или r = R)

E=kQR2

Вне проводника (расстояние больше радиуса сферы, или r > R)

E=kQr2=kQ(R+a)2

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

FK=qE

Потенциал:

Внутри проводника и на его поверхности (r < R или r = R)

φ=±kQR

Вне проводника (r > R)

φ=±kQr=±φ=±kQR+a

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

6 нКл = 6∙10–9 Кл

Так как сфера заряжена положительно, то потенциал тоже положителен:

Задание EF18107

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Ответ:

а) F

б) nF

в) Fn

г) n2F


Алгоритм решения

1.Записать исходные данные.

3.Применить закон Кулона к обоим зарядам для 1 и 2 случая.

4.Установить, как меняется сила, с которой заряды действуют друг на друга.

Решение

Запишем исходные данные:

 Первая пара зарядов: q1 и q2.

 Вторая пара зарядов: q1’ = nq1 и q2’=q2/n.

 Расстояние между зарядами: r1 = r2 = r.

Закон Кулона:

FK=k|q1||q2|r2

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

FK1=k|q1||q2|r2

Закон Кулона для второй пары:

FK2=k|nq1|q2nr2=k|q1||q2|r2

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

FK1=FK2

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18591

В трёх вершинах квадрата размещены точечные заряды: +qq, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Ответ:

а) ↘

б) →

в) ↖

г) ↓


Алгоритм решения

1.Сделать чертеж. Обозначить все силы, действующие на центральный точечный заряд со стороны остальных точечных зарядов.

2.Найти равнодействующую сил геометрическим способом.

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22574

На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать формулы для нахождения напряженности электростатического поля внутри и снаружи заряженной сферы.

2.Определить величину напряженности поля в указанных точках.

3.Установить соответствие между величинами и их значениями.

Решение

Внутри заряженной сферы напряженность электростатического поля равна 0. Поэтому напряженность в точке А равна 0.

EA=0

Снаружи заряженной сферы напряженность электростатического поля равна:

E=kQr2=kQ(R+a)2

Найдем напряженность электростатического поля в точке В, которая находится на расстоянии 3R от центра заряженной сферы:

EB=kQr2=kQ(3R)2=kQ9R2

Чтобы выразить EB через Eс, найдем напряженность электростатического поля в точке С, которая находится на расстоянии 3R/2 от центра заряженной сферы:

EС=kQr2=kQ(32R)2=4kQ9R2

Найдем отношение EB к Eс:

EBEС=kQ9R2÷4kQ9R2=kQ9R2·9R24kQ=14

Следовательно:

EB=EС4

Ответ: 14

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.5k

Электрическое поле

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Содержание

  • Электризация тел
  • Взаимодействие зарядов. Два вида зарядов
  • Закон сохранения электрического заряда
  • Закон Кулона
  • Действие электрического поля на электрические заряды
  • Напряженность электрического поля
  • Принцип суперпозиции электрических полей
  • Потенциальность электростатического поля
  • Потенциал электрического поля. Разность потенциалов
  • Проводники в электрическом поле
  • Диэлектрики в электрическом поле
  • Электрическая емкость. Конденсатор
  • Энергия электрического поля конденсатора
  • Основные формулы раздела «Электрическое поле»

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

Способы электризации:

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​( q )​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​( N )​ — число избыточных или недостающих электронов;
( e )​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:

  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​( (q) )​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​( (q_1, q_2 … q_N) )​:

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​( F )​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​( q_1 )​ и ( q_2 ) и обратно пропорциональна квадрату расстояния между ними ​( r )​:

где ​( k=frac{1}{4pivarepsilon_0}=9cdot10^9 )​ (Н·м2)/Кл2 – коэффициент пропорциональности,
( varepsilon_0=8.85cdot10^{-12} )​ Кл2/(Н·м2) – электрическая постоянная.

Коэффициент ​( k )​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​( varepsilon )​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​( r )​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​( vec{E} )​ – напряженность электрического поля, ​( q )​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Напряженность электрического поля

Напряженность электрического поля( vec{E} )​ – векторная физическая величина, равная отношению силы ​( F )​, действующей на пробный точечный заряд, к величине этого заряда ​( q )​:

Обозначение – ( vec{E} ), единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

где ( k=frac{1}{4pivarepsilon_0}=9cdot10^9 ) (Н·м2)/Кл2,
( q_0 )​ – заряд, создающий поле,
( r )​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

где ​( varepsilon )​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​( vec{E} )​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Определяя направление вектора ​( vec{E} )​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Принцип суперпозиции электрических полей

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля системы ​( N )​ зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:

Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​( vec{E} )​ при перемещении заряда ​( q )​ совершает работу. Работа ​( A )​ электростатического поля вычисляется по формуле:

где ​( d )​ – расстояние, на которое перемещается заряд,
( alpha )​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​( W )​, так как буквой ​( E )​ обозначают напряженность поля:

Потенциальная энергия заряда ​( q )​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​( varphi )​, единица измерения в СИ – вольт (В).

Потенциал ( varphi ) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​( Deltavarphi )​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​( U )​ и называют напряжением.

