Как найти момент инерции относительно оси стержня

11

Механика твердого тела

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Лекция 6

    1. Момент инерции
      материальной точки

Момент инерции м.
т. и тел является скалярной величиной
и широко применяется не только в физике,
но и ряде других дисциплин: теоретическая,
прикладная механика и т. д.

Моментом инерции
м. т. относительно полюса называют
скалярную величину, равную произведению
массы этой точки на квадрат расстояния
до полюса.

Момент инерции м.
т. можно найти по формуле

I0
= m
R2,
(6.1)

где m – масса м.
т.; R – расстояние до полюса 0.

Единицей
измерения момента инерции в СИ является
килограмм, умноженный на метр в квадрате
(кгм2).

    1. Момент инерции
      системы материальных точек

Тело можно
представить состоящим из большого числа
м.т., поэтому момент инерции системы м.
т.

,
(6.2)

где
mi
– масса i-й м. т.; Ri
– ее расстояние до полюса 0.

Моментом
инерции системы м. т. или тела относительно
полюса (точки) называют алгебраическую
сумму произведений масс м. т., из которых
состоит тело, на квадрат расстояния их
до полюса 0.

При
непрерывном распределении массы по
объему тела момент инерции относительно
полюса находится по формуле

(6.3)

В случае момента
инерции относительно полюса массу dm
умножают на квадрат расстояния до
неподвижной точки (полюса), а в случае
момента инерции относительно оси – до
неподвижной оси.

В
декартовой системе координат сумма
моментов инерции тела относительно
трех взаимно перпендикулярных осей,
пересекающих в одной точке 0, равна
удвоенному моменту инерции этого тела
относительно этого же начала:

Ix
+ Iy+
Iz
= 2I0
.
(6.4)

6.3. Теорема Штейнера

Рис. 6.1

Для установления
связи (рис. 5.1) между моментом инерции
тел относительно двух параллельных
осей применяется теорема Штейнера
(Штейнера

Гюйгенса
):

I
= Ic
+ md2.
(6.5)

Момент
инерции тела относительно произвольной
оси равен моменту инерции относительно
оси, параллельной данной, проходящей
через центр масс, плюс произведение
массы тела на квадрат расстояния между
осями.

6.4. Момент инерции однородного стержня

Моменты
инерции различных тел можно найти по
формуле I = mR2,

где m
– коэффициент пропорциональности,
который зависит от формы тела и его
расположения относительно оси вращения.

Найдем
момент инерции однородного стержня
относительно оси, проходящей через один
из его концов, перпендикулярно продольной
геометрической оси симметрии (рис. 6.2).
Пусть ось вращения ВВ проходит через
правый конец стержня (т. Г), тогда
I
= mmL2,
где
L —
длина стержня.

Согласно
теореме Штейнера, имеем
.

Рис. 6.2

Величину момента
инерции Ic
относительно
оси, проходящей через центр масс (точка
С), представим как сумму моментов инерции
двух стержней с длинами ДС = СГ = L/2
и массой
каждого, равной m/2 стержня, т. е.

.

Подставим
значения момента инерции I и Ic
в формулу теоремы Штейнера – Гюйгенса
и найдем :

.

После
преобразования получим, что m
= 1 / 3.

Следовательно,
момент инерции стержня относительно
оси, проходящей через центр масс,


(6.6)

относительно
оси ВВ,

(6.7)

В физике для описания инерционных качеств поступательного или линейного движения пользуются понятием массы тела. Если же движение рассматривается вокруг некоторой оси вращения, то используют несколько иную физическую характеристику — момент инерции. В данной статье рассмотрим, что это за величина и как можно рассчитать момент инерции тонкого стержня.

Вращение и момент инерции

Инерции момент проще всего ввести для материальной точки. Когда она, обладая массой M, вращается вокруг оси, описывая окружность радиусом R, то момент инерции для нее определяется по формуле:

I = M*R2.

Любое реальное тело, какой бы сложной геометрической формой оно не обладало, можно представить как совокупность материальных точек. Это означает, что для всего тела или системы твердых тел величину I можно вычислить, если проинтегрировать по элементарным массам dm выражение выше. Общая формула для определения момента инерции имеет вид:

I = ∫m(r2*dm).

Через объем и плотность это равенство записывается в таком виде:

I = ∫V(ρ*r2*dV).

Его часто применяют для вычисления значений I конкретных геометрических объектов.

Моменты инерции разных тел

Физический смысл инерции момента I заключается в том, что он определяет, насколько «сложно» данной силе, создающей некоторый крутящий момент, раскрутить или остановить вращающуюся систему. Иными словами, I характеризует инерционные свойства изучаемой системы.