Важно!
Разность потенциалов ( Deltavarphi=varphi_1-varphi_2 ), а не изменение потенциала ( Deltavarphi=varphi_2-varphi_1 ). Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда( q )​ в точке, удаленной от него на расстояние ​( r )​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​( r =R )​, где ​( R )​ – радиус шара). Напряженность поля внутри шара равна нулю.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​( C )​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​( q )​ – заряд проводника, ​( varphi )​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​( q )​ – модуль заряда одной из обкладок,
( U )​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​( S )​, находящиеся на расстоянии ​( d )​ друг от друга.

Электроемкость плоского конденсатора:

где ​( varepsilon )​ – диэлектрическая проницаемость вещества между обкладками,
( varepsilon_0 ) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

Виды конденсаторов:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Общая емкость:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Общее напряжение:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Энергия электрического поля конденсатора

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:

Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.

Плотность энергии электрического поля:

где ​( V )​ – объем пространства между обкладками конденсатора.

Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.

Основные формулы раздела «Электрическое поле»

Электрическое поле

3 (59.42%) 138 votes

§ 2. Закон Кулона. Поле точечного заряда. Силовые линии электрического поля

Опытным путём установлен закон Кулона:

сила взаимодействия двух  точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:

$$ F=k{displaystyle frac{left|{q}_{1}right|left|{q}_{2}right|}{{r}^{2}}} $$.                                                            (2.1)

Здесь `F` — модуль силы, `k` — коэффициент пропорциональности, зависящий от  выбора системы единиц, `q_1` и `q_2` — величины зарядов, `r` — расстояние между  зарядами. 

Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).

Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) –  заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.

Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ left[Fright]=left[kright]{displaystyle frac{left[{q}_{1}right]left[{q}_{2}right]}{left[{r}^{2}right]}}$$.

Поскольку $$ left[Fright]=H=mathrm{кг}·mathrm{м}/{mathrm{с}}^{2}, left[{q}_{1}right]=left[{q}_{2}right]=mathrm{Кл}=mathrm{А}·mathrm{с}, left[{r}^{2}right]={mathrm{м}}^{2}$$, то 

$$ left[kright]={displaystyle frac{left[Fright]left[{r}^{2}right]}{left[{q}_{1}right]left[{q}_{2}right]}}={displaystyle frac{mathrm{Н}·{mathrm{м}}^{2}}{{mathrm{Кл}}^{2}}}={displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}$$.

Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо. 

Приведём значение коэффициента `k` в (2.1) для системы СИ:

$$ k=9·{10}^{9}{displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}=9·{10}^{9} mathrm{ед}. mathrm{СИ}$$.

Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k={displaystyle frac{1}{4pi {epsilon }_{0}}}$$.

Здесь $$ {epsilon }_{0}=mathrm{8,85}·{10}^{-12}$$ ед. СИ называется электрической постоянной.

Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=left|overrightarrow{F}right|=kleft|Qright|left|qright|/{r}^{2}$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него 

$$ E=k{displaystyle frac{left|Qright|}{{r}^{2}}}$$.                                                     (2.2)

На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q < 0`. Знак пробного заряда `q` выбран положительным из соображений удобства, т. к. при таком выборе направление силы, действующей на `q`, совпадает с направлением напряжённости. 

Формулу (2.2) можно обобщить, избавившись от знака модуля:

$$ {E}_{x}=k{displaystyle frac{Q}{{r}^{2}}}$$                                                                 (2.3)

Здесь $$ {E}_{x}$$ – проекция напряжённости на ось `x`, направленную от заряда `Q` и проходящую через исследуемую точку. Справедливость (2.3) при любом знаке `Q` проверяется непосредственно (см. рис. 2.1, 2.2).

Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке.Наглядно электрические поля изображают с помощью силовых линий.

На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.

Рис. 2.3

Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника. 

Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.

1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).

Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.

Рис. 2.4

В двух вершинах равностороннего треугольника со стороной `a=1` м расположены точечные заряды $$ {q}_{1}=Q=1.4·{10}^{-7}mathrm{Кл}$$, $$ {q}_{2}=-2Q$$. Найти напряжённость (модуль) электрического поля в третьей вершине треугольника.

Пусть напряженность полей, созданных зарядами `Q` и `-2Q` в третьей вершине треугольника $$ overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$ (рис. 2.4). По принципу суперпозиции полей напряжённость результирующего поля $$ overrightarrow{E}=overrightarrow{{E}_{1}}+overrightarrow{{E}_{2}}.$$ Используя теорему косинусов для треугольника, составленного из векторов $$ overrightarrow{E}, overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$, получаем $$ {E}^{2}={{E}^{2}}_{1}+{{E}^{2}}_{2}-2{E}_{1}{E}_{2}mathrm{cos}60°. $$ Поскольку `E_1=kQ//a^2`, `E_2=2kQ//a^2`, `cos60^@=1//2`, то `E=sqrt3k Q/q^2~~2,2*10^3` Н/Кл.

Понравилась статья? Поделить с друзьями:
  • Как найти стороны четырехугольника формулы
  • Pdfconversionerror findresource kyocera как исправить
  • Как найти книги по егэ
  • Как найти число диагоналей куба
  • Как составить объем работ при строительстве