Самым известным примером использования момента инерции является маховик двигателя внутреннего сгорания в автомобилях. Благодаря большому значению величины I, маховик обеспечивает плавность движения автомобиля, сглаживая любые резкие воздействия на коленчатый вал. Пример иного характера, где также важно знать момент инерции, — это закон сохранения момента импульса. Применяется он для поворота вокруг оси искусственных спутников в космическом пространстве Земли.

Тонкий стержень и оси вращения

Далее будет рассмотрен момент инерции стержня относительно осей (разных). Вычисления будут проводиться для тонкого стержня, который обладает однородным распределением массы, то есть его плотность во всех точках является постоянной величиной. Под тонким понимают такой стержень, у которого ширина (толщина) намного меньше, чем его длина L. Для обозначения его массы будем использовать букву M.

Из приведенных выше формул следует, что величина I зависит от относительного положения тела и оси вращения. Для стержня можно выделить три основных оси. Одна из них проходит через длину всего стержня. Поскольку его толщина стремится к нулю, то момент инерции для такого положения тела также будет стремиться к этому значению.

Две другие оси перпендикулярны длине рассматриваемого тела. Одна из них проходит через центр масс, назовем ее O1, вторая — через конец стержня, обозначим ее O2. Относительно них и вычислим величину I.

Момент инерции относительно O1

Момент инерции стержня и диска

В первую очередь выпишем общую формулу. Имеем:

I = ∫V(ρ*r2*dV).

Обозначим площадь сечения стержня буквой S. Очевидно, что она стремится к нулю, поскольку стержень тонкий. Но это обозначение удобно ввести для выполнения дальнейших расчетов.

Теперь мысленно разобьем стержень на бесконечное количество мелких кусочков, каждый из которых будет иметь сечение S и толщину dl. Заменяя r на l в формуле выше, получаем:

I = ∫L(ρ*S*l2*dl).

Остается только подставить правильные пределы интегрирования и записать конечную формулу. Поскольку ось O1 проходит через середину стержня, то пределы интегрирования будут следующими:

I = ∫-L/2L/2(ρ*S*l2*dl).

Результатом вычисления этого интеграла является следующая формула:

I = M*L2/12.

Таким образом, момент инерции тонкого стержня определяется его массой и длиной.

Инерции момент относительно O2

Теперь рассмотрим ситуацию, когда ось вращения будет проходить через любой из концов стержня и будет ему перпендикулярна. Соответствующую формулу можно получить из записанного выше интеграла, если правильно подставить пределы интегрирования. Однако мы пойдем несколько иным путем и определим инерции момент с помощью теоремы Штейнера.

Использование теоремы Штейнера

Она говорит о том, что если две оси являются параллельными друг другу и одна из них (ось O) проходит через центр масс тела, то момент инерции относительно второй оси может быть вычислен с помощью такого равенства:

I = I0 + M*h2.

Здесь I0 — момент инерции стержня относительно оси O, h — дистанция между осями.

Эту формулу можно с успехом применить для нашего случая. Поскольку I0 мы рассчитали в предыдущем пункте статьи относительно оси O1, и расстояние между O1 и O2 составляет L/2, то с использованием теоремы Штейнера получаем следующий результат:

I = I0 + M*h2 = M*L2/12 + M*L2/4 = M*L2/3.

Таким образом, для стержня величина I относительно оси O2 в 4 раза больше, чем относительно оси O1. Это означает, что для придания одинакового углового ускорения стержню в случае вращения вокруг оси O2 следует приложить в 4 раза больший крутящий момент, чем в случае оси O1.

Пример задачи

Момент инерции и ось

Дан тонкий стержень длиною 0,5 м и массой 5 кг. На расстоянии 2/5 от его конца расположена ось вращения, перпендикулярная стержню. Чему равен момент инерции системы?

Для решения задачи воспользуемся теоремой Штейнера. Расстояние между осями O1 и заданной в задаче равно:

h = 0,25 — 0,2 = 0,05 м.

Тогда получаем момент инерции стержня (однородного):

I = I0 + M*h2 = 5*0,52/12 + 5*0,052 = 0,117 кг*м2.

В СИ момент инерции стержня измеряется в указанных единицах.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Понравилась статья? Поделить с друзьями:
  • Как найти объект в воде
  • Как пишется нашел у кого спросить
  • Почему боты стоят на месте кс го в соревновательном режиме как исправить
  • Как найти фактическую мощность
  • Как найти недавние сайты в яндексе